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Abstract—Miss Ratio Curves (MRCs) serve as a widely recog-
nized tool for cache profiling, offering a comprehensive visualiza-
tion of the relationship between cache size and miss ratio. This
enables users to assess the cost of storage and estimate the impact
of cache misses effectively. However, MRCs are constructed based
on past requests, raising questions about their suitability for
what-if analysis in predicting future cache occupancy.

In this work, we aim to evaluate the effectiveness of MRCs
in predicting cache performance. To achieve this, we explore the
influence of the interval during which requests are collected and
establish metrics for quantifying the error between predictions
and actual outcomes. Our findings highlight that predictive what-
if analysis remains an open problem that necessitates thorough
investigation and exploration.

I. INTRODUCTION

Caches play a pivotal role across various computing con-
texts, acting as foundational components to enhance system
performance. From CPUs to web services, caches facilitate
rapid access to frequently used content, becoming increasingly
indispensable as system architectures become more complex,
such as those incorporating multi-core CPUs or clusters of
parallel machines. One of the critical aspects in leveraging
caches for performance improvement lies in determining the
optimal cache size. Even minor deviations in cache hits can
lead to substantial variations in average latency required to
retrieve content [1]. However, the relationship between cache
hit ratio and allocated resources is not linear, e.g., doubling the
cache size does not necessarily result in a doubled hit ratio.

In cloud computing, cache sizing is particularly important
in two scenarios. Firstly, in a shared resource environment
where caches are utilized by multiple processes or applica-
tions, specific access patterns or aggressive applications may
lead to cache misuse [2], [3], thereby adversely affecting
the performance of other applications. Here, determining the
appropriate cache space allocation is essential to ensure fair
resource sharing without compromising application perfor-
mance. Secondly, in-memory key-value stores used as caches
are offered as managed platforms with a pay-as-you-go model.
Amazon’s ElastiCache [4], Microsoft’s Azure Redis Cache [5]
and Google’s Cloud Memorystore [6] are examples of caches
that employ popular open source software such as Memcached
[7] or Redis [8]. In this case, the choice of cache resources
directly influences user costs.

Both scenarios necessitate a tool for what-if analysis, ca-
pable of quantifying the hit ratio a given application would

achieve with varying cache space allocations, enabling users
to evaluate the trade-off between costs and performance. Many
works in the literature propose Miss Ratio Curves (MRCs) as
such a tool, providing miss ratios (the complement to one of
the hit ratio) as a function of cache size [9]. However, MRCs
are constructed based on past requests, and while most works
focus on the computational aspects of building MRCs, they
implicitly assume that MRCs can accurately predict cache
utilization. This assumption holds if the traffic pattern does
not vary. In dynamic contexts, in which the popularities of the
items changes over time, it is not clear if MRCs can be indeed
used as a predicting tool.

In this paper we investigate how effective MRCs are in
predicting the cache size to adopt. To this aim, we need to
consider different challenges, which were overlooked by pre-
vious works. MRCs are built from a set of requests collected
over an interval of time, but what should be the duration
of such an interval? Small intervals may be able to follow
the changes in the traffic pattern, but the MRCs built with
few requests may be noisy. Larger intervals, on the other
hand, may average out the benefits of short bursts of high
hit ratios. Additionally, how can we measure the quality of
the predictions provided by MRCs? The comparison of two
MRCs built for two consecutive intervals can be done from
the miss ratio viewpoint (for a given target miss ratio, what is
the difference between the predicted cache size and the actual
cache size?), or from a cache size viewpoint (for a given target
cache size, what is the difference between the predicted miss
ratio and the actual miss ratio?), and the computations of these
two viewpoints may not be straightforward.

We consider a set of publicly available traces and show
some representative cases in which MRCs are indeed able to
provide predictions with a low or limited error, and cases in
which the error varies significantly, regardless of the duration
of the interval used to build the MRCs. Our results pinpoint
that predictive what-if analysis is still an open problem that
requires to be investigated in depth, resorting to different
techniques to complement MRCs.

The remainder of the paper is organized as follows. In
Sec. II, we provide background information and discuss related
work. In Sec. III, we present the methodology, while in Sec. IV
we provide the preliminary analysis. We discuss our results in
Sec. V, and we conclude the paper in Sec. VI.



II. BACKGROUND AND RELATED WORK

Miss Ratio Curves. The initial procedure for computing the
Miss Ratio Curve (MRC) [10] has been tailored for cases
where all items have the same size, effectively allowing the
cache size to correspond to the number of items it can
store. Additionally, the eviction policy satisfies the inclusion
property, where the set of contents stored in the cache at any
given time is a subset of the contents that would be stored
if the cache had a larger size. Commonly adopted policies
such as Least Recently Used (LRU), Least Frequently Used
(LFU), and Most Recently Used (MRU) satisfy this property,
rendering MRCs valuable in numerous practical systems.

For a designated time frame Ti, MRCs can be computed at
the conclusion of the period. The caching policy maintains
an ordered list of the cache’s contents, with the last item
in the list being the current candidate for eviction at any
given moment. The MRC algorithm processes requests by
managing an ordered list R of references to items, emulating
how the corresponding caching policy would operate if the
cache size were infinite. Upon receiving a request for item j,
the algorithm determines its current position, also known as
the reuse distance, and updates an empirical histogram of reuse
distances accordingly. Once the time period Ti concludes, the
histogram is normalized by dividing each value by the total
number of requests received within Ti. The integral of the
normalized histogram yields the hit ratio curve, where the
complement to one represents the MRC.

Exact computation of MRCs necessitates O(N) memory,
where N denotes the number of items in the catalog, with
a complexity of O(logN) per request due to accessing R,
which can be implemented using a tree data structure [11].
To mitigate computational complexity, various approximate
solutions based on sampling have been proposed [12], [13],
[14]. MRCs can be constructed even in scenarios involving
items with different sizes [15], and for eviction policies that do
not adhere to the inclusion property. However, this necessitates
an alternative approach, such as Miniature Simulations [14],
[16]. In our experiment, we opt for exact MRC computation, as
our primary focus is to evaluate whether the MRC at interval
Ti can effectively predict the hit ratio in the subsequent interval
Ti+1. The analysis of the trade-off between MRC accuracy and
computational efficiency, an issue appeared also in other types
of studies [17][18], is left for future investigation.

Elastic on-demand services. Cloud computing facilitates the
dynamic instantiation of services based on fluctuating traffic
volumes. For instance, in web architectures, the number of
web servers can be adjusted to accommodate increasing traffic
levels. Among the various services offered by cloud providers,
in-memory data stores utilized as caches play a significant
role. Notable examples include Amazon’s ElastiCache [4],
Microsoft’s Azure Redis Cache [5], and Google’s Cloud
Memorystore [6].

These managed solutions handle cache-related operations
such as software updates and maintenance, offering simple
APIs for creating, shutting down instances, and managing

the clusters. Users have the flexibility to select from various
configurations for each instance. For instance, Amazon’s Elas-
tiCache [19] provides options to choose instances with varying
RAM sizes and numbers of cores (vCPUs). Additionally,
different types of instances are available, including regular,
spot, and burstable ones.

Related work. Existing approaches related to cache capacity
tuning can be categorized into three main categories. (1) Rule-
based approaches [20], [21], [22] react to events such as cache
occupancy exceeding or falling below predefined thresholds
to adjust the cache size. However, they do not predict future
utilization, which may result in suboptimal adjustments. (2)
ML-based approaches [23], [24] utilize historical data to train
predictive models. Nevertheless, there is no guarantee that
future traffic patterns will resemble those in the training set.
(3) MRC-based approaches [9], [12], [13], [14], [25] focus
on the computational complexity required to construct the
Miss Ratio Curve (MRC). These approaches typically consider
entire traces, constructing the MRC for all requests within a
given trace.

In contrast, our work focuses on studying the predictive
power of an MRC built during a single interval and the
impact of the interval’s length. We adopt a practical approach
by considering time intervals and observing the number of
requests within these intervals. Given the inherent fluctuations
in request volumes, we aim to assess the impact of these
fluctuations on the accuracy of predictions.

III. METHODOLOGY

We take an experimental approach to highlight the com-
plexity of the issue. We consider some representative traces
with different characteristics that shows the strengths and the
limitation of an analysis based on MRCs.

Traces. We consider a set of publicly-available block I/O
traces from SNIA IOTTA repository [26], and a Content
Delivery Network (CDN) trace from [27], [28]. Table I sum-
marizes the characteristics of the traces. From the SNIA
IOTTA repository, we have considered the most recent trace—
labeled as systor [29]—along with older traces collected
at Microsoft [30], labeled as ms-ex. The cdn trace refers
to a CDN cache serving photos and other media content for
Wikipedia pages (21 days, collected in 2019).

TABLE I: Trace characteristics: catalog size (N ), number of
requests in the trace (M ), and duration (Ttot)

name year N M Ttot reference
ms-ex 2007 21.5 · 106 61.2 · 106 24 h [30]
systor 2016 12.7 · 106 34.3 · 106 12 h [29]
cdn 2019 7.2 · 106 42.6 · 106 10 h [27]

For experimental reproducibility, we report here the details
of the subtrace we use. The ms-ex is the trace taken from
[30] named “Microsoft Enterprise Traces, Exchange Server
Traces,” which have been collected for Exchange server for a
duration of 24-hours. The systor traces [29] collect requests



for different block storage devices over 28 days: we consider
12 hours (March, 9th) of the device called “LUN2.” The cdn
trace contains multiple days of traffic, of which we consider
portions of 10 hours – we tested different intervals finding
similar qualitative results.

Among the various pieces of information contained in the
traces, we primarily focus on two fields: the request timestamp
and the item identifier. The timestamp enables us to analyze
scenarios involving time-based observation windows (e.g.,
30 minutes or one hour). Our results primarily center on
cases where all items have the same size, as this already
demonstrates the complexity of the problem. We delve into
the consideration of items with different sizes in Sec. VI.

Sliding vs Decaying vs Non-overlapping windows. The
process of building Miss Ratio Curves (MRCs) is typically
described based on a set of past requests. However, in the
online scenario we consider, where a single MRC is con-
structed based on requests from the last interval T , we need
to specify the exact process. One possibility is to maintain
a data structure that facilitates the computation of the MRC
using a sliding window approach. In this case, MRCs are not
computed at predetermined time steps (e.g., at T , 2T , 3T ,
...), but the computation can be triggered at any moment t by
considering requests collected during the interval [t − T, t].
This flexibility comes with the cost of increased memory
usage. The reuse distance histogram must track timestamps
for each request contributing to different distance values. In
practice, memory usage would be proportional to the number
of requests received in the last interval T , rather than pro-
portional to the catalog size as in basic MRC computation.
Additionally, each time the user computes the MRC, they must
normalize the reuse distance histogram with the total number
of requests received so far. This normalization is an expensive
operation that can only be amortized after receiving a sufficient
number of requests. Overall, while a sliding window approach
offers instantaneous monitoring of the MRC, it comes with
high memory usage and computational complexity.

To reduce the memory requirements of the sliding window
approach, another option is to use approximate counting tech-
niques such as DGIM [31] or exponentially decaying windows
[32]. These methods allow tuning the number of bits needed
to store the approximate count of different reuse distances and
the accuracy of the counting itself. However, they work using
the last B number of requests rather than the last interval
T . Given that billing is based on temporal intervals and the
number of requests in each interval can fluctuate significantly,
implementing this approach may not be straightforward.

Alternatively, we can consider non-overlapping intervals.
After computing the MRC at the end of each interval, we reset
all counters (reuse distance histogram, number of requests
received). It is worth noting that we do not reset the ordered
list of references R (see Sec. II) representing the current cache
state, as it reflects the current cache contents. This approach
allows the MRC in the next interval to reflect the requests
received during that interval along with the initial cache state,

which was not empty. Another advantage of non-overlapping
intervals is the ability to dynamically adjust the interval size.
For example, if traffic pattern variability is detected and the
current pattern is identified as stable, we can change the
interval size from Ti = 1 hour to Ti+1 = 1.5 hours, thereby
saving computational resources.

In the results presented in Sec. V, we use a non-overlapping
interval approach and test different fixed-size intervals to
assess the benefits of dynamic interval adaptation.

How to measure the prediction error. Given an MRC, we
can utilize it in two ways. The first approach involves setting
a target miss ratio mi and using the MRC to determine the
required cache size Ct to achieve that target at interval t.
Subsequently, at the end of the next interval, we compute the
actual cache size Ct+1 for the target miss ratio mi, and the
error is calculated as |Ct+1−Ct|

Ct
. It is important to note that

the absolute value is used in the numerator since both over-
provisioning and under-provisioning represent errors: a larger
cache size indicates spending more money than necessary,
while a smaller cache size leads to more misses. We can
compute this error for a set of discrete values of mi and then
take the average, a metric known as Mean Absolute Error
(MAE). However, a potential issue with this approach arises
when the difference |Ct+1 − Ct| does not exist for a given
mi, as one MRC may terminate at a higher miss ratio (refer
to Figure 1, left).
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Fig. 1: Two ways of calculating the error between two MRCs
computed in two consecutive intervals.

The second approach involves considering a cache size Ci

and determining the corresponding miss ratio mt at interval t.
Subsequently, at the end of the next interval, we compute the
actual miss ratio mt+1 and the error |mt+1−mt|

mt
. We calculate

this error for all possible sizes Ci and take the average. In this
case, the difference at the numerator always exists because the
MRC is the integral over all values of the cache size, and we
can extend the MRC with a constant value to any cache size
(see Figure 1, right).

While the first approach may seem easier to understand as
it reflects the question “What is the best cache size if some-
one would like to obtain a desired miss ratio?”, the second
approach is simpler to compute and provides an indication of
the error in terms of miss ratio for a given budget. In Sec. V,
we demonstrate that this approach offers sufficient insights
into the predictive power of MRCs.



IV. ON THE INTERVAL LENGTH

The choice of the interval length Ti used to compute the
MRC should depend on the traffic characteristics, such as the
number of requests and the reuse distance. A stable traffic
pattern allows for the use of larger intervals, while highly
dynamic patterns require more frequent evaluations of the
MRC. In this section, we demonstrate that selecting the right
interval is indeed a challenging task.

We analyze the instantaneous hit ratio over time for different
cache sizes C and the instantaneous number of requests. The
ms-ex trace, depicted in Figure 2, remains relatively stable
over a period of hours, with the exception of a peak of requests
at approximately t = 8 hours (see Figure 2, left). During this
peak, the hit ratio experiences a significant drop regardless of
the cache size. Since the duration of the peak is limited, on
average, a larger interval used to compute the MRC (e.g., 1
hour) should be able to accommodate such variability.
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Fig. 2: ms-ex trace, instantaneous hit ratios over time for
different cache sizes C (left) and instantaneous number of
requests over time (right).

The systor trace, depicted in Figure 3, exhibits a com-
pletely different behavior. Here, the increase in traffic corre-
sponds to a significant rise in the hit ratio. Additionally, during
the peaks, the differences in hit ratio when using different
cache sizes almost disappear. This is probably due to a increase
in the requestes for the same subset of items. Such a case
suggests that, for this trace, a small interval used for MRC
computation (e.g., 10 minutes) may be advantageous, as we
can decrease the cache size during peaks and still achieve a
high hit ratio. A longer interval would average out the high
and low hit ratios.
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Fig. 3: systor trace, instantaneous hit ratios over time for
different cache sizes C (left) and instantaneous number of
requests over time (right).

A highly predictable scenario is illustrated by the wiki
trace, shown in Figure 4. Even as the number of requests
decreases over time, the hit ratio remains stable for different
cache sizes. In this case, large intervals, such as 2-3 hours, are
more than sufficient for creating predictive MRCs.
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Fig. 4: wiki trace,instantaneous hit ratios over time for
different cache sizes C (left) and instantaneous number of
requests over time (right).

In summary, a simple examination of the instantaneous hit
ratio and the number of requests is not sufficient to determine
the best interval for MRC computation. The selection of the
optimal interval remains an open problem that necessitates
specialized tools. In the following section, we validate this
observation by using two representative interval sizes and
assessing their impact on prediction error.

V. RESULTS AND DISCUSSION

In this section, we assess the impact of two different interval
lengths, T , on the MRC error. Figure 5 presents examples of
MRCs computed over four consecutive intervals, using a small
interval (T = 10 minutes) and a larger one (T = 1 hour). We
conducted this analysis for all intervals throughout the duration
of the trace, finding similar results.

For this trace, a smaller interval appears to yield a larger
error. For instance, the MRCs computed in intervals 1 and 2
differ for both small and large T , whereas those computed in
intervals 2 and 3 mostly overlap. Although we can still observe
similar shapes in the MRCs, the error in miss ratio can reach
up to 20%, increasing from 0.6 to 0.72.
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Fig. 5: ms-ex trace, MRC computed over 4 consecutive
intervals. The duration of the interval is 10 minutes (left) and
1 hour (right).

To assess the variability of the error, we compute the Mean
Absolute Error (MAE) by scanning the entire trace using the
two different intervals. Figure 6 depicts the MAE between two



consecutive MRCs. The graph confirms that smaller intervals
result in higher error variability, while larger intervals yield
smaller errors overall. Notably, with a smaller interval, there
is a peak in the error corresponding to the peak of requests
shown in Figure 2 (right). Since the duration of the peak aligns
with the interval used for MRC computation, it is clear that
the MRC fails to predict such peaks.
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Fig. 6: ms-ex trace, MAE computed using consecutive
MRCs.

On the other hand, the systor trace exhibits high vari-
ability for both short and long intervals T used to compute
the MRCs (Figure 7). In this scenario, predicting the required
cache size based on any MRCs proves challenging. The
varying MRCs correspond to intervals with high or low traffic,
resulting in vastly different cache profiles. This observation is
supported by the fluctuating MAE depicted in Figure 8. The
mean error fluctuates between 5% and 25% for both 10-minute
and 1-hour intervals. Even employing a larger interval for
MRC computation fails to mitigate the error, illustrating the
difficulty of the prediction problem.
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Fig. 7: systor trace, MRC computed over 4 consecutive
intervals. The duration of the interval is 10 minutes (left) and
1 hour (right).

In the wiki trace, characterized by a stable traffic pattern,
the interval length used to construct the MRCs does not
affect the error significantly (Figure 9, left), as anticipated from
the consistent hit ratios observed with various cache sizes
(Figure 4, left). With both small and large intervals T , the
error remains below 1% (Figure 9, right).

Interestingly, despite the small error, using a smaller interval
T for MRC computation results in more pronounced variabil-
ity. This suggests that employing excessively small intervals
may introduce noise, and closely tracking traffic variability
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Fig. 8: systor trace, MAE computed using consecutive
MRCs.
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Fig. 9: wiki trace, MRC computed over 4 consecutive 10-
minute intervals (left), and MAE computed using consecutive
MRCs (right).

might not be optimal. Conversely, a larger interval provides
an averaging effect that proves beneficial in this scenario.

VI. CONCLUSION AND PERSPECTIVES

Predicting cache performance, i.e., anticipating the hit ratio
for different cache sizes, poses a significant challenge due to
its dependence on traffic patterns and caching policies. In this
study, we focused on scenario utilizing LRU eviction policy
and uniform item sizes. Our analysis of three publicly available
cache traces revealed that MRCs, a commonly used tool for
cache profiling, may yield predictions with substantial errors.

While existing literature offers solutions for determining
optimal cache sizes, these approaches typically focus on iden-
tifying a single best size. Consequently, they cannot support
what-if analysis or joint sizing of multiple caches for different
applications, which are crucial in scenarios where caches are
shared among multiple applications and the allocation for one
application affects the availability for others.

A potential avenue for improvement could involve dynam-
ically adjusting the prediction interval T based on the current
error. Larger errors could prompt a reduction in interval size,
while smaller errors could warrant an increase. However, as
demonstrated in our experimental evaluation, this approach
may not always suffice. Therefore, the challenge of accurately
predicting cache performance remains an open issue that ne-
cessitates exploration of alternative methodologies, a direction
we aim to pursue in our future research work.
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