A splitting approach for the KP and the magnetic Schrödinger equation

Alexander Ostermann
University of Innsbruck, Austria

Joint work with Lukas Einkemmer, Marco Caliari, and Chiara Piazzola

Verona, April/May 2017
Outline

Korteweg–de Vries equation

Kadomtsev–Petviashvili equation

Magnetic Schrödinger equation
Korteweg–de Vries equation

KdV models waves on shallow water surfaces

\[ u_t + u_{xxx} + 6uu_x = 0 \]

water waves in channels; solitons
(J. Scott Russel, 1834; J. Boussinesq, 1877; D. Korteweg and G. de Vries, 1895)

**space discretization:** finite differences

time discretization:
explicit – CFL requires prohibitively small time steps
implicit – possible in 1d; geometric properties?

**Split KdV equation**

\[ u_t = Au + B(u) \]

into linear part \( Au = -u_{xxx} \) and nonlinearity \( B(u) = -6uu_x \)
Korteweg–de Vries equation, splitting

Split KdV equation

\[ u_t = -u_{xxx} - 6uu_x \]

Solve the linear dispersion equation

\[ u_t = -u_{xxx} \]

in Fourier space (FFT techniques) and Burgers equation

\[ u_t = -6uu_x \]

in physical space, e.g., by the method of characteristics

\[ w(\tau, x) = \tilde{w} = w_0(x - 6\tau \tilde{w}) \]

Abstract convergence analysis for Strang splitting: smooth initial data, exact flows, periodic b.c.

Burgers type nonlinearities

Many interesting equations in physics are of the form

\[ u_t = P(\partial_x)u + \alpha uu_x, \]

where \( P \) is a polynomial of \( \deg P \geq 2 \) and with \( \Re P(i\xi) \leq 0 \):

- Viscous Burgers equation:
  \[ u_t = u_{xx} + uu_x \]

- Korteweg–de Vries equation:
  \[ u_t = -u_{xxx} - 6uu_x \]

- Kawahara equation:
  \[ u_t = u_{xxxxx} - u_{xxx} + uu_x \]

Splitting: linear part \( Au = P(\partial_x)u \)

Burgers nonlinearity \( B(u) = \alpha uu_x \)

KP models the evolution of nonlinear, long waves of small amplitude with slow dependence on the transverse coordinate. (B. Kadomtsev and V. Petviashvili, Sov. Phys. Dokl., 1970)

Kadomtsev–Petviashvili equation

KP is a 2d model for nonlinear wave propagation

\[(\partial_t u + 6uu_x + \varepsilon^2 u_{xxx})_x + \lambda u_{yy} = 0\]

Description of long wavelength waves, where

\[\lambda = 1 \quad \text{(weak surface tension)} \quad \text{KP II model}\]
\[\lambda = -1 \quad \text{(strong surface tension)} \quad \text{KP I model}\]

In evolution form

\[\partial_t u + 6uu_x + \varepsilon^2 u_{xxx} + \lambda \partial_x^{-1} u_{yy} = 0\]

Soliton solutions; appearance of small scale oscillations.

Numerical comparisons (exponential integrators).
We split the KP equation into
\[ v_t = Av = -\varepsilon^2 v_{xxx} - \lambda \partial_x^{-1} v_{yy} \]
\[ w_t = B(w) = -6ww_x \]
and use Strang splitting on a regular spatial grid.

For the linear part, we use FFT (with regularized Fourier multiplier).

For the nonlinear advection part, we use the method of characteristics
\[ w(\tau, x, y) = w_1(x, y) = w_0(x - 6\tau w_1(x, y), y) \]
This equation is solved by a few fixed-point iterations; requires interpolation of \(w_0(\cdot, y)\).

Can be done in parallel (\(y\) is a parameter).
KP equation, exponential integrator

Alternative discretization by an exponential integrator (relying on the above splitting)

\[ u_{n+1} = e^{\tau A} u_n + \tau \varphi_1(\tau A) B(u_n) + \tau \varphi_2(\tau A) (B(U) - B(u_n)), \]

where

\[ U = e^{\tau A} u_n + \tau \varphi_1(\tau A) B(u_n) \]

The \( \varphi_i \) functions are given by the recurrence relation

\[ z \varphi_{k+1}(z) = \varphi_k(z) - \varphi_k(0), \quad \varphi_0(z) = e^z \]

Exponential integrators treat the advection explicitly and require a CFL condition.

Initial value \( u_0(x, y) = -\frac{1}{2} \partial_x \text{sech}^2 \left( \sqrt{x^2 + y^2} \right) \)

\[ \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^{11} \times 2^9 \text{ grid points for } (x, y) \]
Loss of exponential convergence

The **ninth degree** polynomial interpolation is approximately three times as costly as the cubic interpolation. Nevertheless, Strang splitting is still **twice as fast** compared to the exponential integrator of order 2.

\[ \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^9 \text{ grid points for } y, \quad \tau = 0.01 \]
Performance

Compare performance of splitting methods (order 2 and 4) with two exponential integrators.

\[ \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^{11} \times 2^9 \text{ grid points} \]

For \( d = 9 \) the fourth-order methods behave almost identically.
Conservation of mass: \( |m(t) - m(0)| \)

Total mass

\[
m(t) = \int_{\Omega} u(t, x, y) \, d(x, y)
\]

is conserved by exponential integrators.


\( \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^{11} \times 2^9 \) grid points, \( \tau = 0.01 \)

fine grid: \( 2^{13} \times 2^9 \)
Conservation of momentum

**KP has quadratic invariant**

\[ \int_{\Omega} u(t, x, y)^2 \, d(x, y) \]

\[ \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^{11} \times 2^9 \text{ grid points,} \quad \tau = 0.01 \]

fine grid: \( 2^{13} \times 2^9 \)
A last constraint

KP also satisfies the constraint \( \int_{-\infty}^{\infty} \partial_{yy} u(t, x, y) \, dx = 0 \) for all \( t > 0 \), even if the initial value does not.


\[ u_{no}(0, x, y) = \frac{1}{3} e^{-(x^2+y^2)/2}, \quad u(0, x, y) = \frac{3}{5} xe^{-(x^2+y^2)/2} \]

\[ \Omega = [-5\pi, 5\pi]^2, \quad \varepsilon = 0.1, \quad 2^{11} \times 2^9 \text{ grid points} \]

\[ KP, \quad T=0.4 \]

<table>
<thead>
<tr>
<th>step size</th>
<th>error (infinity norm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-02</td>
<td>1e-00</td>
</tr>
<tr>
<td>1e-01</td>
<td>1e-01</td>
</tr>
<tr>
<td>1e-02</td>
<td>1e-02</td>
</tr>
<tr>
<td>1e-03</td>
<td>1e-03</td>
</tr>
<tr>
<td>1e-04</td>
<td>1e-04</td>
</tr>
<tr>
<td>1e-05</td>
<td>1e-05</td>
</tr>
<tr>
<td>1e-06</td>
<td>1e-06</td>
</tr>
<tr>
<td>1e-07</td>
<td>1e-07</td>
</tr>
</tbody>
</table>

Alexander Ostermann, Innsbruck

A splitting approach for the KP and related equations
A three-term splitting

Linear Schrödinger equation in the presence of an electromagnetic field

\[ i\varepsilon \partial_t u = \frac{1}{2} (i\varepsilon \nabla + A)^2 u + V u, \quad u(0, x) = u_0(x). \]

After transformation with a Coulomb gauge

\[ i\varepsilon \partial_t u = -\frac{\varepsilon^2}{2} \Delta u + i\varepsilon A \cdot \nabla u + \frac{1}{2} |A|^2 u + V u, \quad u(0, x) = u_0(x). \]

Motivates a three-term splitting

\[ \partial_t u = (A + B + C)u, \quad u(0) = u_0 \]

with bounded operator \( B \) and unbounded operators \( A \) and \( C \).
Let $C$ and $A + C$ generate $C_0$ semigroups, and

$$
\| [A, C] e^{sA} u(t) \| \leq c_1 \\
\| Ce^{sA} Bu(t) \| \leq c_2 \\
\| C^2 e^{sA} u(t) \| \leq c_3 \\
\| Ce^{\sigma A} Ce^{s(A+C)} u(t) \| \leq c_4 \\
\| [A + C, B] e^{s(A+C)} u(t) \| \leq c_5 
$$


The following bound for the local error holds

$$
\| e^{\tau C} e^{\tau A} e^{\tau B} u(t) - u(t + \tau) \| \leq C \tau^2
$$

with a constant $C$ that does not depend on $t$ and $\tau$. 
Application to magnetic Schrödinger equation

Space discretization by a uniform grid.

Potential step is easily performed in physical space

\[ \partial_t u = \mathcal{B}u = -\frac{i}{\varepsilon} \left( \frac{1}{2} |A|^2 + V \right) u \]

Kinetic step can be handled analytically in Fourier space

\[ \partial_t u = \mathcal{A}u = \frac{i\varepsilon}{2} \Delta u \]

Advection step by method of characteristics and either interpolation or nonequispaced FFT

\[ \partial_t u = \mathcal{C}u = A \cdot \nabla u, \quad \nabla \cdot A = 0 \]
A one dimensional example

<table>
<thead>
<tr>
<th>$N$</th>
<th>interpolation of degree $p - 1$</th>
<th>Fourier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p = 2$</td>
<td>$p = 4$</td>
</tr>
<tr>
<td>128</td>
<td>mass</td>
<td>1.4e-01</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>0.13</td>
</tr>
<tr>
<td>256</td>
<td>mass</td>
<td>9.4e-02</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>0.13</td>
</tr>
<tr>
<td>512</td>
<td>mass</td>
<td>5.2e-02</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>0.16</td>
</tr>
<tr>
<td>1024</td>
<td>mass</td>
<td>1.6e-02</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>0.22</td>
</tr>
<tr>
<td>2048</td>
<td>mass</td>
<td>4.2e-03</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>0.36</td>
</tr>
</tbody>
</table>

**Table:** Error in mass conservation and CPU time (in seconds).
A two dimensional example

2d example with space dependent vector and scalar potentials, and $\varepsilon = 1$. Final time $T = 50$ and 1000 time steps.

<table>
<thead>
<tr>
<th>$N_1 = N_2$</th>
<th>interpolation of degree $p - 1$</th>
<th>Fourier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p = 4$</td>
<td>$p = 6$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>mass</td>
<td>1.0e-01</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>25.2</td>
</tr>
<tr>
<td>256</td>
<td>mass</td>
<td>6.9e-03</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>101.7</td>
</tr>
<tr>
<td>512</td>
<td>mass</td>
<td>4.3e-04</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>412.7</td>
</tr>
<tr>
<td>1024</td>
<td>mass</td>
<td>2.7e-05</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>1796</td>
</tr>
</tbody>
</table>

Table: Error in mass conservation and CPU time (in seconds).
A three dimensional example with NFFT

3d example with space dependent vector and scalar potentials, and $\varepsilon = 1$. Final time $T = 50$ and 1000 time steps.

Advection step with method of characteristics and nonequispaced FFT (standard parameters).

<table>
<thead>
<tr>
<th>$N_1 = N_2 = N_3$</th>
<th>mass error</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6.1e-13</td>
<td>5.6</td>
</tr>
<tr>
<td>32</td>
<td>8.2e-14</td>
<td>37.7</td>
</tr>
<tr>
<td>64</td>
<td>7.1e-13</td>
<td>396.5</td>
</tr>
<tr>
<td>128</td>
<td>1.3e-12</td>
<td>2986</td>
</tr>
</tbody>
</table>

Table: Error in mass conservation and CPU time (in seconds).
M. Caliari, A. Ostermann, and C. Piazzola. A splitting approach for the magnetic Schrödinger equation.
https://arxiv.org/abs/1604.08044

L. Einkemmer, A. Ostermann. A splitting approach for the Kadomtsev-Petviashvili equation.
https://arxiv.org/abs/1407.8154