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Abstract

In his paper “Lagrange interpolation on Chebyshev points of two variables” (J. Approx. Theor. 87,
220–238, 1996), Y. Xu proposed a set of Chebyshev like points for polynomial interpolation in the square

[−1, 1]2, and derived a compact form of the corresponding Lagrange interpolation formula. We inves-
tigate computational aspects of the Xu polynomial interpolation formula like numerical stability and
efficiency, the behavior of the Lebesgue constant, and its application to the reconstruction of various test
functions.

AMS Subject Classifications: 65D05.

Keywords: Bivariate polynomial interpolation, Xu points, Lagrange interpolation formula, Lebesgue
constant.

1. Introduction

The problem of choosing good nodes on a given compact set is a central one in
polynomial interpolation. As is well-known, the problem is essentially solved in one
dimension (all good nodal sequences for the sup-norm are asymptotically equidis-
tributed with respect to the arc-cosine metric), while in several variables it is still
substantially open. Even the basic question of unisolvence of a given set of interpo-
lation points is by no means simple, and received special attention in the literature
of the last twenty years, cf., e.g. [1], [16], and the survey paper [6]. The same could
be said concerning theoretical analysis of the Lebesgue constant, also in the case of
the immediate bivariate generalization of one dimensional compact intervals, i.e.,
squares and rectangles. Another weak point in non tensor-product interpolation is
given by a substantial lack of computational efficiency of the interpolation formulas.
Improvements have been recently made on general purpose Lagrange and Newton
like formulas, cf., e.g. [10], [11], but the problem is still not completely solved.

Recently [3], we studied numerically various nodal sets for polynomial interpola-

tion of degree n (n even) in [−1, 1]2, which are equidistributed with respect to the
Dubiner metric (a multivariate analog to the arc-cosine metric, cf. [5]). The most
promising set, termed Padua points, experimentally turned out to be unisolvent

and gave a Lebesgue constant growing like log2(n). However, the interpolation was
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constructed by solving the corresponding Vandermonde system, which means a
O(N3) complexity (N being the dimension of the underlying full polynomial space,
i.e., N = (n + 1)(n + 2)/2), plus a O(N) complexity for each pointwise evaluation
of the interpolant.

A very appealing alternative is given by the compact interpolation formula at
Chebyshev like points of two variables, proposed some years ago by Y. Xu [15].
Even though the nodal set requires to work in a subspace V2

n of the full polynomial
space P

2
n, with P

2
n−1 ⊂ V2

n ⊂ P
2
n, there is theoretical unisolvence, and the Lebesgue

constant grows (experimentally) again like log2(n). Moreover, the computational
complexity of the stabilized formula can be bounded between c1N ∼ c1n

2/2 and

c2N
3/2 ∼ c2n

3/2 flops (N being here the dimension of V2
n ,N = dimV2

n = n(n+2)/2),
for each pointwise construction and evaluation of the interpolant, and in practice
remains close to the lower bound (linear in the dimension, i.e., quadratic in the
degree).

In the next section, we discuss how to implement in an efficient and stable way the Xu
interpolation formula. In Sect. 3, we show numerically that the Lebesgue constant

of the Xu interpolation operator grows like (2/π log(n+ 1))2, which corresponds
to the growth of the Lebesgue constant of tensor-product Chebyshev interpolation
and of interpolation at Padua points [3]. Finally, in Sect. 4, we apply the Xu interpo-
lation formula to the reconstruction of some test functions with different degrees of
regularity, comparing the interpolation errors with those of polynomial interpola-
tion at tensor-product Chebyshev, (extended) Morrow-Patterson and Padua points
(cf. [7], [14], [3]).

2. Implementation of the Xu Interpolation Formula

We start by recalling briefly the construction of the Xu interpolation formula of

degree n on the square [−1, 1]2. In what follows we restrict to even degrees n, in
order to compare the present with our previous results (for more details, see [15],
[3]). Considering the Chebyshev-Lobatto points on the interval [−1, 1]

zk = zk,n = cos
kπ

n
, k = 0, . . . , n, n = 2m, (1)

the Xu interpolation points on the square are defined as the two-dimensional
Chebyshev array XN = {xr,s} of dimension N = n(n+ 2)/2{

x2i,2j+1 = (z2i , z2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m− 1 ,
x2i+1,2j = (z2i+1, z2j ), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m .

(2)

The Xu interpolant in Lagrange form of a given function f on the square [−1, 1]2

is

LXu
n f (x) =

∑
xr,s∈XN

f (xr,s)�n(x, xr,s), �n(x, xr,s) := K∗
n(x, xr,s)

K∗
n(xr,s , xr,s)

, (3)
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where the polynomials K∗
n(·, xr,s) are given by

K∗
n(x, xr,s) := 1

2

(
Kn(x, xr,s)+Kn+1(x, xr,s)

) +

−1
2
(−1)r (Tn(x1)− Tn(x2)) ; (4)

here x1, x2 are the coordinates of the generic point x = (x1, x2) and Tn is the
Chebyshev polynomial of the first kind of degree n, Tn(x) = cos(n arccos x). In
particular when x = xr,s (cf. [15, formula (2.18)])

K∗
n(xr,s , xr,s) = 1

2

(
Kn(xr,s , xr,s)+Kn+1(xr,s , xr,s)

) − 1 . (5)

It is worth noticing that in formulas (4) and (5) we corrected two misprints appearing
in [15, formula (2.15)] and [15, formula (2.18)], respectively: the correct indexes in
the sum on the right hand sides are n and n+1 instead of n and n−1, and moreover
the Chebyshev polynomials of the first kind in (4) are not scaled.

The polynomials Kn(x, y) can be represented in the form

Kn(x, y) = Dn(θ1 + φ1, θ2 + φ2)+Dn(θ1 + φ1, θ2 − φ2)

+Dn(θ1 − φ1, θ2 + φ2)+Dn(θ1 − φ1, θ2 − φ2) ,

x = (cos θ1, cos θ2), y = (cosφ1, cosφ2) , (6)

where the function Dn is defined by

Dn(α, β) = 1
2

cos((n− 1/2)α) cos(α/2)− cos((n− 1/2)β) cos (β/2)
cosα − cosβ

. (7)

As shown in [15], the valuesK∗
n(xr,s , xr,s) are explicitly known in terms of the degree

n, that is

K∗
n(xr,s , xr,s) =



n2

{
r = 0 or r = n, s odd

s = 0 or s = n, r odd

n2/2 in all other cases .

(8)

It is worth saying that the previous formula for K∗
n(xr,s , xr,s) corrects a misprint

in [15, formula (2.16)], concerning the cases r = n and s = n.

Observe that this constructive approach yields immediately unisolvence of the inter-

polation problem, since for any given basis of the underlying polynomial space V2
n

the corresponding Vandermonde system has a solution for every N -dimensional
vector {f (xr,s)}, and thus the Vandermonde matrix is invertible.

Rearranging (7) in the case that cos(α) = cos(β), we virtually have at hand an
interpolation formula with pointwise evaluation cost O(N). However, formula (7) is
numerically ill-conditioned when cos(α) ≈ cos(β), being like a first divided difference,
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and thus has to be stabilized (see Table 1). A stable formula to compute Dn can be
obtained by simple trigonometric manipulations. In fact, we can write

Dn(α, β) = 1
4

(
cos nα − cos nβ

cosα − cosβ
+ cos(n− 1)α − cos(n− 1)β

cosα − cosβ

)

= 1
4

(
sin nφ sin nψ

sin φ sinψ
+ sin(n− 1)φ sin(n− 1)ψ

sin φ sinψ

)

= 1
4

(
Un−1(cosφ)Un−1(cosψ)+ Un−2(cosφ)Un−2(cosψ)

)
, (9)

where

φ = α − β

2
, ψ = α + β

2

and Un denotes the usual Chebyshev polynomial of the second kind. Formula (9)
is a stabilized version of (7) for the computation of Dn(α, β), where the ratio of
differences does not appear explicitly. The Chebyshev polynomial of the second
kind Un has the trigonometric representation Un(cos θ) = sin(n+ 1)θ/ sin θ , which
is however numerically ill-conditioned at integer multiples of π , θ = kπ, k �= 0.
On the other hand, as it is well-known, the polynomials Un can be computed by the
three-term recurrence relation{

U0(cos θ) = 1, U1(cos θ) = 2 cos θ,

Un(cos θ) = 2 cos θUn−1(cos θ)− Un−2(cos θ), n ≥ 2 .
(10)

Such a recurrence is stable for any θ , by paying the price of a O(n) instead of O(1)
cost for each evaluation of Dn(α, β).

Table 1. Computation of Dn(0, β), as β → 0, for n = 4, 8 with formulae (7) and (9) (NAN = not
a number = 0/0)

β D4 unstable D4 stable D8 unstable D8 stable

0.1E + 01 0.198154E + 01 0.198154E + 01 0.756801E + 00 0.756801E + 00
0.1E + 00 0.618528E + 01 0.618528E + 01 0.269450E + 02 0.269450E + 02
0.1E − 01 0.624935E + 01 0.624935E + 01 0.282367E + 02 0.282367E + 02
0.1E − 02 0.624999E + 01 0.624999E + 01 0.282499E + 02 0.282499E + 02
0.1E − 03 0.625000E + 01 0.625000E + 01 0.282500E + 02 0.282500E + 02
0.1E − 04 0.625000E + 01 0.625000E + 01 0.282500E + 02 0.282500E + 02
0.1E − 05 0.624999E + 01 0.625000E + 01 0.282499E + 02 0.282500E + 02
0.1E − 06 0.625341E + 01 0.625000E + 01 0.282469E + 02 0.282500E + 02
0.1E − 07 0.678905E + 01 0.625000E + 01 0.278910E + 02 0.282500E + 02
0.1E − 08 0.111111E + 00 0.625000E + 01 0.111111E + 00 0.282500E + 02
0.1E − 09 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 10 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 11 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 12 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 13 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 14 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 15 NAN 0.625000E + 01 NAN 0.282500E + 02
0.1E − 16 NAN 0.625000E + 01 NAN 0.282500E + 02
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At this point, we can compute the complexity of the pointwise evaluation of the
Xu interpolation formula (3) via (9)–(10). First, the evaluation ofK∗

n(x, xr,s), which
involves four evaluations of Dn and of Dn+1 via Kn and Kn+1, respectively (cf. (4)
and (6)), costs about 2n × 4 = 8n flops, since Dn and Dn+1 with the same argu-
ments can be computed together using the recurrence (10) once. Since this has to
be done for every interpolation point, the dominant term in the final complexity for

the evaluation of LXu
n f (x) is 8nN ∼ 4n3 flops.

In order to reduce the evaluation cost of the interpolant, one might think to apply
a hybrid strategy in the computation of Dn(α, β), that is formula (7) when |cosα −
cosβ| is not too small, say above a given threshold δ, and the stabilized formula (9)
along with the recurrence (10) otherwise. However, we have numerical evidence that
choosing δ < 2, which implies that also formula (7) is used, then the interpolation
method fails. This can be seen in Table 2, where we show the interpolation errors and
the use percentage of stabilized formula (9)–(10) for n = 20 on a uniform 100 × 100
grid for the smooth function f (x1, x2) = cos (x1 + x2), corresponding to different
choices of δ. The percentages in the last column have been rounded, except for the
first and the last which are exact. Notice that when only the stabilized formula is
applied (i.e., δ = 2) the error is close to machine precision, while in all other cases
we have a dramatic loss of accuracy.

An effective way to reduce the computational cost of the stabilized formula (9), still
preserving high accuracy, is computing the Chebyshev polynomials of the second
kind Un by the three-term recurrence relation (10) only when the representation
Un(cos θ) = sin(n+ 1)θ/ sin θ (whose cost is O(1) in n and θ ) is ill-conditioned, say
for |θ − kπ | ≤ ε.

In Table 3, we compare the interpolation errors for the same example above with
different choices of ε. We can see that with ε = 0.01, which involves the recur-
rence (10) for less than 1%, we have in practice no loss of accuracy, while for ε = 10−5,
where the recurrence is not used at all, we have an error of about 10−11. In this exam-
ple, for ε ≤ 0.01, the algorithm uses almost only the trigonometric representation
of Un(cos θ) and thus its computational cost is, in practice, linear in the dimension
N , i.e., quadratic in the degree n.

It is worth observing that this behavior is not peculiar to the example just described.
Indeed, in practice we have computed the average of the use percentage of the

Table 2. Interpolation errors of f (x1, x2) = cos (x1 + x2) on a uniform 100 × 100 grid at degree n = 20
(last column: use percentage of stabilized formula (9)–(10))

δ ‖LXu
20 f − f ‖∞ % stab.

1.0E − 10 1.9E + 00 0
1.0E − 05 1.9E + 00 0.003
1.0E + 00 1.9E − 02 63.50
1.5E + 00 1.2E − 02 83.51
1.8E + 00 1.1E − 02 93.81
2.0E + 00 6.0E − 15 100
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Table 3. Interpolation errors of f (x1, x2) = cos (x1 + x2) on a uniform 100 × 100 grid at degree n = 20
(last column: use percentage of recurrence relation (10))

ε ‖LXu
20 f − f ‖∞ % recurr.

1.0E − 05 7.0E − 12 0
1.0E − 04 8.6E − 13 0.004
1.0E − 03 1.6E − 13 0.05
1.0E − 02 1.6E − 14 0.64
1.0E − 01 7.1E − 15 6.37
1.0E + 00 6.4E − 15 63.65
1.0E + 01 6.0E − 15 100

recurrence in evaluating all the Lagrange basis polynomials on a certain uniform
grid. If we take random, uniformly distributed evaluation points, such a percent-
age becomes a random variable (function of the uniform random variable), whose
expectation, say η, depends on the threshold ε but not on the degree n. This is clearly
seen in Tables 4 and 5, where it is shown that the averages up to one million random
points converge to values close to those obtained above on a uniform 100 × 100
grid, and that these values do not depend on degree n.

Now, the evaluation of K∗
n(x, xr,s) using only the trigonometric representation of

Un(cos θ) costs about 8 × 4 = 32 evaluations of the sine function, recalling that Dn
and Dn+1 appear with the same arguments in (4), (6). Denoting by csin the average
evaluation cost of the sine function (which actually depends on its internal imple-
mentation), the average complexity for the evaluation of the Xu interpolant formula
LXu
n f (x) is of the order of

C(n, ε) := 8nτN + 32csin(1 − τ)N ∼ 4n3τ + 16csin(1 − τ)n2 flops , (11)

Table 4. Averages of the use percentage of recurrence relation (10), up to one million uniform random
points, in evaluating all the Lagrange basis polynomials at degree n = 20

# of random points % recurr. (averages)

ε = 0.01 ε = 0.1

1.0E + 01 0.50 7.00
1.0E + 02 0.75 6.25
1.0E + 03 0.69 6.27
1.0E + 04 0.63 6.34
1.0E + 05 0.64 6.36
1.0E + 06 0.64 6.37

Table 5. Average use percentage η of recurrence relation (10), in evaluating all the Lagrange basis
polynomials at different degrees

degree n percentage η

ε = 0.01 ε = 0.1

20 0.64 6.37
40 0.64 6.37
80 0.64 6.37
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Table 6. CPU times (seconds) for the evaluation of all the Lagrange basis polynomials on a uniform
100 × 100 grid

% recurr. n = 20 n = 30 n = 40 n = 50 n = 60

0.64 (ε = 0.01) 5.43 11.81 20.64 31.99 45.82
100 (ε = 10) 3.79 9.72 20.38 36.53 59.33

where τ = η/100. Considering the experimental value csin = 10 (obtained with
GNU Fortran, see also [13]), we can conclude that, for ε ≤ 0.01 (i.e., τ ≤ 0.0064),
the size of the ratio C(n, ε)/N remains constant up to degrees of the order of hun-
dreds, that is in practical applications the computational cost can be considered
linear in the number N of points.

A more sophisticated implementation may take into account that, for low degrees,
the recurrence relation costs less than the trigonometric representation in evaluating
Un(cos θ). Comparing the dominant costs, the algorithm should use only the former

when 4n3 < 16csinn
2, i.e., n < 4csin.

Our Fortran implementation of the Xu interpolation formula resorts to all the tricks
just described, in particular the last with the experimental value csin = 10, i.e., a
threshold degree n = 40 (as confirmed by the numerical test reported in Table 6,
performed on an AMD Athlon 2800+ processor). The corresponding Fortran77
code is available at the web site http://www.math.unipd.it/∼marcov/software.html.

3. Numerical Study of the Lebesgue Constant

In this section we discuss another key feature of the Xu interpolation formula, that
is the behavior of its Lebesgue constant. First it comes easy to bound the Lebesgue

constant linearly in the dimension of the polynomial space V2
n , which already shows

that the Xu points are good candidates for interpolation purposes. Indeed, from the
well-known bound for Chebyshev polynomials of the second kind |Un(cos θ)| ≤ n+1
(cf. [4, p. 306]), we immediately have

|Dn(α, β)| ≤ 1
4
(n2 + (n− 1)2) (12)

which implies by (6)

|Kn(x, y)| ≤ n2 + (n− 1)2 . (13)

Hence, by means of the explicit representation (8) we get

|�n(x, xr,s)| =
∣∣∣∣ K

∗
n(x, xr,s)

K∗
n(xr,s , xr,s)

∣∣∣∣ ≤ (n+ 1)2 + 2n2 + (n− 1)2

n2
= 4 + 2

n2
. (14)

Defining, in the usual way, the Lebesgue function for the Xu interpolation points

λXu
n (x) :=

∑
xr,s∈XN

|�n(x, xr,s)| , (15)



318 L. Bos et al.

1
0.5

0
0.5

1

1

0.5

0

0.5

1
1

1.5

2

2.5

3

3.5

4

4.5

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

−

−

−

−

−
− − − − −

−
− −

−

Fig. 1. The N = 24 Xu points for n = 6 and the corresponding Lebesgue function λXu
6 (x)

we finally obtain the following bound of the Lebesgue constant

Xu
n := max

x∈[−1,1]2
λXu
n (x) ≤

(
4 + 2

n2

)
N ∼ 4N ∼ 2n2 . (16)

However, (16) is an overestimate of the actual Lebesgue constant. In fact, the
Lebesgue function turns out to be symmetric and seems to attain its maximum
at the four vertices of the square (see Fig. 1 for degree n = 6). This fact has been
confirmed by a wide set of numerical experiments, where we have maximized the
Lebesgue function λXu

n (x) up to degree n = 100 on a uniform 1000 × 1000 grid.

In Fig. 2, we compare the Lebesgue constant of Xu points up to degree n = 100 com-

puted as λXu
n (1, 1), with the least-square fitting function (0.95 + 2/π log(n+ 1))2

and the theoretical bound for tensor-product interpolation of degree n (cf. [2]), i.e.,

(1 + 2/π log(n+ 1))2. These computations give a sound basis for the following

0 10 20 30 40 50 60 70 80 90 100
0
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16
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(0.95+2/π log(n+1))2
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Fig. 2. The Lebesgue constant of Xu points up to degree 100
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Conjecture: The Lebesgue function λXu
n of Xu interpolation points can be bounded as

max
x∈[−1,1]2

λXu
n (x) = Xu

n � (2/π log(n+ 1))2, n → ∞ . (17)

Moreover, the maximum is attained at the four vertices of the square.

We stress finally that the Xu points are exactly equally spaced with respect to the

Dubiner metric [5], which, on the square � = [−1, 1]2, turns out to be µ�(x, y) =
max{|arccos x1 − arccos y1|, |arccos x2 − arccos y2|}. This fact confirms once more
the conjecture stated in [3]: “nearly optimal interpolation points on a compact �
are asymptotically equidistributed with respect to the Dubiner metric on �”.

4. Tests on Functions Interpolation

In this section we compare interpolation at Xu points (XU) with tensor-product
Chebyshev (TPC) interpolation, and interpolation at Morrow-Patterson (MP),
extended Morrow-Patterson (EMP) and Padua (PD) (cf. [3]) points on three test
functions with different degree of regularity, namely the Franke function

f1(x1, x2) = 3
4
e−

1
4 ((9x1−2)2+(9x2−2)2) + 3

4
e−

1
49 (9x1+1)2− 1

10 (9x2+1)

+1
2
e−

1
4 ((9x1−7)2+(9x2−3)2) − 1

5
e−((9x1−4)2+(9x2−7)2) ,

f2(x1, x2) = (x2
1 + x2

2 )
5/2 and f3(x1, x2) = (x2

1 + x2
2 )

1/2. The above mentioned set
of points for n = 16, that is MP, EMP, PD points, are displayed in Fig. 3 on the left
and for comparison on the right we display the corresponding Xu points.

For MP, EMP and PD points, the interpolant was constructed by solving the corre-
sponding Vandermonde system, whereas the Xu interpolant has been implemented
as described in Sect. 2 with ε = 0.01 (cf. Tables 3–5). To obtain an estimate of how the
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Fig. 3. Left: theN = 153 Morrow-Patterson (MP), extended Morrow-Patterson (EMP) and Padua (PD)
points for n = 16. Right: the N = 144 Xu points for n = 16
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interpolation errors grow, they have been computed, in infinity norm, on a uniform
control grid of 100 × 100 points. The results are collected in Tables 8–12. For TPC
points we have chosen as in [3] the sequence of degrees n = 24, 34, 44, 54 and, for
the other sets of points, the interpolation degrees have been chosen in such a way
that the dimension N of polynomial spaces, and thus the number of function eval-
uations, is as close as possible to the dimension of the tensor-product polynomial
spaces. The resulting sequence of degree is n = 34, 48, 62, 76.

In Table 7, we display the Lebesgue constants (rounded to the nearest integer) of MP,
EMP, PD and Xu points corresponding to the chosen degrees. As already observed,
PD and Xu points have the smallest Lebesgue constants, which are very close to

(1 + 2/π log(n+ 1))2; see Fig. 2 and [3]. We recall that, denoting by Lnf the inter-
polation polynomial of degree n on MP, or EMP or PD points, the interpolation
error can be estimated by

‖f − Lnf ‖∞,� ≤ (1 +n)En(f ), � = [−1, 1]2 , (18)

where En(f ) denotes, as usual, the best uniform approximation error to f on � by

polynomials in P
2
n. As for the Xu points, the corresponding polynomial space V2

n is

a subspace of P
2
n with P

2
n−1 ⊂ V2

n ⊂ P
2
n, from which we have En(f ) ≤ infp∈V2

n
‖f −

p‖∞,� ≤ En−1(f ) and thus the estimate

‖f − LXu
n f ‖∞,� ≤ (1 +Xu

n ) inf
p∈V2

n

‖f − p‖∞,� ≤ (1 +Xu
n )En−1(f ) . (19)

The rate of decay of En(f ) as n → ∞ depends on the degree of smoothness of f ,
in view of multivariate generalizations of Jackson’s theorem (cf. [8]).

Some comments on the results in Tables 8–12 are now in order. First, we observe
that in these examples, Xu interpolation errors are almost always very close to those

Table 7. Lebesgue constants (rounded to the nearest integer)

interp. pts. 34 48 62 76

MP 649 1264 2082 3102
EMP 237 456 746 1106
PD 11 13 14 15
XU 10 12 13 14

Table 8. Interpolation errors on [0, 1]2 for the Franke function

TPC 1.3E-03 2.6E-06 1.1E-09 2.0E-13
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 1.3E-03 2.6E-06 1.1E-09 2.0E-13
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 6.3E-04 1.3E-06 5.0E-10 5.4E-14
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 4.3E-05 3.3E-08 5.4E-12 1.9E-14
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 3.2E-05 4.7E-08 7.8E-12 1.9E-13
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964
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Table 9. Interpolation errors on [−1, 1]2 for the function f2(x1, x2) = (x2
1 + x2

2 )
5/2

TPC 6.0E-05 8.2E-06 1.8E-06 5.4E-07
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 1.8E-04 5.1E-05 1.9E-05 8.8E-06
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 6.5E-05 1.8E-05 6.7E-06 3.0E-06
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 3.6E-06 6.5E-07 1.8E-07 6.5E-08
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 7.1E-06 1.2E-06 3.4E-07 1.2E-07
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964

Table 10. Interpolation errors on [0, 2]2 for the function in Table 9

TPC 8.5E-09 1.7E-10 1.4E-11 1.1E-11
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 1.0E-08 3.8E-10 3.7E-11 2.3E-11
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 7.2E-09 2.6E-10 2.4E-11 8.6E-12
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 2.8E-09 9.3E-11 9.4E-12 6.4E-12
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 3.2E-09 1.1E-10 1.6E-11 4.5E-12
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964

Table 11. Interpolation errors on [−1, 1]2 for the function f3(x1, x2) = (x2
1 + x2

2 )
1/2

TPC 2.1E-01 1.1E-01 6.8E-02 4.6e-02
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 4.4E-01 4.4E-01 4.4E-01 4.4E-01
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 1.4E-01 1.4E-01 1.4E-01 1.4E-01
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 3.7E-02 2.7E-02 2.1E-02 1.7E-02
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 5.1E0-2 3.6E-02 2.8-02 2.3E-02
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964

of interpolations at PD points, and smaller than the errors given by the other sets of
points. Notice that on the functions f2 and f3, which have a singularity at the origin,
interpolation performs always better when the singularity is located at the corner of
the square, where all the five sets of points cluster by construction. Xu points exhibit
the worst behavior only in the test of Table 12, especially for high degrees: this may
be ascribed to the presence of a strong singularity (discontinuity of the gradient) at
the origin, around which more points of the other sets cluster.
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Table 12. Interpolation errors on [0, 2]2 for the function in Table 11

TPC 2.8E-03 5.8E-04 1.1E-04 8.9E-05
n, N = (n+ 1)2 24, 625 34, 1225 44, 2025 54, 3025

MP 8.8E-04 2.8E-04 2.6E-04 1.7E-05
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

EMP 8.3E-04 2.6E-04 2.1E-04 2.1E-05
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

PD 7.3E-04 3.7E-04 7.0E-06 4.6E-06
n, N = (n+ 1)(n+ 2)/2 34, 630 48, 1225 62, 2016 76, 3003

XU 9.4E-04 4.7E-04 2.8E-04 1.9E-04
n, N = n(n+ 2)/2 34, 612 48, 1200 62, 1984 76, 2964

4.1. Efficiency and Robustness

To support the efficiency and robustness of our implementation of the Xu inter-
polation formula, we did some comparisons with the MPI software by T. Sauer
(cf. [10], [11]). The MPI software is one of the most efficient and robust implementa-
tions of multivariate interpolation by polynomials via finite differences and is based
on the notion of blockwise interpolation. Calling XU our implementation of the Xu
interpolation formula, we compared the CPU times necessary to build the interpo-
lant and the interpolation errors for both XU and MPI on all our tests functions.
The tests were performed, as explained above, on a AMD Athlon 2800+ processor
machine, with both codes compiled using the optimization option -O3. The results
are collected in Tables 13–16. Furthermore, all tests with MPI, were done modifying
only the template file demo.cc to work with two-dimensional point sets. The target

Table 13. CPU times (in seconds) and interpolation errors on [0, 1]2 of XU and MPI for the Franke
function

n 20 30 40 50 60

XU 2.1 5.2 10.3 17.8 28.4
7.3E-03 3.6E-04 3.1E-06 1.8E-08 2.5E-11

MPI 0.6 Unsolv. Unsolv. Unsolv. Unsolv.
3.8E-02 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 14. CPU times (in seconds) and interpolation errors of MPI for the Franke function on different
domains by a change of variables and reordering the Xu points as Leja sequences

n 20 30 40 50 60

MPI 0.6 4.3 21.0 75.6 Unsolv.
[−1, 1]2 6.3E-03 3.5E-04 2.0E-01 3.8E-02 ∗ ∗ ∗

MPI 0.5 3.7 17.4 62.3 183.4
[−2, 2]2 6.4E-03 1.0E-02 2.7E+02 1.3E+14 1.9E+35

MPI-Leja 0.6 4.3 21.0 75.6 Unsolv.

[−1, 1]2 6.4E-03 3.5E-04 1.1E-04 2.0E-03 ∗ ∗ ∗



A Numerical Study of the Xu Polynomial Interpolation Formula 323

Table 15. CPU times (in seconds) and interpolation errors on [−1, 1]2 of XU and MPI for the function

f2(x1, x2) = (x2
1 + x2

2 )
1/2

n 20 30 40 50 60

XU 2.1 5.2 10.3 17.8 28.4
8.7E-02 5.8E-02 4.3E-02 3.5E-02 2.9E-02

MPI 0.6 4.3 20.8 74.8 Unsolv.
8.7E-02 5.8E-02 2.8E+00 4.7E+00 ∗ ∗ ∗

Table 16. CPU times (in seconds) and interpolation errors on [−1, 1]2 of XU and MPI for the function

f3(x1, x2) = (x2
1 + x2

2 )
5/2

n 20 30 40 50 60

XU 2.1 5.2 10.3 17.8 28.4
1.1E-04 1.3E-05 3.1E-06 1.0E-06 4.0E-07

MPI 0.6 4.3 21.0 75.3 Unsolv.
1.1E-04 1.3E-05 1.8E-03 4.8E-03 ∗ ∗ ∗

points on which we evaluate the interpolation errors were chosen as before, that is
a grid of 100 × 100 points on the reference square.

Remarks: We performed many experiments with different functions and square
domains, but all showed the same behavior: the MPI software works quite well,
both in terms of CPU times and interpolation errors, for small degrees n but for
higher degrees it becomes unstable (n = 40, 50) or unusable (n = 60). This has
been verified also applying stabilization techiniques for the divided differences (on
which the MPI software is ultimately based) like scaling the domain or reordering
the interpolation points as Leja sequences (cf. [9], [12]). See the details for the Franke
function in Tables 13 and 14. On the contrary, XU can suitably manage interpolation
up to very high degrees.

5. Conclusions and Future Works

In this paper, we investigated the numerical aspects of Xu interpolation formula
and, in particular, we obtained an efficient and stable formula for its computation
and tight numerical bounds of the growth of the associated Lebesgue constant. Our
numerical study shows that Xu interpolation gives almost the best one can do with
polynomials on the square. In fact, besides the very good behavior of its Lebesgue
constant (which grows like logarithm square of the degree), it can be implemented
by an algorithm which has in practice a linear cost in the number of interpolation
points (i.e., in the dimension of the underlying polynomial space).

However, important theoretical aspects have still to be faced. Supported by our
results, it would be interesting first to provide analytically a precise growth rate
of the Lebesgue constant and, as suggested by Fig. 1, prove theoretically that the
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maxima of the Lebesgue function are taken at the vertices of the square [−1, 1]2; see
the conjecture at the end of Sect. 3. As we already observed, in this way we could
simply restrict on finding an explicit formula for λXu

n (1, 1).
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