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Plasma — the fourth state of matter

99% of the visible matter in the universe is made of plasma

Source: Hubble telescope Source: Luc Viatour / www.Lucnix.be
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Vlasov equation

Evolution of (collisionless) plasma is described by
Oif(t,x,v)+ v -Vif(t,x,v)+ F-V,f(t,x,v)=0,

where
f ... particle density function X ... position

v ... velocity F ... force field

Coupled to the self-consistent electric (and magnetic) field via
e
F==(E+vxB)
m

yields the Vlasov—Poisson (Vlasov—Maxwell) equations.

Applications: Tokamaks (fusion), plasma-laser interactions, ...
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Vlasov equation, cont.

Anatoly Alexandrovich Vlasov (1908-1975), Moscow State U
The vibrational properties of an electron gas (1938, 1968)
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T+ divev/+-= (E++ [vH] ) grad, /=0

Ocf(t, x, v)+Vv-V,f(t, x, v)+% <E+v>< B) V., f(t,x,v) =0

Alexander Ostermann, Innsbruck Integration of Vlasov-type equations



Filamentation of phase space

Simulation of the filamentation of phase space as is studied, for example,
in the context of Landau damping.
The horizontal axis represents space and the vertical one velocity.
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Bump-on-tail instability

-

The bump-on-tail instability leads to a traveling vortex in phase space.
The horizontal axis represents space and the vertical one velocity.
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Strang splitting for Vlasov-type equations
dG space discretization
Numerical examples
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Abstract formulation

Abstract initial value problem
0:f(t) = (A+ B)f(t), f(0)=fo,

where
» A is a linear differential operator;

» the nonlinear operator B has the form Bf = B(f)f,
where B(f) is an (unbounded) linear operator.

Formulation comprises the Vlasov—Poisson and the
Vlasov—Maxwell equations as special cases:

take A= —v -V, and choose B appropriately
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Example: Vlasov—Poisson equation in 1+1 d

Recall the abstract formulation
0:f(t) = (A+ B)f(t), f(0)=t.
Example: Vlasov—Poisson equations in 1+1 dimensions
Ocf(t, x,v) = —vO, f(t, x,v)—E(f(t,-, ), x)0,f(t,x,v)
OE(F(£, ), x) = / ftxv)dv—1, E—=—00
f(0,x,v) = ﬂ)ﬂzx, v)
with periodic boundary conditions in space

f(t,x,v)=f(t,x+ L,v).
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Strang splitting

Problem: 9,f(t) = (A+ B)f(t), Bf = B(f)f.
Denote f, ~ f(tx) at time t, = k7 with step size 7.

Solve
O f = Af, 08 = Bk+1/2g7

where Byi10 = B (f(tk + %)) and let
f1 = Sk,
where the (nonlinear) splitting operator Sy is given by
S, = ezfe Bri12e2A,

For grid-based Vlasov solvers:
Cheng and Knorr 1976; Mangeney et al. 2002
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Computational efficiency and stability

Splitting is very efficient in our application:

8tf - —Vaxf
fF(r,x,v) =e ™%F(0,x,v) = £(0,x — Tv, V)

and
0:8 = —Exi12(x)0v8

g(r,x,v) = e T Ekr1/2()0 g(0,x,v) = g(0,x, v — 7Ex1,0(x))
imply || S|l = 1. Moreover, we have
H (eTBk+1/2 o eTB(f(tk+T/2)))eTAf(tk)H S CT||fk+1/2—f(tk+T/2)||

(requires some smoothness of f).

Alexander Ostermann, Innsbruck Integration of Vlasov-type equations



Consistency — technical tools

Lemma [Grobner—Alekseev formula] Consider

G(f(t)) + R(f(t)), f(0) ="
G(g(t)) with solution Eg(t, )

0 -
-
—
~ ~+
N N
1l

Then
F() = Eo(t, ) + /tc‘?zEG (t— s, £(s)) R ((s)) ds.

Proof. Fundamental theorem of calculus + trick.

Lemma. Let E generate a (semi)group. Then

E =T K ' (1-s)rE sm 1

TE __ L mrEem —s)yre_ >

e —E k!E +7"E /oe (m—l)!ds
k=0

Proof. Integration by parts.



Proof of the Grobner—Alekseev formula

Fix t and let u(t) be a solution of /() = G (u(t)).
Next differentiate the identity

Ec(t —s,u(s)) = u(t)
with respect to s to get
—01E¢ (t — s, u(s)) + 02Ec (t — s, u(s)) G (u(s)) = 0.

The initial value of u is now chosen such that u(s) = f(s)
which implies

—O1Eg (t —s,f(s)) + Eg (t —s,f(s)) G(f(s)) =0.
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Proof of the Grobner—Alekseev formula, cont.

Let ¢(s) = Eg(t —s,f(s)). By the fundamental theorem of
calculus

f(t) — Ec(t. fo) = /otgo’(s) ds
= /Ot(—alEc(t —s,f(s)) + O2E6(t — s, f(s))f’(s)) ds
_ /OtaQEG (t—s, £(s)) R (F(s)) ds,

where we have used f'(s) = G(f(s)) + R(f(s)) and

—O1Eg (t —s,f(s)) + OEg (t —s,f(s)) G(f(s)) =0.
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Consistency, cont.

Expansion of the exact solution
£() = Es(r. f) +/ OnEs(r — 71, F(71))AEs(m, ) dry
0

T 71
—|— / 62EB(7' — T1, f(Tl))AagEB(Tl — T2, f(Tz))AEB(TQ, ﬂ))dedTl
0

0
T [T1 ™ 2

+/// <H62EB(TI<—Tk+17f(7k+1))A> f(73) drsdmdm,
oJo Jo \}5

where 79 = 7.

. . . T T
Expansion of the numerical solution Sify = ez?eTBrr1/2e24 f,

2
Sofy = 7Py + 2 (A e ot {A{A e} ) o+ R
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Consistency, cont.

» Compare the terms by employing quadrature rules
(Jahnke, Lubich 2000).

» Treat 7 term with trapezoidal rule

/ aZEB(T — T1, f(Tl))AEB(Tl, f(-)) dTl =
0

S0:E5(7. 1)) Afy + SAEs(7, f)fo + Ry
and compare with

g [Ae™Bir) f = gA e™Biafy 4 geTBl/QAfO
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Consistency, cont.

Estimate the difference

v

(B2 — 0yEg(r, ) Afy = s (B2 — (7, f)) Ay,

v

Apply again the variation of constants formula

Eg(7,fo) — P2 fy = / o782 (B — By p) Es(s. ) ds.
0

v

Gives condition on By .

v

Treat all terms in this way and estimate remainders.
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Regularity of exact solution

Consider Vlasov—Poisson problem as before.

Theorem (Glassey 1996)
Assume that fy € C™

perc IS Non-negative, then

fecmo,T;Cx. ),

per,c

E(f(t,-,-),x) € C™(0, T;ngr).

Moreover, there exists Q(T) such that for all t € [0, T] and
x € R it holds that

supp f(ta X, ) C [_Q(T)7 Q( T)]
Important result: Regularity of initial data is preserved.
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Abstract convergence result

Theorem (L. Einkemmer, A.O., SIAM J. Numer. Anal., 2014a)

Let

fo € Cger’c be non-negative

[fey1e =t + ) < C7

Then Strang splitting for the Vlasov—Poisson equations is
second-order convergent.

Possible choices for 1 /s:
first-order Lie=Trotter splitting i1/, = ¢ 25(We24f,
due to the special structure of the E field f, 1/, = e/ f,

linear extrapolation using f,_; and f,
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Outline

dG space discretization
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dG approximation in space and velocity

» Choose grid in (x, v) plane with cells Rj;.

» Project onto space of Legendre polynomials of order /.

The projection is given by

Pglr, = ZZb” PO ()PP (v)

k=0 m=0

with coefficients

pi (2k +1)(2m + 1)
km — hth

/R PO (x)PA (v)g(x, v) d(x, v),

i

where P,El) and P) are translated and scaled Legendre
polynomials.
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Space discretization

Pez/g(x,v) = Pg (x — Zv,v)

—

cell 1 cell 2 cell 1 cell 2

» Polynomial approximation of functions with a small jump
discontinuity;

> Jump heights £(0) = g(M(xo+) — gk (xy—) satisfy
|e®)| < ch®~k+1 for all k € {0, ..., ¢};

> Then [[g) — (Pg)®)|| < Ch*=*+1, 0< k<L
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Space and velocity discretization

> Pezfg(x,v) = Pg(x—ZIv,v)

> PeTB(Pfk+l/2)g(X7 V) = Pg(X, vV — TEk+1/2(X))

» evaluate integrals exactly with Gauss—Legendre
quadrature

Spatially discretized Strang splitting:

S = Pe 24 PeTB(Pfir12) pe 34

Alexander Ostermann, Innsbruck Integration of Vlasov-type equations



Convergence of full discretization

Theorem (L. Einkemmer, A.O., SIAM J. Numer. Anal., 2014b)

Suppose that fy € C™>{+13} nonnegative and compactly
supported. Then

H (Hl §k> Pfy — f(n)

(2 htt e+1>
<C|l7+ +h )

T

Proof. Combine time and space error
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Stability, revisited

In advection dominated problems instabilities can occur if the
numerical integration is not performed exactly.

Example (Molenkamp—Crowley test problem)

6tf(t,x,y) = 271'(}/8)( - Xay)f(ta)()y)
f(07X7 V) = ﬂ)(X7y)7

with off-centered Gaussian as initial value.
Initial value turns around origin with period 1.

Finite element schemes turn out to be unstable for most
quadrature rules [Morton, Priestley, Sili (1988)].
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Molenkamp—Crowley test problem, cont.

MRx(U) = 1.000 ' mIN(w) = 0.0C0
i

mAx(U) = 1.014 MIN(U) = -0.035

MR (W) = 1.001 MIN(U) = -0.088 max(u) = 9.160 ) mmmw = -3.672

Figure 4.1. — Rotating cone problem with three interior point quadrature on triangles
after 0, 1, 5 and 20 revolutions.

Morton, Priestley, Siili: Stability of the Lagrange—Galerkin method
with non-exact integration, RAIRO (1988)
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Molenkamp—Crowley test problem, cont.

max: 1.0
min: -0.002
05 -
o
f7=x\2)
- o @) .
N /
S
05
-1 1
-1 0.5 0 0.5 1
X X

Projected initial value (left); numerical solution after 60
revolutions with 7 = 0.02, N, = N, = 40, and ¢ = 2 (right).
Our dG method is stable.
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Outline

Numerical examples
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Example: nonlinear Landau damping

Vlasov—Poisson equations in 141 dimensions on [0, 47] x R
together with the initial value

1
\ 27

Landau damping is a popular test problem.

fo(x,v) =

e~ v/2 (1 + o cos g) .

» weak or linear Landau damping o = 0.01

» strong or nonlinear Landau damping @ = 0.5
Consider Strang and Lie-Trotter splitting

5 — eTBkeTA'
L,k
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Nonlinear Landau damping; time error

LF St‘rang splitti‘ng ¥
Lie-Trotter splitting <
order 1 e
0.1~ order 2 3
E
2 0.01
—
-
2
] 0.001
?
£
§ 0.0001
)
1le-005
1e_006 1 1 | T S S T S S S i |
0.015625 0.03125 0.0625 0.125 0.25 0.5 1
step size

Error (in discrete L' norm) of the particle density function
f(1,-,-) for Strang and Lie—Trotter splitting, respectively.
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Nonlinear Landau damping; space error

10 + T T 1=0 I K g
=1 O
| =2 & 4
order1 ——
A R order 2 e ]
e 0.01 | |
: ]
s |
E .................. B ........... ]
i TS Bl 1
| o 5 [
w o i
le-05 @ \Q;V‘V\V\r\'\ t
e S —— ]
le-06 ;7‘7\7\7\-\-\-@7:
le-07 : I I | | | :
. ” 128
N

Spatial error (in maximum norm) of the particle density
function for dG discretizations of Strang splitting.
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Recurrence phenomenon

Most easily understood for a transport equation. Consider

—v2/2

Oif = —vOif, fo(x,v) = ¢

N (1 + 0.01cos(0.5x))

with exact solution

—v2/2

f(t,x,v) = ¢

1+ 0.01cos(0.5x —0.5vt)).

The electric energy

47
_ E 249, T 025t
E(t) /0 (t,x)dx T5e5°

decays exponentially in time.
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Recurrence, cont.

For the numerical approximation of

—v2/2

e
f(t,x,v) = NS

consider a piecewise constant approximation in v with
grid size h,.

(1+ 0.01cos(0.5x — 0.5vt)).

Let the time t, be given by
h,t, = 4m, vit, = jh,t, = 4.
Obviously, the numerical solution is periodic with period t,.

The numerical approximation to the electric energy & is thus
periodic in time as well.
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Recurrence for the advection equation

INv=32: =0 ----

1+ Nv=64, |=0 -
Nv=32, |=2 ——
0.01 - exact solution ]
s /f‘\
0y Y
. 0.0001 y/ \
2
] 1le-06
c
o
2 1le-08
©
K 1le-10
o
le-12 -
le-14 -
le-16

There is no periodicity in the approximation of degree 2.
Nevertheless, a recurrence-like effect is still visible.
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Recurrence, weak Landau damping

The electric energy decays asymptotically as e =2,

v =~ 0.1533. We compare our numerical solutions with this
function.

electric energy
13
S
8
electric energy

The decay of the electric energy is shown for N, = N, = 64 (left) and
N, = N, = 128 (right). In all cases a relatively large time step of 7 = 0.2

is employed.
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A strategy to suppress the recurrence effect

Recurrence is not a consequence of the lack of accuracy of the
underlying space discretization, but a result of aliasing.

» higher and higher frequencies in phase space are created;

» aliasing of the high frequencies introduces an error in the
macroscopic quantities (such as the electric energy).

Strategy to avoid recurrence (Einkemmer, A.O., EJPD 2014):
» damp highest frequencies;

» in our dG implementation: FFTs of coefficients of
Legendre polynomials;

» after a cutoff time t., cut off the highest M frequencies
cutoff (t.,M)
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Recurrence,

0.01
0.0001
le-06
le-08
le-10
le-12
le-14
le-16

electric energy

0.01
0.0001
le-06
le-08
le-10
le-12
le-14
le-16

electric energy
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weak Landau damping

piecewise constant approximation, N=64

no cutéff, N=128 ——
cutoff (1.2,5) —-—-—

T it b
150 200

time

piecewise linear aproximation, N=64

T T T
no cutoff ——

cutoff (1.2,5) —-—-—

ull’i{’!’ﬂ"{,ﬂf’hi}m‘lul ‘I‘("ﬁl 7

50 100 150 200
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Example: plasma echo phenomenon

Initial value

1
fo(x,v) = Ee—vz/m + acos(kyx))

corresponds to an excitation with wavenumber k; at time
t = 0. Furthermore, at time t = t, we excite a second
perturbation with wavenumber k,; that is, we superimpose

«

V2r

on the (numerical) solution at time t,.

e™"/2 cos( kox)

Data: a = 1073, k; = 127/100, k, = 257/100, and t, = 200
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Echo, low resolution

no cutoff, 5000 points in v-space (piecewise-constant)

Oioe(i(o)é T odho T T T T T T
le-08
le-10
le-12
le-14 L

0 100 200 300 400 500 600 700 800 900 1000

time

electric energy

no cutoff, 500 points in v-space (piecewise-constant)

0.0001
le-06
le-08
le-10
le-12
le-14

electric energy

0 100 200 300 400 500 600 700 800 900 1000
time

cutoff (1,20), 500 points in v-space (piecewise-constant)

0.0001 T T T T T T
le-06
le-08
le-10
le-12
le-14 I I ! I | i nAnAnAR ann,

0 100 200 300 400 500 600 700 800 900 1000

time
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Echo, higher resolution

no cutoff, 5000 points in v-space (piecewise-constant)

O'loe(igé echo
le-08
le-10
le-12
le-14 L

0 100 200 300 400 500 600 700 800 900 1000

time

electric energy

no cutoff, 1000 points in v-space (piecewise-constant)

0.0001 T
1e-06 €
le-08
le-10
le-12
le-14

electric energy

0 100 200 300 400 500 600 700 800 900 1000
time

cutoff (1,20), 1000 points in v-space (piecewise-constant)

0.0001
le-06
le-08
le-10
le-12
le-14

echo \i ‘

electric energy

0 100 200 300 400 500 600 700 800 900 1000
time
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