
Splitting methods: analysis and applications — April/May 2017

Project 1. Korteweg–de Vries equation and solitons

1. Show that

u(t, x) = 3c sech2
(√

c
2 (x− x0 − ct)

)
, sechx =

1

coshx

is a solution of the Korteweg–de Vries (KdV) equation

ut + uxxx + uux = 0, x ∈ R.

Give an interpretation of the real parameters c > 0 and x0. The above solution is called a soliton
(solitary wave). What happens for c ≤ 0?

2. Construct the above soliton in the following way.

(a) Let ξ = x− ct and determine a function u(t, x) = w(ξ) that solves the KdV equation. You will
find wξξξ + wwξ − cwξ = 0.

(b) Integrate this equation twice und use that w, wξ and wξξ vanish for x → ∞. (After the first
integration, you should multiply the resulting equation by the integrating factor wξ.) This gives
w2
ξ + w3/3− cw2 = 0.

(c) The last equation can be integrated by a separation of variables.

3. Solve the KdV equation with periodic boundary conditions on the interval [0, 2π] for 0 ≤ t ≤ 1. Use
as initial value a soliton with appropriately chosen c > 0 and x0. Employ a spectral discretization
(based on FFT) for the linear part and the method of characteristics for the Burgers’ nonlinearity.
(A similar approach was used for the more complicated Kadomtsev–Petviashvili equation in [1].)
Study the error as a function of the time step size τ , the spatial resolution h = ∆x and the employed
interpolation procedure in the method of characteristics.

4. Repeat the above experiment with two solitions and study their interaction. (The initial values of
the two solitons must not overlap - why?)
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Project 2. The magnetic Schrödinger equation

Consider Lie splitting for the numerical solution of the initial value problem

ut = (A+B + C)u, u(0) = u0

Split the right-hand side into three terms, for instance in the order BAC, to get

un+1 = eτCeτAeτBun. (1)

1. Summarize the error analysis of this scheme, given in [1].

2. Apply the three-term splitting (1) to the magnetic Schrödinger equation

iεut = −ε
2

2
∆u+ iεa · ∇u+

1

2
|a|2u+ V u, u(0) = u0

with a scalar potential V and divergence-free vector potential a (both depending on space and
time). You will get

ut = Bu = − i

ε

(
1

2
|a|2 + V

)
u,

ut = Au =
iε

2
∆u,

ut = Cu = a · ∇u, ∇ · a = 0.

Propose efficient numerical schemes for the solution of these subproblems (equidistant discretization
in space, periodic boundary conditions). Make a distinction between time invariant and time
dependent potentials. In particular, explain how to solve the advection problem with the method
of characteristics.

3. In order to use standard FFT techniques, the method of characteristics requires an interpolation
procedure, in general. Under which (very restrictive) assumptions, interpolation is not required?
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Project 3. Reaction-diffusion splitting

Consider the one-dimensional heat equation

ut(t, x) = uxx(t, x) + f(u(t, x)), u(0, x) = u0(x),

subject to Dirichlet boundary conditions u(t, 0) = b0(t) and u(t, 1) = b1(t).

1. Find the solution of zxx = 0 that satisfies the boundary conditions b0 and b1 and transform the
above problem to homogeneous Dirichlet boundary conditions ũ = u− z

ũt = ũxx + f(ũ+ z)− zt. (1)

Henceforth, we consider
(i) the standard splitting of (1) into

ṽt = ṽxx − zt, ṽ(t, 0) = ṽ(t, 1) = 0 (2)

and
w̃t = f(w̃ + z); (3)

(ii) the modified splitting of (1) into

ṽt = ṽxx + f(z)− zt, ṽ(t, 0) = ṽ(t, 1) = 0 (4)

and
w̃t = f(w̃ + z)− f(z). (5)

The first step of the standard [resp. modified] Stang splitting takes the form:

(a) Compute the initial value ṽ(0) = u0 − z0.

(b) Compute the solution of (2) [resp. (4)] with initial value ṽ(0) to obtain ṽ( τ2 ).

(c) Compute the solution of (3) [resp. (5)] with initial value w̃(0) = ṽ( τ2 ) to obtain w̃(τ).

(d) Compute the solution of (2) [resp. (4)] with initial value ṽ(0) = w̃(τ) to obtain ṽ( τ2 ).

(e) Set u1 = ṽ( τ2 ) + z(τ), where ṽ( τ2 ) is taken from step (d).

Write down the general step of the standard and the modified Strang splitting, respectively. That
is, given an approximation un to the exact solution at time tn, find the approximation un+1 to the
solution at time tn+1 = tn + τ .

2. Solve the one-dimensional heat equation

ut(t, x) = uxx(t, x) + u(t, x)2, 0 ≤ x ≤ 1

with initial value u(0, x) = 1 + sin2(πx) and boundary conditions b0(t) = b1(t) = 1. For the spatial
discretization, choose 500 grid points. Study the order of convergence of the standard and the
modified Strang splitting at t = 0.1 in different norms (e.g., 1-norm, Euclidian norm and maximum
norm).

3. Repeat the above experiment with time dependent b0(t) = b1(t) = 1 + sin 5t.

4. Repeat the above experiments for Lie and modified Lie splitting.
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Project 4. The Baker–Campbell–Hausdorff formula

For non-commuting matrices A and B the Lie splitting method has a splitting error, i.e., eAeB 6= eA+B .
The Baker–Campbell–Hausdorff formula (BCH for short) provides a matrix C(t) such that

etAetB = etC(t)

for sufficiently small t. This is useful for deriving order conditions.

1. Study the BCH formula in [1, Section III.4] and derive the explicit representation of C(t) in terms
of A and B up to order three, that is, find matrices C1, C2, and C3 such that

C(t) = C1 + C2t+ C3t
2 +O(t3).

2. Use this representation to derive the (non-stiff) order conditions for the three-stage splitting

S = eα3τA eβ2τB eα2τA eβ1τB eα1τA,

that is, find conditions on the coefficients α and β such that the splitting error satisfies

Su− eτ(A+B)u = O(τp+1)

for all u. What is the maximal order p of this three-stage splitting?

3. Show that the complex coefficients

α1 = 1
4 + i

√
3

12 , α2 = 1
2 , α3 = 1

4 − i
√
3

12 , β1 = 1
2 + i

√
3
6 , β2 = 1

2 − i
√
3
6

lead to an order three method. This method can be used to solve parabolic problems.
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Project 5. Stiff order conditions

Consider the semilinear evolution equation

ut = Au+ g(u), u(0) = u0,

where A is a linear unbounded operator that generates a semigroup etA and g is a sufficiently regular
nonlinear map. For this problem, we consider the exponential splitting scheme un+1 = Sun, where the
nonlinear propagator is given by

S = eαqτA ψβq−1τ eαq−1τA . . . ψβ1τ eα1τA.

The idea behind this splitting is that the actions of the nonlinear flow ψt, generated by g, and the linear
flow etA can commonly be computed in a much more efficient manner compared to the flow of the full
vector field A+ g.

1. Rewrite the nonlinear wave equation

vtt + vt = c∆v + f(v)

as a first-order system with the vector field

Au+ g(u) =

[
0 I
c∆ −I

]
u+

[
0

f(v)

]
.

What is u? Explain how the action of the linear flow etA can be efficiently approximated by a
FFT-based scheme (assuming periodic boundary conditions). How does the nonlinear flow look
like?

2. Show that a three-stage scheme (q = 3) satisfying the following conditions on the coefficients

α1 + α2 + α3 = 1,

β1 + β2 = 1,

β1α1 + β2(α1 + α2) = 1
2 ,

β1α
2
1 + β2(α1 + α2)2 = 1

3 ,

β2
1α1 + 2β1β2(α1 + α2) + β2

2(α1 + α2) = 2
3 ,

β2
1α1 + 2β1β2α1 + β2

2(α1 + α2) = 1
3

(1)

has a local error of size O(τ4), if the exact solution is sufficiently smooth; see [2, Section 4]. The
conditions (1) are called stiff order conditions (why?) of order 3.

3. Show that the stiff order conditions (1) coincide with the non-stiff order conditions that result from
the Baker–Campbell–Hausdorff formula for a linear problem ut = Au+Bu with bounded operators
(matrices) A and B; see [1].

4. Implement the above scheme for q = 2 (choose Strang splitting) and solve the nonlinear wave
equation described in [2, Section 1].
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Project 6. An almost symmetric Strang splitting scheme

Consider the differential equation
y′ = A(y) +B(y)y + d, (1)

where we assume that the partial problem y′ = A(y) can be solved in an efficient way with flow ϕAt .
However, no such assumption is made about the second partial problem y′ = B(y)y + d. Instead, we
assume that for any fixed value, say y?, the flow corresponding to

y′ = B(y?)y + d

can be computed efficiently. This flow, denoted by ϕ
B(y?)
t , is actually given by

ϕ
B(y?)
t (z) = etB(y?)z + tφ1

(
tB(y?)

)
d, φ1(z) =

ez − 1

z
.

Show the following statements.

1. Standard Strang splitting applied to (1)

y1 = ϕAτ
2
◦ ϕB(y0)

τ ◦ ϕAτ
2
(y0)

is first order only.

2. The modified Strang splitting

y1/2 = ϕ
B(y0)
τ
2

◦ ϕAτ
2
(y0)

y1 = Mτ (y0) = ϕAτ
2
◦ ϕB(y1/2)

τ ◦ ϕAτ
2
(y0).

is second-order accurate. However, it is not symmetric.

3. Let L τ
2
(y0) = y1/2 = ϕ

B(y0)
τ
2

◦ϕAτ
2
(y0) denote a Lie step with half the step size. Compute its adjoint

method (i.e. the inverse with negative step size).

4. Combining L τ
2

with its adjoint gives the (implicit) Strang splitting

y1 = Sτ (y0) = L∗τ
2
◦ L τ

2
(y0) = ϕAτ

2
◦ ϕB(y1)

τ
2

(y1/2).

This method is of second order and symmetric (why?).

5. Employing fixed-point iteration

y
(k+1)
1 = ϕAτ

2
◦ ϕ

B
(
y
(k)
1

)
τ
2

(y1/2), y
(0)
1 = y1/2

yields a scheme which is symmetric of order k + 1. (A one-step method Φτ is called symmetric of
order q if

Φ∗τ = Φτ +O
(
τ q+1

)
,

where Φ∗τ is the adjoint method of Φτ .)

The resulting scheme can again be used for composition methods (see project 7).

6. Implement the scheme and one of its compositions for a problem chosen from [1].
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Project 7. High-order splitting

It can be a tedious task to construct splitting methods of high order directly from the order conditions. A
much simpler approach is through composition. Let Φτ be a basic one-step method (i.e., un+1 = Φτ (un))
and γ1, . . . , γs (real) numbers. The method

Ψτ = Φγsτ ◦ · · · ◦ Φγ1τ (1)

is called composition method (based on the step sizes γ1τ, . . . , γsτ), see [1, Section II.4]

1. Show the following result (e.g. by Taylor expansion). Let the basic method be of order p. If

γ1 + . . .+ γs = 1

γp+1
1 + . . .+ γp+1

s = 0,

then the composition method (1) is at least of order p+ 1.

Taking Ψτ as the new basic method, this construction can be repeated if the order of Ψτ is even
(why?).

2. Find explicit formulas for the triple jump (s = 3, γ1 = γ3) and compute, starting off from Strang
splitting as the basic method, methods of order 4, 6, and 8. Why does this construction automat-
ically give methods of even order?

3. Solve the linear Schrödinger equation

ut = i
(
1
2∆− V

)
u, 0 ≤ t ≤ 1, u(0, x) = e−10x

2

on the one-dimensional torus (i.e., with periodic boundary conditions) and potential V (x) =
cos(2πx). Plot the error of the above methods of order 2 to 8 as a function of the step size in
a double logarithmic scale and comment the obtained results.

References

[1] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Structure-Preserving Algo-
rithms for Ordinary Differential Equations. Springer, Berlin, second edition, 2006.

7


