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a b s t r a c t

The Schrödinger equation in the presence of an external electromagnetic field is an
important problem in computational quantum mechanics. It also provides a nice example
of a differential equation whose flow can be split with benefit into three parts. After
presenting a splitting approach for three operators with two of them being unbounded,
we exemplarily prove first-order convergence of Lie splitting in this framework. The result
is then applied to the magnetic Schrödinger equation, which is split into its potential,
kinetic and advective parts. The latter requires special treatment in order not to lose the
conservation properties of the scheme. We discuss several options. Numerical examples
in one, two and three space dimensions show that the method of characteristics coupled
with a nonequispaced fast Fourier transform (NFFT) provides a fast and reliable technique
for achieving mass conservation at the discrete level.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In quantum mechanics a lot of phenomena occur under the influence of an external electromagnetic field. Typical
examples include the Zeeman effect, Landau levels and superconductivity. So, quite a few problems in computational solid
state physics and quantum chemistry require the solution of the Schrödinger equation in the presence of an electromagnetic
field

iε∂tu =
1
2
(iε∇ + A)2u + Vu, t ≥ 0, x ∈ Rd,

u(0, x) = u0(x).
(1)

Here, the unknown u = u(t, x) ∈ C is the quantum mechanical wave function, V (t, x) ∈ R is the scalar potential and
A(t, x) = (A1(t, x), . . . , Ad(t, x))T ∈ Rd is the vector potential. In addition ε ∈ (0, 1] denotes the small semi-classical
parameter which is the scaled Planck constant. The equation is considered subject to vanishing boundary conditions, i.e.,
lim|x|→∞ u(t, x) = 0. We recall that mass is a conserved quantity of this equation.

Exponential splitting schemes constitute a well-established class of methods for the numerical solution of Schrödinger
equations (see, e.g., [1–5]). In this approach, the kinetic part is solved in Fourier space, which gives spectral accuracy in
space, whereas the multiplicative potential is integrated pointwise in physical space. The transformation between Fourier
and physical space is carried out using the fast Fourier transform, which results in an overall fast algorithm. In our situation,
however, when the vector potential depends on the position, we get an additional advection term, which cannot be handled
efficiently with Fourier techniques.
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Thus, the structure of problem (1) suggests to split the equation into three subproblems: a potential step which collects
the scalar terms of the potentials (which are pointwise multiplications), a kinetic step which involves the Laplacian, and an
advection step which results from the vector potential. For carrying out a time step, each of these steps is solved separately
and their solutions are recombined to define the numerical approximation. This is the underlying idea of exponential
splitting schemes (see [6–8]). In this paper we analyse a first-order method, the so-called Lie splitting. Note, however, that
higher-order methods can be analysed in exactly the same way, if the underlying problem has enough spatial smoothness,
see [9,3].

Splitting themagnetic Schrödinger equation for the purpose of its numerical solution into three subproblems is not a new
idea. In their recent paper [10], Jin and Zhou proposed such a scheme. For the solution of the advection step, they considered
a semi-Lagrangian approach. Such an approach has been used in many other fields as well (see, e.g., [11–13]).

Our present paper differs from [10] mainly in the following aspects: we give a framework for carrying out an abstract
convergence proof for exponential splitting methods applied to (1), and we give a detailed error analysis for the Lie splitting
scheme by identifying the required smoothness assumptions on the data. Moreover, we address conservation properties of
the scheme and identify an alternative to Lagrange interpolation, as the latter does not conserve mass.

The outline of this paper is as follows. We start in Section 2 with an abstract convergence result for splitting into three
subproblems. Guided by the properties of themagnetic Schrödinger equation, we present an analytic framework that allows
us to prove convergence for exponential splitting schemes. We exemplify this by proving that Lie splitting applied to (1) has
order of convergence one, as expected.

In Section 3 we apply a gauge transformation to themagnetic Schrödinger equation to obtain the equivalent formulation
(17)with a divergence-free vector potential. This formulation is used in (18) to define the employed splitting. In the following
section we show how to compute the solution of the kinetic step in spectral space and that of the potential step in physical
space. For the advection step we use the method of characteristics. However, since the characteristic curves do not cut
the previous time horizon at grid points, in general, special care has to be taken. We compare three different possibilities,
namely discrete Fourier series evaluation, local polynomial interpolation and Fourier series evaluation by a nonequispaced
fast Fourier transform (NFFT), see [14]. The latter allows us to evaluate a Fourier series at an arbitrary set of points in a fast
way. To our knowledge, this transform was not yet applied in the present context.

In Section 7 we present some numerical results. Our main goal is the comparison of the different approximations used
in the advection step. In particular, we study how well the considered numerical algorithms preserve mass, and how they
compare in terms of computational efficiency.

2. Splitting into three operators

For the numerical solution of (1), we propose a splitting approach. Motivated by the particular form of the vector field,
which is the sum of a kinetic, a potential and an advective part, we consider a splitting into three terms. For this purpose,
we formulate (1) as an abstract initial value problem

∂tu = (A + B + C)u, 0 ≤ t ≤ T ,
u(0) = u0

(2)

in a Banach space X with norm ∥ · ∥. Below, in Assumption 1, we will state an analytic framework for the operators A, B,
and C that guarantees the existence of a solution for (2). This setting, on the one hand, is sufficiently general to include the
magnetic Schrödinger equation as an example and, on the other hand, allows us to carry out an abstract convergence proof
for (exponential) splitting methods. We will illustrate our approach by analysing in detail the Lie splitting scheme1

un+1 = eτCeτAeτBun, (3)

where τ denotes the step size and un is the numerical approximation to the true solution u(t) = et(A+B+C)u(0) at time
t = tn = nτ . We will show below that the Lie splitting scheme is first-order convergent. Let us stress, however, that exactly
the same ideas can be used to analyse exponential splitting methods of higher order.

In a first step, we will study the local error ∥eτCeτAeτBu(t)− u(t + τ)∥ of Lie splitting along the exact solution. For this
purpose, we employ the following assumption.

Assumption 1. Let B be a bounded operator, and let A, C, and A + C generate strongly continuous semigroups etA, etC ,
and et(A+C) on X . We assume that the following bounds hold for 0 ≤ t ≤ T along the exact solution

∥[A,C]esAu(t)∥ ≤ c1, (4a)

∥CesABu(t)∥ ≤ c2, (4b)

∥C2esAu(t)∥ ≤ c3, (4c)

1 Throughout the paper eτLu0 will denote the exact solution at time τ of the abstract (linear) differential equation ∂tu = Luwith initial value u(0) = u0 .
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∥CeσACes(A+C)u(t)∥ ≤ c4, (4d)

∥[A + C,B]es(A+C)u(t)∥ ≤ c5 (4e)

with some constants c1, c2, c3, c4, and c5 that do not depend on 0 ≤ σ , s ≤ T .

Next, we recall the definition of the ϕk functions, which play some role in our analysis. For complex z and integer k ≥ 1,
we set

ϕk(z) =

 1

0
e(1−θ)z

θ k−1

(k − 1)!
dθ. (5)

These functions are uniformly bounded in the complex half-plane Re z ≤ 0 and analytic in C. Let E be the generator of a
strongly continuous semigroup. Then, for all k ≥ 1, the following identity holds in the domain of E k

eτE =

k−1
j=0

τ j

j!
E j

+ τ kE kϕk(τE). (6)

We are now in the position to state the local error bound.

Theorem 1 (Local Error Bound). Under Assumption 1, the following bound for the local error holds

∥eτCeτAeτBu(t)− u(t + τ)∥ ≤ Cτ 2, t ∈ [0, T − τ ] (7)

with a constant C that does not depend on t and τ .

Proof. Our proof uses ideas developed in [3]. Since B is bounded, the numerical solution can be expanded in the following
way

eτCeτAeτBu(t) = eτCeτA

I + τB + O(τ 2)


u(t)

= eτCeτAu(t)  
P1

+ τeτCeτABu(t)  
Q1

+O(τ 2). (8)

The exact solution, on the other hand, is expandedwith the help of the variation-of-constants formula. Applying this formula
twice yields the representation

eτ(A+B+C)u(t) = eτ(A+C)u(t)+

 τ

0
es(A+C)Be(τ−s)(A+B+C)u(t)ds

= eτ(A+C)u(t)  
P2

+

 τ

0
es(A+C)Be(τ−s)(A+C)u(t)ds  

Q2

+O(τ 2). (9)

Collecting all the terms, we can rewrite the local error as

eτCeτAeτBu(t)− u(t + τ) = P + Q + O(τ 2), (10)

where P = P1 − P2 and Q = Q1 − Q2.
For expanding P1 we employ the ϕ2 function (see (6)) to get

eτCeτAu(t) = eτAu(t)+ τCeτAu(t)+ τ 2C2ϕ2(τC)eτAu(t).

Using the variation-of-constants formula twice, we can rewrite P2 as

eτ(A+C)u(t) = eτAu(t)+

 τ

0
esACe(τ−s)Au(t) ds +

 τ

0
esAC

 τ−s

0
eσACe(τ−s−σ)(A+C)u(t) dσds.

Thus, to bound P , we need first to estimate

τCeτAu(t)−

 τ

0
esACe(τ−s)Au(t)ds, (11)

and then to bound the remaining terms. Let f (s) = esACe(τ−s)Au(t). Then, the expression (11) becomes

τ f (0)−

 τ

0
f (s)ds = τ f (0)−

 τ

0


f (0)+

 s

0
f ′(σ )dσ


ds = −

 τ

0

 s

0
f ′(σ )dσds,
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and can be bounded with assumption (4a) τ

0

 s

0
eσA

[A,C]e(τ−σ)Au(t)dσds
 ≤ cτ 2. (12)

Furthermore, by employing assumptions (4c) and (4d), the remaining terms in P can be estimated as

∥τ 2C2ϕ2(τC)eτAu(t)∥ = ∥τ 2ϕ2(τC)C
2eτAu(t)∥ ≤ cτ 2 (13)

and  τ

0
esAC

 τ−s

0
eσACe(τ−s−σ)(A+C)u(t)dσds

 ≤ cτ 2. (14)

Taking all together, we have shown that P = O(τ 2).
As regards Q , by setting g(s) = es(A+C)Be(τ−s)(A+C)u(t) and proceeding in the same way as for (11) we obtain

Q = τeτCeτABu(t)−

 τ

0
g(s) ds

= τeτCeτABu(t)− τg(τ )−

 τ

0

 s

τ

g ′(σ ) dσds

= τeτCeτABu(t)− τeτ(A+C)Bu(t)−

 τ

0

 s

τ

eσ(A+C)
[A + C,B]e(τ−σ)(A+C)u(t) dσds.

The double integral is bounded with the help of assumption (4e) by cτ 2. For the remaining two terms, we use that

eτCeτABu(t) = eτABu(t)+ τCϕ1(τC)eτABu(t)

and apply once more the variation-of-constants formula to

w′
= Aw = (A + C)w − Cw, w(0) = Bu(t)

to obtain

eτ(A+C)Bu(t) = eτABu(t)+

 τ

0
es(A+C)Ce(τ−s)ABu(t) ds.

Assumption (4b) shows that their difference is again bounded by cτ 2. From this we conclude the assertion. �

Assumption 1 guarantees that the semigroups, generated by A, B, and C satisfy the bounds

∥etA∥ ≤ M1etω1 , ∥etB∥ ≤ etω2 , ∥etC∥ ≤ M3etω3 , t ≥ 0

for some constants M1 ≥ 1, M3 ≥ 1, ω1, ω2, and ω3. Moreover, it is possible to choose an equivalent norm ∥ · ∥∗ on X such
that ∥etA∥∗ ≤ etωA . As B is also bounded in ∥ · ∥∗, there exists a constant ωB such that ∥etB∥∗ ≤ etωB . Unfortunately, this
is still not enough to prove stability, in general. Therefore, we impose an additional assumption.

Assumption 2. There is a constant ωC such that ∥etC∥∗ ≤ etωC for 0 ≤ t ≤ T .

Under this additional assumption, it is easy to show stability.

Theorem 2 (Stability). Under Assumptions 1 and 2, Lie splitting is stable, i.e., there is a constant C such thateτCeτAeτB
j ≤ C (15)

for all j ∈ N and τ ≥ 0 satisfying 0 ≤ jτ ≤ T . �

Proof. Our assumptions imply that
eτCeτAeτB


∗

≤ eτ(ωA+ωB+ωC ) from which the assertion follows. �

From consistency and stability, convergence follows in a standard way.

Theorem 3 (Global Error Bound).Under Assumptions 1 and 2, the Lie splitting discretization (3) of the initial value problem (2) is
convergent of order 1, i.e., there exists a constant C such that

∥un − u(tn)∥ ≤ Cτ ,

for all n ∈ N and τ > 0 satisfying 0 ≤ nτ = tn ≤ T .
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Proof. We express the global error with the help of a telescopic sum

un − u(tn) =

eτCeτAeτB

n
− enτ(A+B+C)


u(0)

=

n−1
j=0


eτCeτAeτB

n−j−1 eτCeτAeτBu(tj)− u(tj+1)


and use the estimates (7) and (15). �

3. Example: the magnetic Schrödinger equation

The electromagnetic field in R3 is the combination of the electric field E and the magnetic field B. Both fields depend on
time and space, in general. Mathematically, they are given by a scalar potential V and a vector potential A, respectively

E = −∇V −
∂A
∂t
, B = ∇ × A.

Making use of the fact that we can impose conditions on the potentials as long as we do not affect the resulting fields, we
will apply the following transformations

ũ(t, x) = u(t, x) eiλ(t,x),
Ã(t, x) = A(t, x)+ ε∇λ(t, x),
Ṽ (t, x) = V (t, x)− ε∂tλ(t, x).

(16)

One natural choice is to impose a so-called Coulomb gauge, i.e., to select λ in such a way that ∇ · Ã = 0. Consequently, this
gauge λ has to satisfy the Poisson equation ε1λ = −∇ · A.

Applying (16) to the Schrödinger equation (1) and dropping right away the tildes, we obtain the following problem

iε∂tu = −
ε2

2
1u + iεA · ∇u +

1
2
|A|

2u + Vu, t ∈ [0, T ],

u(0, x) = u0(x)
(17)

with a divergence-free vector potential A.
We are now in the position to give a precise formulation of the three subproblems that are used in our splitting.

Henceforth, they will be called potential, kinetic and advection step, respectively:

∂tu = Bu = −
i
ε


1
2
|A|

2
+ V


u, (18a)

∂tu = Au =
iε
2
1u, (18b)

∂tu = Cu = A · ∇u, ∇ · A = 0. (18c)

The kinetic step (18b) can be handled analytically in Fourier space, whereas the potential step (18a) is easily performed
in physical space. For the advection step (18c) wewill present threemodifications of a semi-Lagrangianmethod in Section 5
below.

An important feature of (1) and (17) is the conservation of mass m = ∥u(t, ·)∥2
L2 , i.e.,

∂
∂t ∥u(t, ·)∥

2
L2 = 0. The split step

solution based on (18) is mass conserving as well. Indeed, the kinetic step preserves the L2 norm due to Parseval’s identity.
Themodulus of the solution of the potential step is preserved, andwe are also able to show that the advection step conserves
the mass. This is seen by multiplying (18c) by u

u ∂tu − u A · ∇u = 0

and adding this equation to its complex conjugate, which results in

∂t |u|2 = A · ∇|u|2.

Integrating this last equation by parts shows

∂t∥u∥2
L2 =


∂t |u|2 dx =


A · ∇|u|2 dx = −


|u|2∇ · A dx = 0,

where the last identity follows from the Coulomb gauge.
Henceforth, we consider (17) and (18) on the hyperrectangleΩ = Πd

i=1[ai, bi), subject to periodic boundary conditions.
In particular, the potentials V and A are assumed to be periodic functions onΩ . Then, all what has been said in this section
remains valid.
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We finally remark that our splitting approach also works if A is not divergence-free. In this case the potential operator is
given by

B = −
i
ε


1
2
|A|

2
+ V


+

1
2
∇ · A,

whereas the other two operators stay the same. However, in this case, wewill lose the conservation ofmass for the potential
step.

4. Space discretization, potential and kinetic step

We discretize the hyperrectangleΩ =
d

i=1[ai, bi) by a regular grid. For 1 ≤ i ≤ d, let Ni ≥ 2 be an even integer and let

IN = Zd
∩

d
i=1


−

Ni
2 ,

Ni
2


. (19)

For j = (j1, . . . , jd) ∈ IN we consider the grid points xj with components

xji =
ai + bi

2
+

ji
Ni
(bi − ai), 1 ≤ i ≤ d.

For performing the potential step, we solve the ordinary differential equation (18a) at each grid point xj. More precisely,
starting with an initial value v at time tn, we solve

ẇ(s) = −
i
ε


1
2

A(tn + s, xj)
2 + V (tn + s, xj)


w(s), w(0) = v(xj)

to obtain
eτBv


(xj) = w(τ).

If the potentials A and V are time-independent, the analytic solution is readily available. Otherwise, a quadrature method
(up to machine precision) can be employed.

The kinetic step is approximated in Fourier space. For a given function

v :

d
i=1

[ai, bi) → C,

let v̂k denote its Fourier coefficients, i.e.

v(x) =


k∈IN

v̂kEk(x), Ek(x) =

d
i=1

e2π iki(xi−ai)/(bi−ai)

√
bi − ai

,

where x = (x1, . . . , xd). Further, let

λi =
iε
2


2πki
bi − ai

2

.

The Fourier coefficients of eτAv are then given by eτλi v̂ki . The transformation between physical and Fourier space is usually
carried out with the fast Fourier transform.

5. Advection step

In this section we describe the solution of the advection step
∂tv(t, x) = A(x) · ∇v(t, x), t ∈ [0, τ ],
v(0, x) = v0(x).

(20)

Our approach is based on the method of characteristics, i.e., we make use of the curves s → x(s) ∈ Rd satisfying the
d-dimensional system of ordinary differential equations

ẋ(s) = −A(x(s)).

Since the solution of the advection equation (20) is constant along characteristics, we have v(τ , xj) = v(0, xj(0)) for each
grid point xj, j ∈ IN , where xj(0) denotes the solution of

ẋj(s) = −A(xj(s)), s ∈ [0, τ ],
xj(τ ) = xj

(21)
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at s = 0. This system can be solved once and for all for each grid point with an explicit method at high precision, if the
time step τ is kept constant. However, since xj(0) is not a grid point, in general, the value v(0, xj(0)) = v0(xj(0)) has to be
recovered. We describe here three different procedures for achieving the evaluation of v0(xj(0)) at the set of


i Ni points

{xj(0)}j. For the sake of simplicity, we only describe the one-dimensional case in detail. However, we also report the overall
computational cost for the general d-dimensional case.

We remark that the same approach can be used for time dependent potentials A(t, x). Instead of (21) one has to solve
the non-autonomous problem

ẋj(s) = −A(tn + s, xj(s)), s ∈ [0, τ ],
xj(τ ) = xj.

(22)

Its numerical solution at s = 0 is again used to define the sought-after approximation v(τ , xj) = v(0, xj(0)).

5.1. Direct Fourier series evaluation

Since the initial value v0(x) of the advection step is the result of the solution of the kinetic step, the function v0 is known
through its Fourier coefficients {v̂k}k. It is therefore possible to directly evaluate

v0(xj(0)) =


k∈IN

v̂kEk(xj(0)). (23)

In the d-dimensional case, the


i N
2
i values Ek(xj(0)) can be precomputed once and for all, if the time step τ is constant. The

evaluation cost of (23) at the point set {xj(0)}j is then O(


i N
2
i ) at each time step.

5.2. Local polynomial interpolation

Another possibility (see, for instance, [11,10,13]) is local polynomial interpolation. It is possible to evaluate v0(x) at the
grid points {xj}j with an inverse fast Fourier transform of cost O (N1 · . . . · Nd · (logN1 + · · · + logNd)). An approximation
of the values v0(xj(0)) can then be obtained by local polynomial interpolation

v0(xj(0)) ≈


k∈Ip

v0(xj+k)Lj+k(xj(0)). (24)

Here {xj+k
}k is the set of the p grid points, p even, satisfying

xj−p/2 < · · · < xj−1
≤ xj(0) < xj < · · · < xj+p/2−1,

and Lj+k denotes the elementary Lagrange polynomial of degree p−1 that takes the value one at xj+k and zero at all the other
p − 1 points. Of course, the points xj+k and the corresponding values v0(xj+k) have to be taken by periodicity if necessary.

In the d-dimensional case, for a constant time step τ it is possible to precompute once and for all the elementary Lagrange
polynomials at the points {xj(0)}j (for a total amount of pd


i Ni values). Then, the evaluation of (24) at each time step

requires O(pd


i Ni) operations.

5.3. Fourier series evaluation by NFFT

The third explored possibility is the evaluation of (23) bymeans of an approximate fast Fourier transform. Among others,
we tested the nonequispaced fast Fourier transform (NFFT) by Keiner, Kunis and Potts [14]. The computational cost of such
an approach is O


N1 · . . . · Nd · (logN1 + · · · + logNd + |log ϵ|d)


, where ϵ is the desired accuracy.

For the readers’ convenience, we briefly sketch the NFFT algorithm in one dimension, using the original notation of [14].
Given some coefficients {f̂k}k∈IN , N even, and a set of arbitrary points {xj}j ⊂


−

1
2 ,

1
2


, the aim is a fast evaluation of the

one-periodic trigonometric polynomial

f (x) =


k∈IN

f̂ke−2π ikx (25)

at the points {xj}j. In the first step, f (x) is replaced with the ansatz

s1(x) =


ℓ∈In

gℓ ϕ̃

x −

ℓ
n


, σ ≥ 2, n = σN even,

where {gℓ}ℓ are some coefficients to be defined later and

ϕ̃(x) =


r∈Z

ϕ(x + r)
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is the one-periodic version of a window function ϕ : R → R. The window function ϕ is chosen in such a way that ϕ̃ has a
uniformly convergent Fourier series

ϕ̃(x) =


k∈Z

ck(ϕ̃)e−2π ikx.

The default window function used by NFFT is the so called Keiser–Bessel function

ϕ(x) =
1
π



sinh(β
√
m2 − n2x2)

√
m2 − n2x2

for |x| <
m
n
,

sin(β
√
n2x2 − m2)

√
n2x2 − m2

for |x| >
m
n
,

β for |x| =
m
n

with the shape parameter β = π(2 − 1/σ). The value of m depends on the desired accuracy ϵ and is chosen m = 8 for
double precision. The oversampling factor σ is defined by

σ =
2⌈log2 2N⌉

N
.

That is, n = σN is the smallest power of two with 2 ≤ σ < 4. Now we plug the Fourier series expansion of ϕ̃(x) into s1(x)
in order to get

s1(x) =


ℓ∈In

gℓ ϕ̃

x −

ℓ
n


=


ℓ∈In

gℓ

k∈Z

ck(ϕ̃)e
−2π ik


x− ℓ

n



=


k∈Z


ℓ∈In

gℓe2π ik
ℓ
n


ck(ϕ̃)e−2π ikx

and apply a cutoff in the frequency domain

s1(x) ≈


k∈In


ℓ∈In

gℓe2π ik
ℓ
n


ck(ϕ̃)e−2π ikx

=


k∈In

ĝkck(ϕ̃)e−2π ikx. (26)

Comparing now Eqs. (25) and (26), we see that the coefficients {ĝk}k are simply given by

ĝk =

 f̂k
ck(ϕ̃)

, k ∈ IN ,

0, k ∈ In \ IN ,

and the values {gℓ}ℓ can be recovered by a fast Fourier transform of length n. The parameter m is then used as a cutoff to
approximate in practice the window function ϕ(x)with

ψ(x) = ϕ(x)χ[− m
n ,

m
n ](x).

In this way, s1(x) is further approximated by

s1(x) ≈ s(x) =


ℓ∈In

gℓ ψ̃

x −

ℓ
n


.

Now we use that ψ̃ vanishes outside of −m
n ≤ x −

ℓ
n ≤

m
n . Thus, for fixed xj, the above sum contains at most 2m + 1 terms

different from zero. Finally, s(x) is evaluated at the set {xj}j, providing the desired approximation of {f (xj)}j.

6. Application to the magnetic Schrödinger equation

In this section we exemplify the assumptions of Theorem 3 for themagnetic Schrödinger equation (17). For this purpose,
we choose X = L2(Ω)withΩ =

d
i=1[ai, bi) and assume that the potentials A and V are sufficiently smooth. Note that the

potential operator B is bounded, whereas the kinetic operator A and the advection operator C are both unbounded. We
start with the verification of Assumption 1.
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Fig. 1. Initial and final position density for the one-dimensional example.

� Condition (4a): Since etAw is the exact solution of the problem ∂tu = Au, u(0) = w, it preserves the smoothness of the
initial data. Further, the commutator [A,C] is a second-order differential operator

[A,C]u =
iε
2

[∆, A · ∇]u

=
iε
2


∆(A · ∇u)− A · ∇(1u)


.

So, we need to assume that the initial data are twice differentiable.
� Conditions (4b), (4c), and (4d): As C is a first-order differential operator, it is again sufficient to require that the initial

data are twice differentiable.
� Condition (4e): The commutator is a second-order differential operator

[A + C,B]u =


iε
2
∆+ A · ∇,−

i
ε


1
2
|A|

2
+ V


u,

so the same smoothness as before is required.

Stability is easily verified. From the conservation of mass discussed at the end of Section 3, we get ∥eτA∥L2 = 1 and
∥eτC∥L2 = 1.

Note that the above bound for the advection semigroup only holds in the Coulomb gauge setting. However, by themethod
of characteristics, the solution of the advection step is of the formu(t, x(t)) = u0(x(0)), where x(t) = x(0)+tA(x(0))+O(t2).
Setting ξ = x(0), we have

∥u∥2
L2 =


Ω

|u(x)|2dx =


Ω

|u0(ξ)|
2dx =


Ω

|u0(ξ)|
2
detI + tA′(ξ)+ O(t2)

 dξ .
Under the assumption that the partial derivatives of A are bounded, we have

∥u∥2
L2 ≤ ∥u0∥

2
L2 + Ct∥u0∥

2
L2 ≤ (1 + Ct)∥u0∥

2
L2 ≤ e2tωC ∥u0∥

2
L2 , 0 ≤ t ≤ T ,

which is exactly the weaker bound required in Assumption 2.

7. Numerical experiments

The first numerical example is a variation of [10, Example 2]. The vector potential is chosen as A(x) = sin(2πx)/5+ 1/5
and the scalar potential as V (x) = cos(2πx)/5 + 4/5. The initial value is u0(x) =

√
ρ0(x) exp(iS0(x)/ε), where

ρ0(x) = e−50

x− 1

2

2
, S0(x) = −

log

e5(x−

1
2 ) + e−5(x− 1

2 )


5
, ε =

1
128

.

Note that this initial value is not periodic. However, due to the exponential decay of ρ0(x), the problem can be solved
numerically up to time T = 0.42 in the space interval [0, 1] by assuming periodic boundary conditions. The final time T was
chosen in order to have a position density resembling the one in [10, Fig. 6.25], see Fig. 1. The Coulomb gauge transformation
yields

λ(x) =
cos(2πx)
10πε

.
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Fig. 2. Temporal errors (stars, circles) for the Lie and Strang splitting methods and reference orders (lines) for the one-dimensional example.

In Fig. 2 we plot the global errors of Lie splitting at the final time T = 0.42 for various time steps and N = 2048 spatial
discretization points. The reference solutionwas obtainedwith 512 time steps.We include in this figure the error behaviour
of Strang splitting, defined by

un+1 = e
τ
2 Be

τ
2 AeτCe

τ
2 Ae

τ
2 Bun. (27)

In this double logarithmic diagram, the errors of a method lie on a straight line of slope q, where q denotes the order of the
method. Both, Lie and Strang splitting show their expected orders of convergence. Lie splitting has order one, as proved in
Theorem 3, whereas Strang splitting converges with order two.

Note that the computationally most expensive task in the employed splitting approach is the advection step. Therefore,
we order the steps in (27) in such away that the advection equation is solved only once in each time step. In this way, Strang
splitting provides much more accuracy without being significantly more expensive than Lie splitting.

Next, we compare the three different numerical realizations of the advection step, namely by local interpolation, by direct
Fourier series evaluation (DFT) and by NFFT. In Table 1 we report the error in mass conservation and the required CPU time
for various values of N . The number of time steps is fixed to n = 128. The error in mass conservation is measured as the
maximum deviation from the initial mass on the discrete level (l2 in space and l∞ in time).

Due to the compressive behaviour of S ′

0(x), which acts as an initial velocity, the evolution develops caustics and
the numerical solution requires a sufficiently large number N of Fourier modes in order to reproduce accurate physical
observables.WhileDFT andNFFT always preserve themass almost up tomachine precision, the polynomialmethods become
comparable only with the largest tested value of N and at polynomial degree 7. For this degree, the interpolation methods
are slightly more expensive than the NFFT approach.

The second numerical experiment is set in the two-dimensional domain [−5, 5]2 with

A1(x, y) = −3 sin


2π(y+5)
10


,

A2(x, y) = 3 sin


2π(x+5)
10


,

V (x, y) = 20 cos


2π(x+5)
10


+ 20 cos


2π(y+5)

10


+ 40,

and initial value

u0(x, y) =


√
10
π

exp

−

√
10
2


(x − 1)2 + y2


.

The semi-classical parameter is chosen ε = 1, the final time T = 50 and the number of time steps n = 1000. In Table 2 we
compare the three methods that only differ in the treatment of the advection step. In particular, we compare the behaviour
of tensor interpolation at 4×4 and 6×6 points with direct Fourier series evaluation and NFFT with the default valuem = 8
and the smaller valuesm = 6 andm = 4, respectively.

We observe that, for this long-term simulation, the mass is always well conserved by the direct Fourier series evaluation
and byNFFTwith the default valuem = 8. On the other hand, ifm is halved, there is a significant degradation, especiallywith
N1 = N2 = 256. The direct Fourier series evaluation is much more expensive than the other methods, being impracticable
for N1 = N2 ≥ 512. The interpolation methods roughly cost as much as the NFFT approach, but their mass preservation is
by far worse.
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Table 1
Error in mass conservation and CPU time (in seconds) for the one-dimensional numerical example. The default valuem = 8
was used for the NFFT approach.

Interpolation Fourier
N p = 2 p = 4 p = 6 p = 8 DFT NFFT

128 Mass 1.4e−01 1.8e−02 2.1e−03 2.8e−04 2.8e−15 8.6e−14
CPU 0.13 0.12 0.12 0.12 0.10 0.16

256 Mass 9.4e−02 2.7e−03 7.2e−05 2.5e−06 2.0e−15 1.0e−14
CPU 0.13 0.13 0.13 0.14 0.19 0.17

512 Mass 5.2e−02 2.9e−04 2.0e−06 1.8e−08 3.6e−15 1.7e−14
CPU 0.16 0.19 0.17 0.16 0.27 0.19

1024 Mass 1.6e−02 1.8e−05 3.0e−08 9.6e−11 4.0e−15 5.5e−14
CPU 0.22 0.23 0.23 0.24 0.56 0.23

2048 Mass 4.2e−03 1.1e−06 4.9e−10 3.8e−12 3.3e−15 1.3e−14
CPU 0.36 0.37 0.37 0.37 1.42 0.33

Table 2
Error in mass conservation and CPU time (in seconds) for the two-dimensional numerical example.

Interpolation
of degree p − 1

Fourier
DFT NFFT

N1 = N2 p = 4 p = 6 m = 8 m = 6 m = 4

128 Mass 1.0e−01 2.5e−03 9.9e−11 1.0e−10 2.4e−10 2.2e−07
CPU 25.2 33.5 174.3 23.7 22.8 20.6

256 Mass 6.9e−03 3.9e−05 1.3e−08 1.3e−08 2.0e−08 2.5e−02
CPU 101.7 117.9 2254 99.6 85.6 87.7

512 Mass 4.3e−04 6.2e−07 a 9.7e−11 2.5e−10 2.0e−07
CPU 412.7 506.8 a 435.7 401.4 400.4

1024 Mass 2.7e−05 9.6e−09 a 9.7e−11 2.5e−10 1.9e−07
CPU 1796 2139 a 1948 1840 1709

a Indicates that the computationwas not performed since it would have required an excessive amount of computing time.

The final numerical example is a three-dimensional variation of the previous one. In the domain [−5, 5]3, with ε = 1,
we chose

A1(x, y, z) = sin


2π(y+5)
10


+ sin


2π(z+5)

10


A2(x, y, z) = sin


2π(x+5)

10


+ sin


2π(z+5)

10


A3(x, y, z) = sin


2π(x+5)

10


+ sin


2π(y+5)

10


V (x, y, z) = 20 cos


2π(x+5)

10


+ 20 cos


2π(y+5)

10


+ 20 cos


2π(z+5)

10


+ 60,

and the initial value

u0(x, y, z) =
23/8

π3/2 exp

−

√
2
2


(x − 1)2 + y2 + z2


.

With this example, we also tested the option PRE_FULL_PSI of NFFT (see [14]). At the price of a full precomputation
of the window functions, which requires a storage of (2m + 1)3


i Ni double precision numbers, this option should allow

an overall faster execution. In Table 3 we display the error of mass conservation and the CPU time for simulations up to
T = 5 with 100 time steps. As expected, there is no difference in themass conservation property between the two schemes.
However, we never succeeded in getting the PRE_FULL_PSI version faster than the default one (named PRE_PSI). For
N1 = N2 = N3 ≥ 64, it was even not possible to store the precomputed values in the RAM (8 GB). Nevertheless, the default
implementation of NFFT, which requires a storage of 3(2m+1)


i Ni for thewindow functions, workswithout any problem.

8. Conclusions

In this paper we considered the numerical solution of the linear Schrödinger equation with a vector potential. The
structure of the problem suggested to use a splitting method involving three different parts, namely a multiplicative
term coming from scalar potentials, the Laplacian, and the advective term due to the vector potential. After establishing
convergence of Lie splitting for an abstract problem, we analysed the required assumptions in the specific case of the
magnetic Schrödinger equation. For the advection step, the solution along the characteristic curves was approximated by a
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Table 3
Error in mass conservation and CPU time (in seconds) for the three-
dimensional example.

N1 = N2 = N3 NFFT
PRE_PSI PRE_FULL_PSI

16 Mass 6.1e−13 6.1e−13
CPU 5.6 6.5

32 Mass 8.2e−14 8.2e−14
CPU 37.7 51.7

64 Mass 7.1e−13 a

CPU 396.5 a

128 Mass 1.3e−12 a

CPU 2986 a

a Indicates that the computation was not performed since it would have
required more memory than available (8 GB).

nonequispaced fast Fourier transform. It turned out to be as fast as local polynomial interpolation and as accurate as direct
Fourier series evaluation in the mass conservation at discrete level. Therefore, it can be considered as a competitive tool in
the solution of advection equations with the method of characteristics.
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