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Abstract. We consider a generalization of Madelung fluid equations, which
was derived in the 1980s by means of a pathwise stochastic calculus of variations
with the classical action functional. At variance with the original ones, the new
equations allow us to consider velocity fields with vorticity. Such a vorticity causes
dissipation of energy and it may concentrate, asymptotically, in the zeros of the
density of the fluid. We study, by means of numerical methods, some Cauchy
problems for the bidimensional symmetric harmonic oscillator and observe the
generation of zeros of the density and concentration of the vorticity close to
central lines and cylindrical sheets. Moreover, keeping the same initial data, we
perturb the harmonic potential by a term proportional to the density of the fluid,
thus obtaining an extension with vorticity of the Gross–Pitaevskii equation, and
observe analogous behaviours.
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1. Introduction

In this paper we study, by means of numerical methods, some Cauchy problems for a dissipative
generalization of Madelung fluid equations. Such a generalization was introduced in [1]–[3] as a
solution of a stochastic variational problem for the classical action functional, in the framework
of Nelson stochastic quantization (see [4]–[8] for general mathematical and physical aspects).
For a spin-less particle of mass m subjected to a scalar potential �̃(x̃), denoting by ρ̃(x̃, t̃ ) the
probability density and by ṽ(x̃, t̃ ) the current velocity (the tilde sign is used for dimensional
variables), the new equations read (omitting the independent variables)

∂t̃ṽ + (ṽ · ∇̃)ṽ − h̄2

2m2
∇̃
(

∇̃2
√
ρ̃√
ρ̃

)
+

h̄

2m
(∇̃ ln ρ̃ + ∇̃) ∧ (∇̃ ∧ ṽ) = − 1

m
∇̃�̃,

∂t̃ρ̃ = −∇̃ · (ρ̃ṽ). (1)

(A generalization to curved spaces is given in [9]. A version where the rotational term is
multiplied by a positive constant playing the role of a free parameter is proposed in [10].) Now
let Q̃ denote an open subset of R

3. If ρ̃ is strictly positive and ∇̃ ∧ ṽ is equal to zero on Q̃ for all
t̃, then, by Madelung transformations

ṽ(x̃, t̃ ) = 1

m
∇̃S̃(x̃, t̃ ), x̃ ∈ Q̃,

ρ̃(x̃, t̃ )1/2 exp

[
i
S̃(x̃, t̃ )

h̄

]
= ψ̃(x̃, t̃ ), x̃ ∈ Q̃,

system (1) turns to be equivalent to the Schrödinger equation

ih̄∂t̃ψ̃ = − h̄2

2m
∇̃2ψ̃ + �̃ψ̃, (2)

where ψ̃ has domain Q̃ for all t̃.
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Coming back to the original equations (1) on R
3 we can define, for any sufficiently smooth

solution (ρ̃, ṽ), ρ̃ being a probability density, the energy functional

Ẽ(ρ̃, ṽ) =
∫

R3

[
1

2
m(|ṽ(x̃, t̃ )|2 + |ũ(x̃, t̃ )|2) + �̃(x̃)

]
ρ̃(x̃, t̃ ) dx̃, (3)

where

ũ(x̃, t̃ ) = h̄

2m
∇̃ ln ρ̃(x̃, t̃ )

is the osmotic velocity. Then, as a consequence of the Energy Theorem proved in [3], we have,
if ρ̃ has a good behaviour at infinity,

d

d t̃
Ẽ(ρ̃, ṽ) = − h̄

2

∫
R3

|∇̃ ∧ ṽ(x̃, t̃ )|2ρ̃(x̃, t̃ ) dx̃ (4)

and it can be seen that the set of solutions of (1) such that ρ̃ · (∇̃ ∧ ṽ) = 0 acts as an attracting
set. In particular, if ρ̃ · (∇̃ ∧ ṽ) is equal to zero on the whole R

3, then functional (3) becomes the
usual quantum conserved energy

Ẽ(ρ̃, ṽ) =
〈
ψ̃,

(
− h̄2

2m
∇̃2 + �̃

)
ψ̃

〉
,

where 〈·, ·〉 denotes the scalar product in L2(R3, dx̃).
Roughly, the (in general time-dependent) solutions of Schrödinger equation are expected to

be related to ‘dynamical equilibrium solutions of system (1)’. This fact is qualitatively represented
in figure 1, where

(i) �̃ is the set of initial data (ρ̃0, ṽ0) (not necessarily smooth);

(ii) solid lines represent time evolution (denoted by (ρ̃t̃, ṽt̃ )) which corresponds, by Madelung
transformations, to solutions of the Schrödinger equation (these, stationary or non-
stationary, can be singular functions, typically in the presence of nodes of the wave function);

(iii) broken lines represent time evolution of (1) for smooth rotational initial data.

It is natural at this point to ask the following questions:

• Can the dissipative evolution described by system (1) asymptotically reproduce singular
solutions of Madelung equations (either time-dependent or stationary) even if the initial data
(ρ̃0, ṽ0) are smooth fields on R

3?

• Does the vorticity monotonically decrease at every point of R
3?

• Can residual vorticity asymptotically remain concentrated in the zeros of the density?

The first and the third questions are strictly connected. Indeed, a typical example of solutions with
a singularity are those related to the eigenfunctions of the angular momentum for a symmetric
bidimensional harmonic oscillator. They correspond on Q̃ = R

2\{(0, 0)} to stationary solutions
of Madelung equations, with density going to zero while approaching the point {(0, 0)} and,
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Figure 1. Schrödinger solutions as dynamical equilibrium states.

denoting by (r̃, θ) the polar coordinates on the plane, a velocity field defined by

ṽ(r̃) = h̄

m
∇̃(�θ) = h̄�

mr̃
θ̂, � = 0,±1,±2, . . .

which tends to infinity for r̃ approaching zero. The velocity field is irrotational on Q̃ =
R

2\{(0, 0)}. The circulation for any closed path around {(0, 0)} is equal to �h̄/m. In fact,
all eigenfunctions of the angular momentum correspond to stationary solutions of Madelung
equations, characterized by a quantized central vortex line (thinking of the system as being
described in R

3, the forces along the z-axis being equal to zero).
In this work we give some answers to the above-mentioned questions, by solving numerically

the system of PDEs (1). In particular, we consider as initial data a linear velocity field with
constant vorticity (which corresponds to that of a body rotation around the axis perpendicular to
the (r̃, θ) plane in {(0, 0)}) and a Gaussian density on a circular domain, with different choices of
the (adimensional) radiusR: in particular, choosingR = 4, for t ≈ 0.44 and t ≈ 0.60 the density
exhibits a zero in {(0, 0)} while the vorticity has there a maximum (see figures 8 and 10). For
t ≈ 0.79 again the density is zero in {(0, 0)} and suddenly the vorticity begins to increase too
quickly, generating numerical errors (figure not reported). Concentration of the vorticity close
to cylindrical sheets, often in correspondence with the minima or zeros of the density, is also
observed during the whole simulation (analogous behaviours are observed for the other choices
ofR). As a last experiment, we perturb the harmonic potential by adding the termCρ̃,C > 0: the
behaviour is qualitatively the same as before, but concentration of vorticity close to the central
lines is observed for slightly larger values of the energy.

The paper is organized as follows: in section 2 we recall the structure of the stationary
solutions of the Schrödinger equation for bidimensional symmetric harmonic oscillator and some
previous results concerning time-dependent Gaussian solutions for the new equations (1). The
last are used to test the numerical scheme we introduce to numerically compute the non-Gaussian
solutions of the system of PDEs (1). In section 3 we report our numerical results.
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2. Stationary solutions and time-dependent Gaussian solutions for the symmetric
bidimensional harmonic oscillator

2.1. Stationary solutions (analytical calculation)

Denoting by (x̃, ỹ, z̃) the Cartesian coordinates in R
3, we consider firstly stationary solutions of

system (1) on the plane (x̃, ỹ) with

�̃(r̃) = 1
2mω

2
Tr̃

2, r̃ =
√
x̃2 + ỹ2.

It is convenient to introduce the adimensional variables

r = r̃

ah
, t = ωT t̃, ρ = a2

hρ̃, v = ṽ

ahωT
, (5a)

where ah = √
h̄/2mωT, and

u(x, t) = ∇ ln ρ(x, t) = ũ(x̃, t̃ )

ahωT
,

�(r) = 1

2
r2 = 2�̃(r̃)

h̄ωT
,

E(ρ, v) =
∫

R2

[
1

2
(|v(x, t)|2 + |u(x, t)|2) +�(x)

]
ρ(x, t) dx = 2Ẽ(ρ̃, ṽ)

h̄ωT
. (5b)

The energy derivative turns to be

d

dt
E(ρ, v) = −

∫
R2

|∇ ∧ v(x, t)|2ρ(x, t) dx = 2

h̄ω2
T

d

dt̃
Ẽ(ρ̃, t̃ ); (5c)

system (1) can be rewritten as

∂tv + (v · ∇)v − 2∇
(∇2√ρ√

ρ

)
+ (∇ ln ρ + ∇) ∧ (∇ ∧ v) = −∇�,

∂tρ = −∇ · (ρv) (6)

and the Schrödinger equation (2) becomes

i∂tψ = −∇2ψ + 1
2�ψ. (7)

By the Energy Theorem all stationary solutions are irrotational almost everywhere. Therefore,
we have to look for solutions of the corresponding Schrödinger equation of the type ψ(r, θ, t) =
χ(r, θ) exp(itE/2), with χ(r, θ) and E denoting an eigenfunction and the corresponding
eigenvalue of the quantum Hamiltonian, respectively. We consider then simultaneous
eigenfunctions of the Hamiltonian and of the angular momentum with respect to the z-axis,
which will be denoted by χnd,ng , with nd, ng = 0, 1, 2, . . . The corresponding quantized
energy is

End,ng = 2(nd + ng + 1), nd, ng = 0, 1, 2, . . .
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Figure 2. Plots of some |χnd,ng|2: systems of rings of zeros arise while increasing
the energy.

The analytical expressions of χnd,ng can be calculated recursively starting from χ0,0 (cf [11]):
we present in figure 2 some of their analytical expression as well as a 3D graphical representation
of their square absolute value, computed by Maple®.
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Thus, the stationary solutions of (6) with definite quantized angular momentum are of
the type

vnd,ng(r) = 2�

r
θ̂, � = nd − ng, (8a)

ρnd,ng(r) = |χnd,ng(r)|2. (8b)

For the sake of clarity, the dimensional expression of the velocity field, the density and the
energy is given as

ṽnd,ng(r̃) = h̄�

mr̃
θ̂,

ρ̃nd,ng(r̃) = 2mωT

h̄
|χnd,ng(r)|2, (9)

Ẽnd,ng = (nd + ng + 1)h̄ωT.

Of course, these solutions are irrotational on R
2\{(0, 0)}. Another class of solutions which

could be handled analytically is that related to the oscillating Gaussian solutions of (2),
for the harmonic potential: they are visualized, in particular, by the asymptotic trajectory
in figure 3.

2.2. Time-dependent Gaussian solutions (numerical computation for a system of ODEs)

Let us now consider initial data with non-zero vorticity. The simplest smooth case is given by a
linear velocity field and Gaussian symmetric density. We look for solutions of (6), which preserve
the same properties. Therefore, the desired solutions are of the type

v(r, t) = a(t)rr̂ −
(t)rθ̂ (from which ∇ ∧ v(t) = −2
(t)), (10a)

ρ(r, t) = A(t)

2π
exp

[
−A(t)

2
r2

]
, (10b)

where A(t), a(t) and
(t) are time-dependent scalar parameters with A(t) > 0 (cf [12]); we call
them linear-Gaussian solutions. It can be easily seen that the time evolution of these solutions
according to (6) is described by the first-order non-linear system of ODEs,

Ȧ = −2aA,

ȧ = A2 +
2 − a2 − 1,


̇ = −2(a + A)
.

(11)

In terms of (A, a,
), the energy functional and its time derivative become

E = 1

A
(A2 + a2 +
2 + 1),

dE

dt
= −4
2. (12)
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Figure 3. Trajectory of the solutions of system (11): the asymptotic orbit
(with 
 = 0) corresponds to a Gaussian oscillating solution of the Schrödinger
equation.
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Figure 4. Time evolution of vorticity −∇ ∧ v = 2
 in the time-dependent
Gaussian case.

System (11) was studied by numerical methods in [12], where the global existence of the solutions
and some stability results were also analytically proved. We revisit this work for the sake of clarity
and because we will exploit linear-Gaussian solution to test the general numerical scheme.
We have numerically integrated system (11) for the initial state (A0, a0, 
0) = (0.5, 2, 10)
and t ∈ [0, 20]: the solution trajectory (A, a,
), the energy E and the vorticity 
 are plotted
in figures 3–5.

2.3. Time-dependent Gaussian solutions by numerically solving the new system of PDEs
and a numerical validation of the code

The next step is to numerically integrate system (6) on the bidimensional circular domain D =
B[0, R]. Concerning the spatial discretization, we choose the FEM technique, with triangular
finite elements, linear shape functions and standard Galerkin variational formulation, because it
turns out to be quite simple to implement and more versatile (in the choice of the computational
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Figure 5. Time evolution of energy E in the time-dependent Gaussian case.

domain and possible mesh refinements) than other techniques, such as finite differences. Due to
the linearity of shape functions, we have to reduce the system by one order: by introducing the
(adimensional) osmotic velocity, the system can be rewritten as

∂tv + (v · ∇)v − ∇ (∇ · u + 1
2u · u

)
+ (u + ∇) ∧ (∇ ∧ v) + ∇� = 0,

∂tu + ∇(u · v) + ∇(∇ · v) = 0. (13)

The continuity equation for ρ is also integrated to compute the energy E by (5b). The standard
Galerkin variational formulation with linear basis functions we use is tailored to parabolic
systems, whereas system (13) seems to have a hyperbolic form: using again the definition of
the osmotic velocity we can write equivalently the system with a diffusive (and stabilizing) term
in each equations. Concerning the time discretization, we adopt a ϑ-method which can be easily
reduced to the implicit Euler scheme (ϑ = 1) or to the Crank–Nicolson scheme (ϑ = 1

2 ), with
adaptive time steps
tk = tk+1 − tk. We use the Picard method for solving the non-linearity: even
if linearly convergent, it is easily implementable, computationally cheaper and less sensible to
the starting point than the classical (quadratically convergent) Newton–Raphson method.

First, we try to reproduce the linear-Gaussian solutions (10a), (10b) and (11), putting

v0(r) = a0rr̂ −
0rθ̂

as initial current velocity field, a symmetric Gaussian function of the type

ρ0(r) = A0

2π
exp

[
−A0

2
r2

]
,

as initial density and the corresponding osmotic velocity field

u0(r) = ∇ ln ρ0(r).

The initial state (A0, a0, 
0) is the same as in the previous section, namely (0.5, 2, 10).
We have to impose appropriate boundary conditions on ∂D: since we are interested in a
particular class of solutions, we force the boundary conditions of that class, which are known
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in our case. In particular, at each time tk, we solve the ODEs system (11) (as described
in the previous section) with initial data (A(tk), a(tk),
(tk)) for a time step 
tk = tk+1 − tk
to obtain (A(tk+1), a(tk+1),
(tk+1)). This allows us to compute exactly the condition of the
border for tk+1. Then we solve system (13) with initial data ρ(r, tk), u(r, tk) and v(r, tk) and
the known Dirichlet boundary conditions ρ(R, tk+1), u(R, tk+1) and v(R, tk+1) for the same time
step
tk. We observe that if we explore the evolution of the system for t ∈ [0, T ] with T = 0.60
(cf section 3 for the choice of T ), it is sufficient, to get the best agreement allowed by the
order of the numerical schemes, to choose, for example, the radius R of the domain equal to 4
and about 100 000 triangles for the mesh (we use triangle4 to generate a mesh with 56 841 points
and 113 090 triangles). For greater T one should increaseR by keeping the same average area for
the triangles.

3. Non-Gaussian solutions and concentration of vorticity close to central lines
and cylindrical sheets

In this simulation, we choose, as initial data, the velocity field and the symmetric Gaussian
density as in the previous test. We can note that, to obtain solutions different from the Gaussian
ones, it is sufficient to impose different boundary conditions. From a physical point of view,
the only necessary condition is ρ = 0 at infinity, while u and v are free (and in general
strongly variable in time). However, integrating on a finite domain enforces the necessity of
constraints of the boundary. In the next finite-element numerical experiments, the boundary
conditions are

−∇ · (u − v)

∣∣∣∣
∂D
ν + ∂v

∂ν

∣∣∣∣
∂D

= 0,

u

∣∣∣
∂D

= u0

∣∣∣
∂D
,

ρ

∣∣∣
∂D

= ρ0

∣∣∣
∂D

≈ 0,

(14)

where the first comes naturally from the finite-element discretization. We can notice that they are
not satisfied by the linear-Gaussian solutions. This is sufficient to destroy the linearity. Notice
also that some freedom is left to v and to the spatial derivatives of u and v on the border. In
addition, since the density ρ must be zero at infinity and since ρ0 is sufficient close to zero
(for our numerical aims) on the boundary ∂D, we fix the values of ρ on ∂D at its initial values
for the whole numerical simulation. The same for u = ∇ ln ρ. Putting conditions (14) at ∂D
corresponds to introducing a perturbation of the scalar potential� at r = R. We stress again that
the velocity field v and its derivatives are not fixed at ∂D. The initial conditions used, as just
said, are

v0(r) = a0rr̂ −
0rθ̂, a0 = 2, 
0 = 10,

u0(r) = ∇ ln ρ0,

ρ0 = A0

2π
exp

(
−A0

2
r2

)
, A0 = 0.5.

4 By J R Shewchuk, available at www.netlib.org/voronoi.
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Figure 6. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0,
energy E = 195.
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Figure 7. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.25,
energy E = 43.

Since the time discretization of continuity equation can lead to a loss of the total
mass, we renormalize to 1 the density at each time step before using (5b) to compute
the energy.

In figures 6–10 we show the numerical computation of the density ρ and the vorticity
−∇ ∧ v at different times. We can observe that the vorticity does not monotonically decrease
and tends to become concentrated close to cylindrical sheets and a central line (we suppose
the system as being described in R

3, the forces along the z-axis being equal to zero). In
particular, in figures 8 and 10, a maximum of the vorticity in correspondence with a zero of
the density takes place. For t ≈ 0.79 again the density is zero in {(0, 0)} and suddenly the
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Figure 8. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.44,
energy E = 17.
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Figure 9. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.50,
energy E = 15.

vorticity begins to increase too quickly, immediately generating numerical errors. It is quite
difficult to get a good picture of what happens at this point (to give an idea, we report the
final step of our experiment with R = 10 in figure 11). The evolution of energy is reported in
figure 12. Notice that the energy numerically computed in this experiment is only a fraction of
the total one, due to the size of the domain (R = 4) we have considered. To get an accurate
approximation of the exact energy, one should take R � 60. Analogous simulations with
different values of the radius R, as well as substituting a0 = 0, exhibit the same qualitative
behaviour.
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Figure 10. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.60,
energy E = 11.
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Figure 11. Density ρ and vorticity −∇ ∧ v at the final step, R = 10.

As a last simulation, we repeat the previous test adding the Gross–Pitaevskii term to the
harmonic potential:

�(r, t) → �GP(r, t) = 1
2r

2 + Cρ(r, t),

where C is an adimensional constant whose value was taken equal to 300 (cf [13]). The
qualitative behaviour is the same as before, with the only difference that concentration of
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Figure 12. Time evolution of the energy E for symmetric initial data.
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Figure 13. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.44,
energy E = 18 (in the previous simulation E = 17), � → �GP.

vorticity close to central lines is observed for slightly larger values of the energy (see
figures 13–15).

4. Conclusions

Our numerical experiments confirm the conjecture that the generalization of Madelung equations
given by (1) describes a dynamics which, starting from rotational initial data, asymptotically
reproduces the quantum one, with the possibility of concentration of vorticity in the zeros of
the density.

Such a phenomenon, at least in our example, does not seem to qualitatively change by
adding the Gross–Pitaevskii term to the scalar potential.
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Figure 14. Density ρ and vorticity −∇ ∧ v (zoom in [−2, 2]2) at time t = 0.60,
energy E = 12 (in the previous simulation E = 11), � → �GP.
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Figure 15. Time evolution of the energyE for symmetric initial data,� → �GP.

It would be very interesting to study by means of analogous techniques the case with broken
central symmetry or with a stirring potential, and compare the results, for example, with those
obtained by Kasamatsu et al [13, 14].
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