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Hyperinterpolation on the square�
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Abstract

We show that hyperinterpolation at (near) minimal cubature points for the product Chebyshev measure, along with Xu compact
formula for the corresponding reproducing kernel, provide a simple and powerful polynomial approximation formula in the uniform
norm on the square. The Lebesgue constant of the hyperinterpolation operator grows like log2 of the degree, as that of quasi-optimal
interpolation sets recently proposed in the literature. Moreover, we give an accurate implementation of the hyperinterpolation formula
with linear cost in the number of cubature points, and we compare it with interpolation formulas at the same set of points.
© 2006 Published by Elsevier B.V.
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1. Introduction

Hyperinterpolation of multivariate continuous functions on compact subsets or manifolds, originally introduced
by Sloan in [14], is a discretized orthogonal projection on polynomial subspaces, which provides an approximation
method more general (in some sense) than interpolation. Its main success up to now has been given by the application
to polynomial approximation on the sphere; see, e.g., [11,15,9]. Indeed, the effectiveness of hyperinterpolation in the
uniform norm requires three basic ingredients, which are seldom at disposal all together: a “good” cubature formula
(i.e., positive weights and high algebraic degree of exactness), a “good” (i.e., accurate and efficient) formula for the
reproducing kernel, and “slow” increase of the Lebesgue constant (the operator norm).

These requirements can be easily recognized, by summarizing briefly the structure of hyperinterpolation. Let � ⊂ Rd

be a compact subset (or lower dimensional manifold), and � a positive measure such that �(�) = 1 (i.e., a normalized
positive and finite measure on �). For every function f ∈ C(�) the �-orthogonal projection of f on �d

n(�) (the subspace
of d-variate polynomials of degree �n restricted to �) can be written as

Snf (x) =
∫
�

Kn(x, y)f (y) d�(y), x ∈ �, with Snp = p for p ∈ �d
n(�), (1)
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where the so-called reproducing kernel Kn is defined by

Kn(x, y) =
n∑

s=0

Pt
s (x)Ps(y), x, y ∈ Rd , (2)

the sequence of polynomial arrays (P0, . . . , Pn) being any �-orthonormal basis of �d
n(�); cf. [8, Section 3.5].

Now, given a cubature formula for � with N = N(n) nodes � ∈ XN ⊂ � and positive weights {w�}, which is exact
for polynomials of degree �2n,∫

�
p(x) d� =

∑
�∈XN

w�p(�), ∀p ∈ �d
2n(�), (3)

we obtain from (1) the polynomial approximation of degree n

f (x) ≈ Lnf (x) =
∑

�∈XN

w�Kn(x, �)f (�) (hyperinterpolation). (4)

It is known that necessarily N � dim(�d
n(�)), and that (4) is a polynomial interpolation at XN whenever the equality

holds; cf. [14,9].
The hyperinterpolation error in the uniform norm, due to the exactness on �d

2n(�), can be easily estimated as

‖f − Lnf ‖∞ �(1 + �n)En(f ), �n = ‖Ln‖ = max
x∈�

⎧⎨
⎩

∑
�∈XN

w�|Kn(x, �)|
⎫⎬
⎭ , (5)

where �n is the operator norm of Ln : (C(�), ‖ · ‖∞) → (�d
n(�), ‖ · ‖∞), usually termed the “Lebesgue constant” in

the interpolation framework.

2. Hyperinterpolation at Xu points on the square

In the paper [18], Xu introduced a set of Chebyshev-like points in the square [−1, 1]2, which generate a (near)
minimal degree cubature for the normalized product Chebyshev measure,

d� = 1

�2

dx1 dx2√
1 − x2

1

√
1 − x2

2

, � = [−1, 1]2. (6)

For even degrees such points and the corresponding minimal cubature appeared already in [10]; see also [6,5]. In
addition, Xu proved that these points are also suitable for constructing polynomial interpolation, in a polynomial
subspace Vn, �2

n−1 ⊂ Vn ⊂ �2
n.

Interpolation at the Xu points, recently studied thoroughly in [1,2], exhibits some very appealing features: there is a
compact formula for the Lagrange polynomials, which must be stabilized but nevertheless leads to linear complexity
in the evaluation of the interpolant; the Lebesgue constant of the interpolation is O(log2n), n being the degree, i.e., the
polynomial approximation is “quasi-optimal” (cf. [3]).

Here we show that hyperinterpolation at the Xu points, even though is not interpolant, shares the same good compu-
tational features of Xu-like interpolation. In what follows we restrict, for simplicity’s sake, to odd degrees n: the case
of even degrees can be treated in a similar fashion, cf. [18].

Considering the n + 2 Chebyshev–Lobatto points on the interval [−1, 1]

zk = zk,n+1 = cos
k�

n + 1
, k = 0, . . . , n + 1, n = 2m − 1, m�1, (7)

the Xu points on the square � are defined as the two dimensional Chebyshev-like set

XN = A ∪ B, of cardinality N = (n + 1)(n + 3)/2,
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where

A = {(z2i , z2j+1), 0� i�m, 0�j �m − 1},
B = {(z2i+1, z2j ), 0� i�m − 1, 0�j �m}. (8)

These points generate a minimal cubature formula, that is

∫
�

p(x) d� =
∑

�∈XN

w�p(�), ∀p ∈ �2
2n+1, (9)

where the weights are simply w� = 2(n+ 1)−2 for � ∈ XN ∩ ◦
� (interior points), (n+ 1)−2 for � ∈ XN ∩�� (boundary

points); cf. [10,18]. Hence, in view of (3) we can construct the hyperinterpolation formula (4), which is not interpolant,
since N = (n + 1)(n + 3)/2 > dim(�2

n) = (n + 1)(n + 2)/2. In any case, its uniform approximation error can be
estimated as in (5).

Moreover, the reproducing kernel Kn(x, y) has an explicit and compact trigonometric representation (obtained by
Xu in [17])

Kn(x, y) = Dn(�1 + 	1, �2 + 	2) + Dn(�1 + 	1, �2 − 	2)

+ Dn(�1 − 	1, �2 + 	2) + Dn(�1 − 	1, �2 − 	2), (10)

where x = (cos �1, cos �2), y = (cos 	1, cos 	2), and the bivariate function Dn is defined for every n > 0 by

Dn(
, �) = 1

2

cos((n + 1/2)
) cos(
/2) − cos((n + 1/2)�) cos(�/2)

cos 
 − cos �
. (11)

(note: the definitions of Kn and Dn have been changed w.r.t. [18], in such a way that the index is exactly the degree
of hyperinterpolation). This representation allows an efficient implementation (after some nontrivial stabilization), and
the possibility of estimating analytically the Lebesgue constant, as we shall see in the following subsections.

2.1. Estimating the Lebesgue constant

First, it is convenient to rewrite Dn(
, �). By simple trigonometric manipulations, we obtain

Dn(
, �) = 1
4 (Un(cos 	)Un(cos �) + Un−1(cos 	)Un−1(cos �)), (12)

where 	=(
−�)/2, �=(
+�)/2, and Un denotes the usual Chebyshev polynomial of the second kind. This rewriting
is also very useful for stabilizing the computation of Dn, as it is outlined in the next subsection.

With (12) at hand, it comes easy to bound the Lebesgue constant of hyperinterpolation linearly with N, the number
of Xu points. Indeed, from the well-known bound for Chebyshev polynomials of the second kind |Un(cos �)|�n + 1,
we get immediately w�|Kn(x, �)|�2((n + 1)2 + n2)/(n + 1)2 �4, for any x ∈ �, � ∈ XN . Then, from (5) we get
the estimate �n �4N ∼ 2n2. This already shows that hyperinterpolation at the Xu points is not a bad choice for
approximation in the uniform norm. However, the latter is a substantial overestimate of the actual Lebesgue constant.
In fact, we can prove the following:

Theorem 1. The Lebesgue constant of hyperinterpolation at the Xu points can be bounded as

�n �8

(
2

�
log(n + 1) + 5

)2

+ 5

(
2

�
log(n + 1) + 5

)
+ 2. (13)

Proof. We give only the first step, because then the proof is very close to that in [2]. By using the trigonometric
identity Un−1(cos �) = Un(cos �) cos � − cos(n + 1)�, from the representation (12) we get immediately the estimate
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Table 1
Average use percentage 
 of the recurrence relation for Un, in evaluating the hyperinterpolation polynomial at degree n = 19, up to 106 uniform
random points

# Of random points Percentage 


� = 0.01 � = 0.1

1.0E + 02 0.75 6.25
1.0E + 03 0.69 6.27
1.0E + 04 0.63 6.34
1.0E + 05 0.64 6.36
1.0E + 06 0.64 6.37

Table 2
Average use percentage 
 of the recurrence relation for Un, in evaluating the hyperinterpolation polynomial at different degrees

Degree Percentage 


n � = 0.01 � = 0.1

19 0.64 6.37
39 0.64 6.37
79 0.64 6.37

|Dn(
, �)|� 1
2 |Un(cos 	)Un(cos �)| + 1

4 (|Un(cos 	)| + |Un(cos �)|) + 1
4 . We can now proceed following the lines of

[2], where the peculiar structure of the Xu points is nontrivially exploited, obtaining (13). �

2.2. Implementing hyperinterpolation

Rearranging (11) in the case that cos(
) = cos(�), allows us to give a version of the hyperinterpolation formula with
pointwise evaluation cost O(N). However, the hyperinterpolant at the Xu points evaluated via (11) (which is like a first
divided difference) turns out to be severely ill-conditioned, and must be stabilized.

To this purpose it is convenient to use the rewriting (12) of (11), and to compute the polynomials Un by their three-
term recurrence relation. The evaluation of Dn(
, �) becomes stable, paying the price of a computational cost O(n)

instead of O(1). Then, it is not difficult to see that the dominant term in the final complexity for the pointwise evaluation
of the hyperinterpolation polynomial Lnf (x), is (2n × 4)N ∼ 8

√
2N3/2 ∼ 4n3 flops.

An effective way to reduce the computational cost of the stabilized formula (12), still preserving high accuracy, is
to compute the Chebyshev polynomials of the second kind Un by the three-term recurrence relation only when the
trigonometric representation Un(cos �)= sin(n+1)�/ sin � (whose cost is O(1) in n and �) is ill-conditioned, say when
|�− k�|�� for a “small” value of �. In this case, it is important to estimate the average use percentage of the recurrence
relation in evaluating the hyperinterpolation polynomial.

As in [1] concerning interpolation at the Xu points, we can resort to some probabilistic considerations. Indeed, taking
random, uniformly distributed evaluation points in the square, such a percentage becomes a random variable (function
of a uniform random variable), whose expectation, say 
, depends on the threshold � but not on the degree n. This is
clearly seen in Tables 1 and 2, where it is shown that the averages up to one million random points converge to a value,
that does not depend on the degree n.

Now, the evaluation of Kn(x, �) using only the trigonometric representation of Un(cos �) costs about 6 × 4 = 24
evaluations of the sine function. Denoting by csin the average evaluation cost of the sine function (which actually depends
on its internal implementation), the average complexity for the evaluation of the hyperinterpolation polynomial Lnf (x)

at the Xu points is of the order of

C(n, �) := 8n�N + 24csin(1 − �)N ∼ 4n3� + 12csin(1 − �)n2 flops, (14)
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where � = 
/100. Using the experimental value csin = 10 (obtained with GNU Fortran, but consistent with usual
implementations, cf. [16]), we can conclude that, for ��0.01 (i.e., ��0.0064), the size of the ratio C(n, �)/N remains
constant up to degrees of the order of hundreds, that is in practical applications the computational cost can be considered
linear in the number N of Xu points.

2.3. Comparison with Xu-like interpolation

It is worth comparing interpolation with hyperinterpolation at the same set of Xu points. Given XN =A∪B defined
as in (8), we have two choices. On one hand, we can use Xu interpolation formula [18,1], which gives a polynomial of
degree n + 1, say pXu

n+1 ∈ Vn+1, where �2
n ⊂ Vn+1 ⊂ �2

n+1. As shown in [1], the dominant cost in the pointwise
evaluation of such a polynomial is 32csinN flops (since both Kn and Kn+1 are involved in the definition of the Lagrange
polynomials), where csin represents the average evaluation cost of the sine function. The uniform approximation error
can be estimated as ‖f − pXu

n+1‖∞ �(1 + �Xu
n+1)infp∈Vn+1 ‖f − p‖∞ �(1 + �Xu

n+1)En(f ), where �Xu
n+1 denotes the

Lebesgue constant of Xu-like interpolation. Then, using the estimate of �Xu
n+1 given in [2], we get

‖f − pXu
n+1‖∞ �(8a2

n + 5)En(f ) (interpolation), (15)

where we have defined

an = 2

�
log(n + 1) + 5. (16)

On the other hand, hyperinterpolation at XN gives a polynomial of degree n, which is not interpolant. The dominant
cost in its pointwise evaluation is 24csinN flops, and the uniform approximation error is estimated via (5) and (13), i.e.,

‖f − Lnf ‖∞ �(8a2
n + 5an + 3)En(f ) (hyperinterpolation). (17)

In view of the error estimates above we can expect, in practice, close approximation errors by the two methods, as is
confirmed by the numerical tests of the next section.

3. Numerical tests

In order to show the efficiency and robustness of our implementation of hyperinterpolation at the Xu points [4], we
made some comparisons with Xu-like interpolation (as implemented in [1,4]), and with the MPI package by Sauer,
one of the most effective implementations of multivariate polynomial interpolation (via finite differences and the notion
of blockwise interpolation, cf. [12,13]).

We compared the CPU times necessary to build and evaluate the interpolant, as well as the approximation errors,
on a grid of 100 × 100 control points in the reference square, with hyperinterpolation at Xu points (HYP-XU), and
interpolation at the same points (MPI, and Xu-like interpolation INT-XU). Clearly, both INT-XU and HYP-XU can be
extended to arbitrary rectangles by an obvious change of variables. The tests were performed on a AMD Athlon 2800+
processor machine. Our numerical results on several test functions with different degree of regularity, some of which
are collected in Tables 3 and 4, show that:

• MPI works quite well for small degrees, but becomes useless for higher degrees, even when one tries to stabilize it
by a Leja-like reordering of the interpolation points (cf. [1,7]);

• both INT-XU and HYP-XU are accurate and robust, and can suitably manage very high degrees (up to the order of
the hundreds, without problems);

• in practice, HYP-XU approximates like INT-XU, but has slightly lower computational cost.

From the observations above, we can draw the conclusion that hyperinterpolation at Xu points might be considered
a valid alternative to interpolation, for polynomial approximation of bivariate functions that can be sampled without
restrictions on rectangles.
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Table 3
CPU times (in seconds) and approximation errors on [0, 1]2 for the classical Franke test function f (x1, x2) = 3

4 e−1/4((9x1−2)2+(9x2−2)2) +
3
4 e−1/49(9x1+1)2−1/10(9x2+1) + 1

2 e−1/4((9x1−7)2+(9x2−3)2) − 1
5 e−((9x1−4)2+(9x2−7)2), using N = (n + 1)(n + 3)/2 Xu points with interpolation of

degree n + 1 (MPI, stabilized MPI, Xu interpolation formula) and hyperinterpolation of degree n

n 19 29 39 49 59

N 220 480 840 1300 1860

MPI 0.6 Unsolv. Unsolv. Unsolv. Unsolv.
3.8E−02 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MPI-Leja 0.6 4.3 21.0 75.6 Unsolv.
6.4E−03 3.5E−04 1.1E−04 2.0E−03 ∗ ∗ ∗

INT-XU 2.1 5.2 10.3 17.8 28.4
7.3E−03 3.6E−04 3.1E−06 1.8E−08 2.5E−11

HYP-XU 1.9 4.7 9.5 16.6 26.5
7.3E−03 3.6E−04 3.2E−06 1.8E−08 3.0E−11

Table 4
As in Table 3 for the function f (x1, x2) = (x2

1 + x2
2 )5/2 on [−1, 1]2

n 19 29 39 49 59

MPI-Leja 0.6 4.3 20.8 74.8 Unsolv.
1.1E−04 1.3E−05 1.4E−05 6.8E−04 ∗ ∗ ∗

INT-XU 2.1 5.2 10.3 17.8 28.4
1.1E−04 1.3E−05 3.1E−06 1.0E−06 4.0E−07

HYP-XU 1.9 4.7 9.5 16.6 26.5
1.1E−04 1.3E−05 3.1E−06 1.0E−06 4.0E−07
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