
A parallel exponential integrator for large-scale

discretizations of advection-diffusion models?

L. Bergamaschi1, M. Caliari2, A. Mart́ınez3, and M. Vianello3

1 Department of Mathematical Methods and Models for Scientific Applications
University of Padua, Italy

2 Department of Computer Science, University of Verona, Italy
3 Department of Pure and Applied Mathematics, University of Padua, Italy

Abstract. We propose a parallel implementation of the ReLPM (Real
Leja Points Method) for the exponential integration of large sparse sys-
tems of ODEs, generated by Finite Element discretizations of 3D advection-
diffusion models. The performance of our parallel exponential integrator
is compared with that of a parallelized Crank-Nicolson (CN) integrator,
where the local linear solver is a parallel BiCGstab accelerated with the
approximate inverse preconditioner FSAI. We developed message pass-
ing codes written in Fortran 90 and using the MPI standard. Results
on SP5 and CLX machines show that the parallel efficiency raised by
the two algorithms is comparable. ReLPM turns out to be from 3 to 5
times faster than CN in solving realistic advection-diffusion problems,
depending on the number of processors employed.

1 Finite Element Discretization of the Advection-
Diffusion Model

We consider the classical evolutionary advection-diffusion problem

∂c

∂t
= div(D∇c)− div(cv) + φ x ∈ Ω, t > 0

c(x, 0) = c0(x), x ∈ Ω;

c(x, t) = gD(x, t), x ∈ ΓD; 〈D∇c(x, t), ν〉 = gN(x, t), x ∈ ΓN; t > 0

(1)

with mixed Dirichlet and Neumann boundary conditions on ΓD ∪ ΓN = ∂Ω,
Ω ⊂ R3. Equation (1) represents, e.g., a simplified model for solute transport
in groundwater flow (advection-dispersion), where c is the solute concentration,
D the hydrodynamic dispersion tensor, Dij = αT|v|δij + (αL − αT)vivj/|v|,
1 ≤ i, j ≤ d, v the average linear velocity of groundwater flow and φ the source.
The standard Galerkin Finite Element (FE) discretization of (1) with nodes
{xi}Ni=1 and linear basis functions gives a large scale linear system of ODEs like

{
P ċ = Hc + b, t > 0

c(0) = c0

(2)

?
Work supported by the research fellowship “Parallel implementations of exponential integrators

for ODEs/PDEs” (co-ordinator M. Vianello, University of Padova).

where c = [c1(t), . . . , cN (t)]T, c0 = [c0(x1), . . . , c0(xN)]T, P is the symmetric
positive-definite mass matrix and H the (nonsymmetric) stiffness matrix. Bound-
ary conditions are incorporated in the matrix formulation (2) in the standard
ways.

2 Exponential Integration via Polynomial Approximation

In the sequel we consider stationary velocity, source and boundary conditions
in (1), which give constant H and b in system (2), which is the discrete approx-
imation of the PDE (1). As known, the solution can be written explicitly in the
exponential form

c(t) = c0 + tϕ(tP−1H)
[
P−1Hc0 + P−1b

]
, (3)

where ϕ(z) is the entire function ϕ(z) = (ez − 1)/z if z 6= 0, ϕ(0) = 1.
Applying the well known mass-lumping technique (sum on the diagonal of

all the row elements) to P , we obtain a diagonal mass matrix PL. Now system
(3) (with PL replacing P) can be solved by the exact and explicit exponential
time-marching scheme.

ck+1 = ck +∆tkϕ(∆tkHL)vk, k = 0, 1, . . . ,

HL = P−1
L H, vk = HLck + P−1

L b. (4)

Exactness of the exponential integrator (4) entails that the time-steps ∆tk can
be chosen, at least in principle, arbitrarily large with no loss of accuracy, making
it an appealing alternative to classical time-differencing integrators (cf. [6, 5]).

However, the practical application of (4) rests on the possibility of approxi-
mating efficiently the exponential propagator ϕ(∆tHL)v, where v ∈ RN . To this
aim, we adopt the Real Leja Points Method (shortly ReLPM), recently proposed
in the framework of FD spatial discretization of advection-diffusion equations [5],
and extended to FE in [2]. Given a matrix A and a vector v, the ReLPM ap-
proximates the exponential propagator as ϕ(A)v ≈ pm(A)v, with pm(z) Newton
interpolating polynomial of ϕ(z)

pm(A) =
m∑

j=0

dj

j−1∏

k=0

(A− ξkI), m = 1, 2, . . . (5)

at a sequence of Leja points {ξk} in a compact subset of the complex plane
containing the spectrum (or the field of values) of the matrix A. Following [5,
2], an algorithm for the approximation of the advection-diffusion FE propaga-
tor ϕ(∆tHL)v can be easily developed, by means of Newton interpolation at
“spectral” Leja points. In the sequel, the compact subset used for estimating the
spectrum of HL in (4) will be an ellipse.

Algorithm ReLPM (Real Leja Points Method)

1. Input: HL, v, ∆t, tol
2. Estimate the spectral focal interval [α, β] for ∆tHL, by Gershgorin’s theorem
3. Compute a sequence of Fast Leja Points {ξj} in [α, β] as in [1]
4. d0 := ϕ(ξ0), w0 := v, p0 := d0w0, m := 0
5. while eLeja

m := |dm| · ‖wm‖2 > tol

(a) z := HLwm

(b) wm+1 := ∆t z− ξmwm

(c) m := m+ 1
(d) compute the next divided difference dm
(e) pm := pm−1 + dmwm

6. Output: the vector pm : ‖pm − ϕ(∆tHL)v‖2 ≈ eLeja
m ≤ tol

The ReLPM algorithm turns out to be quite simple and efficient. Indeed, being
based on two-term vector recurrences in real arithmetic, its storage occupancy
and computational cost are very small, already with one processor. For imple-
mentation details not reported here, we refer to [5].

2.1. Parallel ReLPM (Real Leja Points Method). A standard data-parallel
implementation of ReLPM has been performed. The cost of computing the Leja
points is negligible with respect to the rest of the algorithm ([1]) and hence
we decided that every processor performs step 3 separately, without exchanging
data. To perform an efficient parallel implementation of the ReLPM we choose to
partition the matrix HL by rows and the vectors involved in algorithm ReLPM
consequently. In this way the daxpy operations in 4, 5b and 5e are performed
without any communication among processors. Moreover, estimation of the focal
interval (step 2) and computation of the 2-norm of a vector (to check the exit
test) needs that the processors exchange only a scalar (the result of their local
computation). The matrix vector product of step 5a requires the processors to
communicate a number of elements of vector wm. We employed the parallel
sparse matrix vector routine, successfully experimented in [4], which will be
described in 3.3.

3 Parallel implementation of Crank-Nicolson

3.1. Crank-Nicolson (CN) Method. Crank-Nicolson (CN) is a robust method,
widely used in engineering applications, and a sound baseline benchmark for any
advection-diffusion solver. In the case of the relevant ODEs system (2) (with sta-
tionary b), its variable step-size version writes as

(
P − ∆tk

2
H

)
uk+1 =

(
P +

∆tk
2
H

)
uk+∆tk b, k = 0, 1, . . . , u0 = c0 , (6)

where, for estimation of the local truncation error and step-size control, we
have used standard finite-difference approximation of the third derivatives in
‖...c (tk)‖2∆t3k < 12 tol.

The large and sparse linear system in (6) is solved the BiCGstab iterative
method [9], preconditioned at each step, since the system matrix depends on
∆tk and hence varies from step to step. To accelerate the iterative solver, we
consider the “approximate inverse preconditioners”. They explicitly compute an
approximation to A−1 and their application needs only matrix vector products,
which are more effectively parallelized than solving two triangular systems, as in
the ILU preconditioner. We selected the FSAI (Factorized Sparse Approximate
Inverse) preconditioner proposed in [7], whose construction is more suited to
parallelization than other approaches [3].

3.2. FSAI Preconditioning. Let A be a symmetric positive definite matrix
(SPD) and A = LAL

T
A be its Cholesky factorization. The FSAI method gives an

approximate inverse of A in the factorized form H = GTLGL, where GL is a sparse
nonsingular lower triangular matrix that approximates L−1

A . To constructGL one
must first prescribe a selected sparsity pattern SL ⊆ {(i, j) : 1 ≤ i 6= j ≤ n},
such that {(i, j) : i < j} ⊆ SL, then a lower triangular matrix ĜL is computed
by solving the equations (ĜLA)ij = δij , (i, j) 6∈ SL. The diagonal entries of

ĜL are all positive. Defining D = [diag(ĜL)]−1/2 and setting GL = DĜL, the
preconditioned matrix GLAG

T
L is SPD and has diagonal entries all equal to 1.

The extension to the nonsymmetric case is straightforward; however the solv-
ability of the local linear systems, and the nonsingularity of the approximate
inverse, are only guaranteed if all the principal submatrix of A are non singular
(which is the case, for instance, if A + AT is SPD). In the nonsymmetric case
two preconditioner factors, GL and GU , must be computed. We limit ourselves
to nonsymmetric matrices with a symmetric nonzero pattern (which is the com-
mon situation in matrices arising from FE discretization of PDEs), and set the
sparsity patterns for GU factor as SL = STU . The preconditioned matrix reads
D = GLAGUD

−1, with D = diag(GL) = diag(GU).

We set the sparsity patterns of the lower and upper triangular factors to
allow nonzeros corresponding to nonzeros in the lower and upper triangular
part of A2, respectively. Next we perform a postfiltration step of the already
constructed factors by using a small drop–tolerance parameter ε. The aim is to
reduce the number of nonzero elements of the preconditioner, in order to decrease
the arithmetic complexity of the iteration phase together with the communica-
tion complexity of multiplying the preconditioner by a vector.

For deeper implementation and performance details of parallel FSAI the
author is referred to [3].

3.3. Efficient matrix-vector product. Following [4], we now briefly describe
our implementation of the matrix-vector product, which is tailored for applica-
tion to sparse matrices and minimizes data communication between processors.
Within the ReLPM or CN algorithms, the vector y = Bv has to be calculated
for B = A,GL, GU . Assume that the N ×N matrix B is uniformly partitioned
by rows among the p processors, so that n ≈ N/p rows are assigned to each
processor. The same is done for the vector v. The subset P r containing the

nonzero elements belonging to processor r can be subdivided into two disjoint
subsets P r1 = {bij ∈ P r, (i − 1)n + 1 ≤ j ≤ in} and P r2 = P r\P r1 . Define
the sets Crk , R

r
k of indices as: Crk = {j : bij ∈ P r2 , k = ((j − 1) div n) + 1} ;

Rrk = {i : bij ∈ P r2 , k = ((j − 1) div n) + 1}. Processor r has in its local memory
the elements of the vector v whose indices lie in the interval [(r − 1)n + 1, rn].
Before computing the matrix-vector product processor r: for every k such that
Rrk 6= ∅ sends to processor k the components of vector v whose indices belongs
to Rrk; gets from every processor k such that Crk 6= ∅, the elements of v whose
indices are in Crk . At this point every processor is able to complete locally its
part of the matrix-vector product.

4 Parallel experiments and results

4.1. Description of the test cases. We now discuss in detail two examples
(cf. [2]), concerning FE discretizations of 3D advection-dispersion models like (1).

Example 1. The domain is Ω = [0, 1] × [0, 0.5] × [0, 0.1], with a regular grid
of N = 161 × 81 × 41 = 534 681 nodes and 3 072 000 tetrahedral elements.
Here, φ ≡ 0 and c0 ≡ 1. Dirichlet boundary conditions are c = 0 on ΓD =
{0} × [0.2, 0.3] × [0, 1], while the Neumann condition ∂c/∂ν = 0 is prescribed
on ΓN = ∂Ω \ ΓD. The velocity is v = (v1, v2, v3) = (1, 0, 0), the transmissivity
coefficients are piecewise constant and vary by an order of magnitude depending
on the elevation of the domain, αL(z) = αT(z) ∈ {0.0025, 0.025}.

Example 2. Same problem as of Example 1. However, the domain is discretized
with a regular grid of N = 161×81×161 ≈ 2.1×106 nodes and about 12 millions
of tetrahedral elements. Matrix of discretization HL has roughly 2.1×106 rows
and 3.1×107 nonzero elements.

In these examples the boundary conditions and vanishing sources lead to a zero
steady state. The two integrators are employed on a time interval which produces
a decrease of two orders of magnitude of the initial solution norm. While for CN
the local time-step is selected adaptively, in order to guarantee a local error
below the given tolerance, for the exponential integrator there is no restriction
on the choice of ∆tk, since it is exact for autonomous linear systems of ODEs.
To follow with some accuracy the evolution of the solution, we propose as in [5]
to select the local time-step in (4) in such a way that the relative variation of
the solution be smaller than a given percentage η, that is

‖ck+1 − ck‖2 ≤ η · ‖ck‖2, 0 < η < 1 . (7)

If condition (7) is not satisfied, the time step ∆tk is halved and ck+1 recomputed;
if it is satisfied with η/2 instead of η, the next time-step ∆tk+1 is doubled.
Clearly, smaller values of η allow better tracking of the solution.

4.2. Parallel programs and System’s architecture The parallel programs
are fortran 90 message passing codes, written using the MPI standard [8]. The

message passing programming model is a distributed memory model with ex-
plicit control parallelism. Message passing codes written in MPI are obviously
portable and should transfer easily to clustered SMP systems, which are grad-
ually becoming more prominent in the HPC market. We run the codes on two
supercomputers located at the CINECA Supercomputer center of Bologna, Italy
(http://www.cineca.it).

IBM SP5 supercomputer, an IBM SP cluster 1600, made of 64 nodes p5-575
interconnected with a pairs of connections to the Federation HPS (High Pefor-
mance Switch). Globally the machine has 512 IBM Power5 processors, capable
of 4 double precision floating point operations per clock cycle, and 1.2 TBs of
memory. Each microprocessor is supported by 36 MB of Level 3 cache. The peak
performance of SP5 is 3.89 Tflops. Each p5-575 node contains 8 SMP processors
POWER5 at 1.9 GHz, with 16GB of memory. The HPS switch is capable of a
bandwidth of up to 2GB/s unidirectional.

IBM Linux Cluster (CLX), made of 512 2way IBM X335 nodes. Each com-
puting node contains 2 Xeon Pentium IV processors. All the compute nodes have
2GB of memory (1GB per processor). Most processors of CLX are Xeon Pentium
IV at 3.06 GHz with 512KB of L2 cache and the remaining ones, bought at the
beginning of 2005, are Xeon Pentium IV EM64T at 3.00GHz with 1024KB of L2
cache. All the CLX processors are capable of 2 double precision floating point
operations per cycle, using the INTEL SSE2 extensions. All the nodes are inter-
connected to each other through a Myrinet network (http://www.myricom.com),
capable of a maximum bandwidth of 256MB/s between each pair of nodes. The
global peak performance of CLX is of 6.1 TFlops. Parallel programming on the
CLX is mainly based on the MPICH-GM version of MPI (myrinet enabled MPI).

4.3. Results concerning Example 1. We show in this section the timings of
the two MPI codes when solving the problem described in Example 1. In the SP5
machine the running times were obtained by using the nodes in dedicated mode,
hence reserving to our own use the entire node (8 processors) even to measure
CPU times with 1,2, and 4 processors. We did not take any advantage of shared
memory inside the node. In the CLX cluster only one of the two processors in
each node was used, to optimize memory accesses performance.

CN has been run with variable stepsize, leading to 479 time steps to complete
the simulation. To avoid the cost of constructing the FSAI preconditioner at
each time-step, we chose to compute it selectively, depending on the variation of
∆tk. Besides, an improved preconditioning strategy (mixed) is proposed which
consists in using Jacobi for the (well-conditioned) first steps, and FSAI for the
remaining. The switch between the two accelerators takes place the next timestep
after the solver first employs a number of iterations larger than a fixed value (40).
BiCGstab iterations are stopped when the residual rk satisfies ‖rk‖ ≤ 10−4 ‖b‖.
We report in Tables 1 and 2 the results of the codes running on the SP5 with
a number o processors p = 1, · · · , 16. As for CN the number of BiCGstab itera-

Table 1. Timings and speedups for Example 1 solved with CN with BiCGstab acce-
lerated by diagonal and mixed preconditionings on the IBM SP5.

Diagonal mixed ε = 0.05

p iter Tp Tsol CPU Sp iter Tp Tsol CPU Sp
1 36224 19.8 5765.7 5872.2 14694 180.6 3870.7 4137.0
2 36140 10.1 2911.36 2968.5 2.0 14653 94.3 1907.0 2048.4 2.0
4 36382 4.4 1040.18 1078.5 5.4 14696 46.9 813.4 878.0 4.7
8 36196 1.7 471.4 480.8 12.2 14689 23.7 409.6 440.4 9.4

16 36276 0.9 254.5 260.5 22.5 14665 12.6 202.6 226.5 18.3

tions (iter), and the CPU times for computing the preconditioner (Tp), for the
iterative solver (Tsol) and the overall CPU time are given, whereas for ReLPM
we provide the number of steps, the number of total inner iterations (iter) and
the overall CPU time. The mixed preconditioning strategy results in a reduc-
tion of number of linear iterations and CPU time with respect to the diagonal
preconditioner.

The ReLPM has been run using η = 0.02 and 0.05, with similar performances.
Obviously, the value η = 0.02 allows a better tracking of the solution.

Table 2. Timings and speedups for Example 1 solved by parallel ReLPM on the IBM
SP5.

η = 0.02 η = 0.05
p Steps iter CPU Sp Steps iter CPU Sp
1 239 17332 1282.2 98 18201 1343.3
2 239 17332 634.9 2.0 98 18201 663.2 2.0
4 239 17332 228.9 5.6 98 18201 237.1 5.7
8 239 17332 108.9 11.8 98 18201 113.4 11.8

16 239 17332 58.2 22.1 98 18201 63.1 21.3

In Table 3 we report the summary of the results of the same runs on the CLX
machine. Here, the speedup values are between 11 and 16 hence yielding a par-
allel efficiency of at least 70% on 16 processors. The timings results demonstrate

Table 3. Summary of results on the CLX machine.

Crank Nicolson ReLPM
Diagonal mixed η = 0.02 η = 0.05

p CPU Sp CPU Sp CPU Sp CPU Sp
1 8771.9 6484.1 1627.1 1425.7

16 810.2 10.8 552.8 11.7 99.7 16.3 119.2 11.9

that both codes scale well with increasing number of processors. Moreover, they
show a superspeedup when using more than 2 processors due to cache effects,
since only for p ≥ 4 the local matrix resides entirely in the Level 3 cache when
performing the matrix vector product.

4.4. Results concerning Example 2. As in the previous example, CN has
been run with variable stepsize, leading to 479 time steps to complete the sim-
ulation. We used the mixed preconditioning strategy and set the limit number
for Jacobi preconditioning to 60 iterations. The same exit test as in Example 1
was used.

Table 4. Timings and speedups for Example 2 solved with CN accelerated with the
mixed preconditioner and ReLPM with η = 0.02 on the SP5. Symbol † stands for “out
of memory”. The speedups for CN have been computed as S∗p = 8 ∗ T8/Tp.

Crank Nicolson ReLPM
mixed ε = 0.1 η = 0.02

p iter Tp Tsol CPU S∗p steps iter CPU Sp
1 † † † † 238 17710 5308.2
2 † † † † † 238 17710 2672.6 2.0
4 † † † † † 238 17710 1342.2 4.0
8 18050 62.9 2337.0 2453.7 8.0 238 17710 661.4 8.0

16 18006 31.8 1020.0 1073.8 18.3 238 17710 237.2 22.4
32 18105 16.6 433.5 457.8 42.9 238 17710 132.1 40.2
64 18086 10.4 250.2 267.9 73.3 238 17710 66.4 79.9

We report in Table 4 the timings concerning Example 2 on the SP5 with
p = 1, · · · , 64. As for CN, the code could not run for p = 1, 2 and 4. This
is so because the limit of 1.667 GB of available memory of the SP5 nodes is
not sufficient to hold the local system and preconditioner matrices when less
than 8 processors are used. As in the previous example, both codes scale well
with increasing number of processors again achieving a superspeedup for p ≥ 16
due to cache effects. We recall that both examples rely on the same differential
problem; however the discretization of Example 2 is made on a finer grid, which
yields an algebraic problem roughly four times larger than that of Example 1.
We note that CN is on the average four times slower than our ReLPM.

2 4 8 16 32 64 128
Number of processors

2

4

8

16

32

64

128

sp
ee

du
p

Leja − CLX
Leja − SP5
CN − CLX
CN − SP5
Ideal

Fig. 1. Speedups vs p for ReLPM and CN on the SP5 and CLX supercomputers.

The summary of the performance results are reported in Figure 4. For ReLPM
on the SP5 we obtain perfect speedups up to 8 processors. For p > 8 the curves of
both CN and ReLPM are above that of the ideal speedup. Figure 4 demonstrates
that the scaling of the codes in the CLX machine decreases when using more
than 32 processors. We think that a potential source of this poor scaling in the
CLX machine is the smaller bandwidth and higher latency of the interconnection
network with respect to the HPS of the SP5 machine.

5 Conclusions

A parallel implementation of two algorithms for the solution of advection-diffusion
equations on 3D domains has been proposed. Parallelization of ReLPM revealed
almost straightforward, being based on matrix-vector products and not requir-
ing linear system solutions. The CN solver has been carefully parallelized, with
special emphasis on the selection of an efficient parallel preconditioner. Results
on two supercomputers in the solution of a problem of more than 2 million un-
knowns show the very good scalability of the two codes, enhancing at the same
time the efficiency of ReLPM both in terms of CPU time and memory occupancy.

References

1. J. Baglama, D. Calvetti, and L. Reichel. Fast Leja points. Electron. Trans. Numer.
Anal., 7:124–140, 1998.

2. L. Bergamaschi, M. Caliari, and M. Vianello. The ReLPM exponential integrator
for FE discretizations of advection-diffusion equations. In M. Bubak, et al., editors,
ICCS 2004, Proceedings, Part IV, LNCS 3036, pages 434–442. Springer, 2004.

3. L. Bergamaschi and A. Mart́ınez. Parallel acceleration of Krylov solvers by fac-
torized approximate inverse preconditioners. In M. Daydè et al., editor, VECPAR
2004, LNCS 3402, pages 623–636, Springer, 2005.

4. L. Bergamaschi and M. Putti. Efficient parallelization of preconditioned conjugate
gradient schemes for matrices arising from discretizations of diffusion equations.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing, March, 1999. (CD–ROM).

5. M. Caliari, M. Vianello, and L. Bergamaschi. Interpolating discrete advection-
diffusion propagators at spectral Leja sequences. J. Comput. Appl. Math., 172(1):79–
99, 2004.

6. M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems
of differential equations. SIAM J. Sci. Comput., 19(5):1552–1574, 1998.

7. L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse pre-
conditionings I. Theory. SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

8. MPI Forum. MPI: A message passing interface standard, 1995. also available online
at http://www.mpi-forum.org/.

9. H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
13(2):631–644, 1992.

