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ABSTRACT. In this paper we highlight some particular spatial patterns of ground state
solutions for the three species Gross—Pitaevskii system in the plane having physical co-
efficients with particular attention to the cases where the inter-species coefficients be-
come large. The solutions models least energy stationary states of a mixture of three
Bose-Einstein repulsive condensates.

1. INTRODUCTION

Although Bose-Einstein condensates were predicted by Einstein [9] around 1925,
their successful experimental realization for atomic gases was firstly achieved in 1995,
see [1]. Next, in 1997, the condensation for a mixture of two interacting species with the
same mass was realized, see [14]. Finally, around 2003, triplet species states were ob-
served in [17]. In two recent papers [5, 6] we investigated the numerical approximation
(via spectral methods) and the large interaction patterns (via variational arguments) of
ground state solutions for a class of vector Gross—Pitaevskii equations in R> modelling
a binary mixture of Bose-Einstein condensates [8, 15]. As known, depending upon the
anisotropy of the trapping potentials, there are various situations where the full physi-
cal model in R3 can be reduced, with a good approximation, to the planar case (see [2,
Section 2.2]), which, therefore, is physically meaningful. In this paper we consider some
spatial pattern for ground state solutions of the three species repulsive Gross—Pitaevskii
system in R?

3
nidy, = _%AUJI + Vi1, 22w + 02y Py + Y 01k y 1Py,
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3
nidrys = —%Aw:a + Va(x1, x2) w3 + 0332 lws Pys + ) O3h% |y 1y,
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for the unknown v; : R? — C, where % denotes the reduced Planck constant and m;
are the masses of the atomic species composing the Bose-Einstein triple mixture. The
coefficients of the coupling matrix (6;;), which is symmetric so as to give the system
a variational structure, are positive and play the role of intra-species (6;;) and inter-
species (0 ;) coefficients respectively and can be represented as
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where the constants g;; are related to the scattering lengths for the i- j species, depend-
ing on the interaction potential between atoms. We point out that, due to Feshbach res-
onance, the interspecies scattering lengths can be made positive and large, by applying
a suitable external magnetic field [12]. Concerning the potentials, we consider the gen-
eral harmonic off-centered case, that is there exist three centers (x{, xé) and six positive
constants wjy,w;y, i =1,2,3, such that

m; 2 i\2 2 i\2
Vi, x2) = 5 (w7, (1 = x7)" + w3, (02 = %)),

The potential V;s are often taken with the same centers, typically, without loss of gen-
erality, the origin. On the other hand, there are some relevant physical situations which
lead to consider the off-centered case (see e.g. [16]).

As we will prove, when a inter-species coefficient, say 0, j,, becomes very large, then
phase separation behaviour between the wave densities ;, and v j, tends to appear.
We shall highlight analytically and numerically (see Figures 1, 2, 3, 4, 5 within Section
5) the spatial segregation of components of the ground state solutions. In general, this
phenomenon can appear by two possibly coexisting causes, that is the separation of the
trapping potential centers (see Section 4 and Figure 2) and the large interaction regime
(see Section 3 and Figure 3), the second one persisting also in absence of external po-
tentials.

2. FUNCTIONAL SETTING

Let . be the Hilbert subspace of H! (R?,C3) defined by
7 ={ w1, y2,v3) € H' ®,CY): fRz Vitx, x)lyil? <o, i=1,2,3},

which is the natural framework for bound state solutions, endowed with the norm

3 hZ
Ly walZe =3 | 5—
=

) S IVl + Vita, x)lyil,
1 1

and consider the total energy associated with the system, given by the Hamiltonian E,
with E = Eo + J, Eso, J : #€ — R, where we have set

3 .
EooW1,W2,y3) = Y EL (Wy),
i=1

3 Py
T, wa,ws) =Y JY (i, )),
i#]
being, forany i, j=1,2,3,
‘ n? 0;;h?
EL () :fRz a1 Vwi Vit syl + oyt

i) =6,-,-h2fmz|w,-|2|w,-|2.
By standard arguments, it follows that, along a solution, the energy map

{IHE(WI(',I);WZ(', t)»WS(',t))}, t=0

is a constant and that the total particle numbers are time independent,

fwz lwi(, O1* = N;, t=0,i=1,23. 2.1
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The ground state solution (also, often, known as least energy solution) of the Gross—
Pitaevskii system is a solution (y1,y2,w3) € A with ansatz

it
Wil X, ) =e T pi(x1,X2), (x1,%) ER?, £=0, i=1,2,3 (2.2)

where (¢p1, 2, ¢p3) € A is real valued and minimizes the functional E constrained to the
normalization conditions (2.1) (with ¢; in place of v;). Consequently, the functions ¢;s
solve the nonlinear eigenvalue problem

3
_%Atpl + V101, )1 + 002 1 Ppr + Y 0121 P by = paha,
j7
3
2
— i b + Va1, X0z + 022l 2 Pz + Y 025 %1p, P b = paghz,
) j§2 (2.3)
2
— = A3 + V3 (X1, %2)p3 + 0331 | ps [P ps + Y 0312 1p; P 3 = pachs,
i#3
R

A direct computation yields the representation formula for the eigenvalues

32 3

Nipi =Ef;o(<l>i)+M il + Y T (i), (2.4)

2 Je i#i

for any i. The existence of nontrivial solutions of the nonlinear eigenvalue system (2.3)
is straightforward as we limit ourself to the case where all of the coupling constants
are positive, which makes the Hamiltonian E coercive and weakly lower semicontinu-
ous on the L? x I? sphere (2.1) in /. In addition, by the standard gradient inequality
fRz IVIul|? < fRz [Vul?, it follows that the ground state solutions can be sought among
nonnegative functions.

3. LARGE INTER-SPECIES PARAMETERS

Let # < H'(R?) x H'(R?) be the realization of the Hilbert subspace given in the in-
troduction. For any index pair i # j, we set

5”:{(('[)1,([)2,()[)3)6%: j%z('b?:Ni’ Vi=1,2,3},
75 ={ 12,91 7 j.;z g% =0},

3
=075
i,j=1
i#j
Assume now that one of the inter-species parameter, say 8, j, with ip # jo, gets very
large, say Giojo = K — oo while the other remain bounded, say 0;,,, € (0,1] for any [, m =
1,2,3 with [ # m. The least energy level of the ground state solutions is then defined and
denoted as follows

iojo _ .
= (¢1,¢§r}/>f3)ey[E°°(‘P1"P2"P3)”K(ﬂbbﬂbz,qbs)],

where the Hamiltonian is Ex, + Jx = Ex = E : # — R, with
3

T (1, P2, 3) = kh? fRZ i I*16p o |* + Y T (G, Pom).-

n#m, n#iy, m# jo
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We also define the candidate for the limiting (as x — oco) segregated energy cé%j °
io j i
0J0 3 nm
Co = lnf EOO((PI)(PZ)(P3) + ] ((,bn;(,bm) . (31)
@Lp2.p)e5 n#m, n#io, m# jo

With obvious modifications one can define the energy levels corresponding to the case
where more than one parameter diverges. In the case where 0;; — oo for all i # j then
the limiting energy is ¢,

Eoo(p1,¢p2,¢3). (3.2)

Coo

= inf
(p1,p2,p3)ES>®

As S c . <, taking into account the definition of ¢, 20 and ¢ it holds

chdo < oo < ¢ (3.3)
for any x > 0. In this setting the following result holds.

Proposition 3.1. As«k goes to infinity, the sequence of ground state solutions (¥, ¢, ¢%) <
& convergesin A to a function (¢p7°,$5°, p3°) € V;;‘j’o atenergy level c2°. Moreover, there
exist u%° > 0 such that the variational inequalities hold

hZ .
AP+ Vi, )¢ + 0 IGTIGT < pTeT  inR?, (3.4)

i

foralli=1,2,3.

Remark 3.2. It is natural to wonder if the limit function ¢3° solves the equation
h? .
—2—ml_A</>‘;° + Vi (x1, )% +0;: 12 ()2 = uCd® i Q; = {¢%° > 0}
when Q;  R? is an open set. In other words, taken any positive compactly supported
function ¢ with support in Q; does it holds k g I(,b’]flz(p’l.‘(p — 0 ask — oo? This will be the
subject of further investigations.

Proof of Proposition 3.1. Inlight of the first inequality of (3.3), if (¢, 5, p5) € A, d% £0
for any i is the ground state solution, we have E, (¢¥, %, ¢%) = ¢’ and

3
2 K 12| pK |2 2 2 2
i [ 10 Pl < 3 Oun [, 81001

< Ux + Eoo) (¥, 5, %) = ¢27° < 0,

for every k. As a consequence, we obtain [z |(/>’l.<0 |2|(p’]€0 [> — 0 as k — oo. In addition, we

have || (¢}, ¢5, P5) IIZJE < Ex (Y, 5, %) < céoojo for any x. Hence, the sequences (¢, ¢5, p)
is bounded in #, with respect to k. In particular, up to a subsequence, there exist

(P°, 50, ) in A such that (7, @5, %) — (PT°,P5°, ¢S°) in A ask — coand ¢ (x1, x2) —
([)‘i"’(xl,xg) a.e. in R2. Hence, by Fatou’s Lemma, we get fle (([)‘l?s)z((p‘]’.s)z = 0, namely

cp‘l?g’cp‘]’.oo =0 a.e. in R%. Moreover if by contradiction we had [g (gb‘i"’)z((,l)‘]’.")2 = 0 for any

other index i # j, by definition, it follows that (¢{°, ¢3°,$5°) € #*° and by (3.1) and (3.2),

we have

Coo

= inf  Eool1,$2,03) < BaodP, 650, 6) < ¢ < oo,
rl e oo Foo $1,¢2,$3) < Eoo(P1, P37, P37) < €0 < Coo

Therefore, cé%jo = Coo, Which is not possible. Since by definition [z |([>’i<|2 = N; for any

x > 0 and / in compactly embedded into L (R?) x L™ (R?) for any r = 2 (via (3.7) and
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Gagliardo-Nirenberg inequalities), up to a further subsequence, we have g |(/)<l?°|2 =N;
fori =1,2,3. Whence

@F, 57, ¢57) € S5 (3.5)

Observe also that E. w@ =c °]° foranyi=1,2,3 and

1 3
sup = sup {EL @)+ 20 [ g1t > o [ 10, Pl

k=1 i k=1 m#i

denoting y7 the eigenvalues corresponding to ¢%. Hence, up to a subsequence, uf —
oo . . .

p7° as x — oo, By testlng the equations of the system by an arbitrary compactly sup-

ported positive function 7, we get

hZ
2m,

</>l Vn+f Vi(x1, X2) ] n+9”f |</>l| Pin< ulf o,

for all x > 0. Hence, letting x — oo, it turns out that (,l)‘l?o satisfies the variational inequal-
ities (3.4). Notice that, by Fatou’s lemma and the first inequality of (3.3), we have

Z

) 3
uez'w’i”,-:zl Vil |+Z [ g

12m;
2 2 2 !
+ lim «71 fRz [N TN D DA A (o)

n#m, n#io, m# jo

Z

[ vilgr +Z P i [ 51

3
+ lim xh” fR 2|¢>§0|2|¢§0|2+ > liminf/ @0

n#m, n#iy, m# jo
< liminf E, (&%, 5, pX = liminfc®/° < ),
K— 00 K((pl 4’2 (I)S) K—oo K (o]

io jo

Recalling formula (3.5), by the definition of ¢, the above inequalities rewrite as

3

Eoo($°,¢55°,45) + lim Khzf AR TGS P59

n#m, n#iy, m# jo
3

<o < Eou@P. 02,090+ Y TR0

n#m, n#iy, m# jo

which yields
: 2 2 _
Kh_r’gOKfRz 5 121" 12 = 0. (3.6)

X 0o . . .
Therefore, the convergence of ¢7 to ¢3° in A is strong, otherwise, assuming by con-

tradiction that this is not the case, the previous inequalities would become strict, yield-

ing immediately a contradiction with (3.6). Finally, as a further consequence, cé%]"

Eoo (¢5°, 95°, ¢3°), concluding the proof. 0
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Remark 3.3. The strong convergence of ¢ to §° in A, (2.4) and (3.5) yield

.} 3
N = B+ 255 [ 110+ 3 i, i#io
2 Jm m#i
io (4,00 Biyio n? 04 3 igm ( ;00 100
Nig iy = Eo%((/)io)"’ sz |(Pl'0 I+ Z Jv (b Pm)-
R m#io, jo
Remark 3.4. Assume that one of the parameters w; in the trapping potentials gets very
large, say w;,x = A — +oo while the other remain bounded, say wix,wiy € (0,1] foranyi=
1,2,3 with i # iy. Then, numerical simulations show that the corresponding component
gbé}) of the ground state tends to assume a cigar-like shape along the vertical direction,
and the bigger is A, the thinner is the profile of ¢;, (see Figure 1). We show that, in the
asymptotic process A — +oo, contrary to what happens in the strong interaction limit
K — 0o, the energies of the ground state solutions cannot remain bounded. More precisely,
set
VA G, x0) = 52 (A% - %)% + 0f) | (0 — x3)7).

Hence, we denote the least energy of the ground state solution as follows

‘ 3
ca= inf  EX(¢pi)+ Y ElL(p)+ P2, P3),
A prprdnes A @) i;o oo (Pi) + T (Pr, P2, ¢p3)

where E/’f = B with Vip = Vlf)\ We want to prove that

I':=supcp = +o0.
A>0

Assume by contradiction that this is not the case, namely T’ < co. Hence, it is readily seen
that the sequence of ground state solutions (¢, p2,p2) is bounded in H' (R?,R®). In par-
ticular, up to a subsequence, it converges weakly in H' (R?,R®) and pointwise to a function
(P, 93°, PS°). Moreover, since for any p > 0 it holds

Supng 1P <oo, 3.7)
A=1 R2\ By (x},x})

fori=1,2,3, it follows that (¢>A,<p§‘,(p§‘) also converges, strongly, in L2(R2,R3). Since, for
anyA>0andi=1,2,3,
[Lotie=n

taking the limit as A — +oo entails [p |(/)‘l?°|2 = N;. Whence ¢; # 0 in H' (R?) for every
i =1,2,3. On the other hand, as all the terms in the energy functional are positive, we
have

fRz VA (a2l 1? <T,
forall A >0, yielding in particular
My ioy2 A2 L
Jo ol e

By Fatou’s lemma this entails | x — x{o | |¢‘,-’g’(x1, X2)| =0 a.e. (x1,x2) € R?, namely (p;?;’ =0in
H(R?), which produces a contradiction.



SPATIAL PATTERNS FOR THE THREE SPECIES GROSS-PITAEVSKII SYSTEM IN THE PLANE 7

4. LOCATION OF COMPONENTS

In the so called Thomas-Fermi regime, a very good approximation of the ground
state solutions of (2.3) which holds for sufficiently large values of the coupling constants
0ij, can be obtained by simply dropping the diffusion terms —A¢;, namely the kinetic
contributions, thus assuming the wave functions to be slowly varying (cf. [10, 18, 13]).
In turn, system (2.3) reduces to the algebraic system (here we let /i = m; = 1)

01116112 + 01212 1% + 013131 = 1 — Vi (x1, x2),
0211117 + O221¢p2|? + 02313 |? = o — Va (x1, x2), (4.1)
03116112 + O321¢p2|? + Os31p3|? = s — V3 (x1, x2).

Letus denote by © = (0;;) the symmetric coupling matrixand setn; = (/)? and y;(x1,x2) =
i —Vi(x1, x2), where the u;s should be computed through the normalization conditions
(2.1). Moreover, assume that |®] > 0 (positive determinant). Think, for instance, to the
case where the diagonal coefficients 6;; are much larger that the 0;;s, i.e. 8;; > 0;; > 1.
Then, we obtain

x1(x1,x2) 012 6Oi3
[©1n1 (x1,x2) = |x2(x1,%2) 022 O3],
x3(x1,x2) 032 0Os3

011 x1(x1,x2) 013
[O]n2(x1,Xx2) = |021  x2(x1,%2) 0o3],
031 x3(x1,x2) 033
011 012 x1(x1,x2)
[On3(x1,Xx2) =021 B2z y2(x1,x2)|.
031 032 x3(x1,x2)

As the coupling coefficients are positive, if we set r; = y/2; for i = 1,2,3, it is evident
that system (4.1) makes sense only if the right hand sides of each equation in it is posi-
tive, that is in the set

3
9= _ﬂl@,-, 2; ={(x1, %) eR*: wF (x1 - x;1)* +a)12-y(xz —xpp)? <13}
i=

Furthermore, taking into account that, for any 7, the n;s are positive and are a combina-
tion of quadratic polynomials (due to the structure of y;), there exist positive constants
Qix, Q;y and R; and centers (y;1, yi2) which allow to define the (possibly empty) overlap
region of the components of the wave functions

3
0=0i 0i={(xn,x)e2: Qf (x1-yn)*+QF (x2~yi)* < RF}.
i=1

Then, for @ # @, there is a@; > 0 such that a non-smooth approximation of the i-th com-

ponent of the ground state is given by

@i (R; —QF (01— yin)* —QF (2~ y2)?), in0,

r7 -} (o -xp1)* -0 (o -xi)?
29,‘,‘ ’

0, in R\ 9;.

$F(x1, %) 1= in 2;\6, 4.2)
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Notice that, since 0; i< 0;;, we have (e.g. for the first component ¢,)

x1(x1,x2) 0O 0
011022033 % (x1,X%2) = |x2(x1,%2) 022 0 | = y1(x1,%2)022033.
x3(x1,x2) 0 Os3

This clarifies why it makes sense to extend to the set Z; \ & the Thomas-Fermi approxi-
mation defined in @ according to formula (4.2).

5. NUMERICAL COMPUTATION OF SOLUTIONS

We briefly describe the numerical algorithm used for the computation of the ground
states. For more details, we refer the reader to [5]. It is sufficient to consider the single
one-dimensional Gross—Pitaevskii equation. In fact the extension to the case with any
number of equations is straightforward. Moreover, without loss of generality, we reduce
to the case /i = m = 1. The main idea is to directly minimize the energy E(¢) associated
to a wave function v (x) = e Kt ¢(x), discretized by Hermite functions, with a normal-
ization constraint for the wave function. As it is known, the Hermite functions (Jz,”lﬁ )leN
are defined by

Jflﬁ(x) = Hlﬁ(x)e_%ﬁzxz, leN,

where (H}6 )ien are the Hermite polynomials [4], orthonormal in I? with respect to the

. _B2y2 . . .
weight e B°x" The Hermite functions are the solutions (ground state, for / = 0, and
excited states, if else) to the eigenvalue problem for the linear Schrodinger equation
with standard harmonic potential

%( dd2+(ﬁ x) )Jflz/lljfl, Al=ﬁ2(1+%).
If we set
b= P17,
leN
where

¢y = (P, S 2 =fR<Pc7fz,

the energy functional rewrites as

V(x)—(ﬁzzx)z)(Zsb,Jf,) + ef(Z (Plffl) :

leN leN

E@)=) Mg} + fR

leN

and the chemical potential turns into

4

1

N,u:E((/))+—9f (Z ¢IJ€,) (5.1)
2 Jrljen

By minimizing E, under the constraint ||(/)||i2 = N, we look for local minima of

E(G;A) = E(p) + A (N— Y ¢>§)

leN



SPATIAL PATTERNS FOR THE THREE SPECIES GROSS-PITAEVSKII SYSTEM IN THE PLANE 9

which solve the system, with k €N,

~ - (ﬁZX)Z
A)¢K+fR(V(x) 5 )Jfk(leZN(p,Jf,)+9fJ£k(l€Z,\l¢,J£,)
> 4=

leN
We notice that, if ¢ is a solution of the above system, then it is immediately seen, by
multiplying times ¢, summing up over k and using (5.1), that the Lagrange multiplier
A equals the chemical potential u. Next, we truncate the Hermite series to degree L—1
and introduce an additional parameter p = 1 in front of the first integral (its usage will
be clear later), to obtain a corresponding truncated energy functional Ej (¢; A; p), whose
local minima solve the system, with0<k<L-1,

2 2 -

AK—A)¢>K+pr(V(x) (P )Jfk(z <le€l)+6fJ€k(Z ¢IJ€,)

L-1

> ¢i=

=0
In order to approximate the integrals, we used a Gauss-Hermite quadrature formula
with 2L — 1 nodes relative to the weight e 2F°x* | The system is solved by a modified
Newton method with backtracking line-search, which guarantees global convergence
to the ground states. We refer to [3, 7] and, in particular, to [5] for the details. Here we
just mention that the initial guess for the Newton iteration is obtained by a continuation
technique over p and 0, starting from the ground state of the Schrédinger equation with

the standard harmonic potential, which corresponds to p = 6 = 0. Using the tensor basis
of the Hermite functions, the extension to the two-dimensional case is straightforward.

In the following figures we show some typical spatial patters of the ground states
solution triplet with respect some relevant features as:

(1) the anisotropy of the trapping potentials (Figure 1);

(2) the phase separation via potential off-centering (Figure 2);

(3) the phase separation via large inter-atomic interactions (Figure 3);

(4) the shape of supports with respect to the number of atoms N; (Figure 4);
(5) the shape of supports with respect to the size of the masses m; (Figure 5).
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FIGURE 1. (anisotropy) ground state (¢1, ¢z, ¢3) (left to right); w1 and
wy2 assume values 7, 1.17,1.57, 27, 107 (top to bottom), other wy; = 7,
Wyi =7, My =1.44-1072% N; =107, 011 = 022 =033 = 10 % and 012 =
023 =013 =100;.
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FIGURE 2. (off-centering) ground state (¢1,¢2,¢3) (left to right); V>
with center (0,0); V; with centers (—4,4), (-3,3), (-2,2), (-1,1),
(=0.4,0.4) and V3 with centers (4,4), (3,3), (2,2), (1,1), (0.4,0.4) (up
to 107, top to bottom); wy; = wy; = m, m; = 1.44-1072°, N; = 10,
011=033=2" 1077, 092 =100071 ando,-,- =5001;.
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FIGURE 3. (phase segregation) ground state (¢1, ¢2,¢3) (left to right);

Wyi = Wy =7, m;j = 1.44-107%, N; = 107, 011 = 0 = 033
107% and 012 = 0,0.3,0.8,1.4,2-1076, g»3 = 0,0.5,1,1.8,5-107%, 013
0,0.7,1.8,5,50-107% (top to bottom).
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FIGURE 4. (numbers of atoms) ground state (¢b1, 2, ¢p3) (left to right);
Wy = Wy = 7w, m; = 1.44- 107%%, g;; = 1076, oij = 404, N1 =
1,0.8,0.4,0.3,0.1-107 and N3 = 1,1.3,2,4,6-107 (top to bottom).
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FIGURE 5. (atomic masses) ground state (¢b1,¢2,¢p3) (left to right);

_ _ - 107 _ 10-6 _ _
Wy; = Wyj = T, = 10° oy = 107, o045 = 404, M =

N;

1.44,1,0.8,0.5,0.3-1072%, ;5 = 1.44-107%% and m3 = 1.44,1.8,1.9,2,2.1-

10725 (top to bottom).
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