On deciding satisfiability by DPLL(\(\Gamma + \mathcal{T}\)) and unsound theorem proving

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy, EU

22nd Int. Conf. on Automated Deduction (CADE-22), Montréal, Canada
4 August 2009

Joint work with Chris Lynch and Leonardo de Moura
Motivation: reasoning for SW verification

Idea: Unsound theorem proving to get decision procedures

DPLL(Γ+T) with UTP: SMT-solver+Superposition+UTP

Decision procedures for type systems

Discussion
Problem statement

- Decide \textit{satisfiability} of first-order formulæ generated by SW verification tools
- Satisfiability \textit{w.r.t.} \textit{background theories} (e.g., linear arithmetic, bitvectors)
- With \textit{quantifiers} to write, e.g.,
 - frame conditions over loops
 - auxiliary invariants over heaps
 - axioms of \textit{type systems} and
 - \textit{application-specific theories} without decision procedure
Shape of problem

- Background theory \mathcal{T}
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$, e.g., linear arithmetic, bit-vectors

- Set of formulæ: $\mathcal{R} \cup P$
 - \mathcal{R}: set of non-ground clauses without \mathcal{T}-symbols
 - P: large ground formula (set of ground clauses) may contain \mathcal{T}-symbols

- Determine whether $\mathcal{R} \cup P$ is satisfiable modulo \mathcal{T}
 (Equivalently: determine whether $\mathcal{T} \cup \mathcal{R} \cup P$ is satisfiable)
Motivation: reasoning for SW verification

Idea: Unsound theorem proving to get decision procedures

DPLL($\Gamma + T$) with UTP: SMT-solver + Superposition + UTP

Decision procedures for type systems

Discussion

Tools

- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- T_i-solvers: Satisfiability procedures for the T_i's
- DPLL(T)-based SMT-solver: Decision procedure for T with Nelson-Oppen combination of the T_i-sat procedures
- First-order engine Γ to handle \mathcal{R} (additional theory): Resolution + Rewriting + Superposition: Superposition-based
Combining strengths of different tools

- **DPLL**: SAT-problems; large non-Horn clauses
- **Theory solvers**: linear arithmetic, bitvectors
- **DPLL(T)-based SMT-solver**: efficient, scalable, integrated theory reasoning
- **Superposition-based inference system Γ**:
 - equalities, Horn clauses, universal quantifiers
 - known to be a sat-procedure for several theories of data structures
How to get decision procedures?

- During SW development conjectures are usually **false** due to mistakes in implementation or specification.
- Need theorem prover that terminates on *satisfiable* inputs.
- Not possible in general:
 - FOL is only semi-decidable.
 - First-order formulæ of linear arithmetic with uninterpreted functions: not even semi-decidable.

However we need less than a general solution.
Problematic axioms do occur in relevant inputs

\(\sqsubseteq \): subtype relation

\(f \): type constructor (e.g., Array-of)

- **Transitivity**
 \[\neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq z) \lor x \sqsubseteq z \]

- **Monotonicity**
 \[\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \]

Resolution generates unbounded number of clauses
(even with negative selection)
In practice we need finitely many

Example:

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \) generate
3. \(\{f^i(a) \sqsubseteq f^i(b)\}_{i \geq 0} \)

In practice \(f(a) \sqsubseteq f(b) \) or \(f^2(a) \sqsubseteq f^2(b) \) often suffice to show satisfiability
Idea: Unsound theorem proving

- TP applied to maths: most conjectures are *true*
- Sacrifice *completeness* for efficiency
 Retain *soundness*: if proof found, input *unsatisfiable*
Outline
Motivation: reasoning for SW verification
Idea: Unsound theorem proving to get decision procedures
DPLL(Γ + T) with UTP: SMT-solver + Superposition + UTP
Decision procedures for type systems
Discussion

Idea: Unsound theorem proving

- TP applied to maths: most conjectures are \textit{true}
- Sacrifice \textit{completeness} for efficiency
 Retain \textit{soundness}: if proof found, input \textit{unsatisfiable}
- TP applied to verification: most conjectures are \textit{false}
- Sacrifice \textit{soundness} for termination
 Retain \textit{completeness}: if no proof, input \textit{satisfiable}
Idea: Unsound theorem proving

- TP applied to maths: most conjectures are true
- Sacrifice completeness for efficiency
 Retain soundness: if proof found, input unsatisfiable
- TP applied to verification: most conjectures are false
- Sacrifice soundness for termination
 Retain completeness: if no proof, input satisfiable
- How do we do it: Additional axioms to enforce termination
- Detect unsoundness as conflict + Recover by backtracking (DPLL framework)
Example

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)
Example

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\Box \): backtrack!
Example

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\Box \): backtrack!
3. Add \(f(f(x)) \simeq x \)
4. \(a \sqsubseteq b \) yields only \(f(a) \sqsubseteq f(b) \)
5. \(a \sqsubseteq f(c) \) yields only \(f(a) \sqsubseteq c \)
6. Reach saturated state and detect satisfiability
State of derivation: $M \parallel F$

- **Decide**: guess L is true, add it to M (decided literals)
- **UnitPropagate**: propagate consequences of assignment (implied literals)
- **Conflict**: detect $L_1 \lor \ldots \lor L_n$ all false
- **Explain**: unfold implied literals and detect decided L_i in conflict clause
- **Learn**: may learn conflict clause
- **Backjump**: undo assignment for L_i
- **Unsat**: conflict clause is \Box (nothing else to try)
DPLL(\(\mathcal{T}\))

State of derivation: \(M \parallel F\)

- \(\mathcal{T}\)-Propagate: add to \(M\) an \(L\) that is \(\mathcal{T}\)-consequence of \(M\)
- \(\mathcal{T}\)-Conflict: detect that \(L_1, \ldots, L_n\) in \(M\) are \(\mathcal{T}\)-inconsistent

Since \(\mathcal{T}_i\)-solvers build \(\mathcal{T}\)-model:
- PropagateEq: add to \(M\) a ground \(s \simeq t\) true in \(\mathcal{T}\)-model
DPLL(Γ+τ): integrate Γ in DPLL(τ)

- **Idea**: literals in \(M \) can be premises of Γ-inferences
- Stored as *hypotheses* in inferred clause
- *Hypothetical clause*: \(H \triangleright C \) (equivalent to \(\neg H \lor C \))
- Inferred clauses inherit hypotheses from premises

- **Note**: don’t need Γ for ground inferences
- Use each engine for what is best for:
 - Γ works on non-ground clauses and ground unit clauses
 - DPLL(τ) works on all and only ground clauses
DPLL(Γ + T)

State of derivation: $M \parallel F$

F: set of hypothetical clauses

- **Deduce**: Γ-inference, e.g., superposition, using *non-ground* clauses in F and literals in M

- **Backjump**: remove hypothetical clauses depending on undone assignments
Unsound inferences

- Single unsound inference rule: add *arbitrary* clause C
- Simulate many:
 - Suppress literals in long clause $C \lor D$:
 add C and subsume
 - Replace deep term t by constant a:
 add $t \approx a$ and rewrite
Controlling unsound inferences

- Unsound inferences to induce termination on sat input
- What if the unsound inference makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding $\lceil C \rceil \triangleright C$
 - $\lceil C \rceil$: new propositional variable (a “name” for C)
 - Treat “unnatural failure” like “natural failure”
- Thus unsound inferences are reversible
Unsound theorem proving in DPLL($\Gamma + \mathcal{T}$)

State of derivation: $M \parallel F$

Inference rule:

- **UnsoundIntro**: add $\lceil C \rceil \triangleright C$ to F and $\lceil C \rceil$ to M
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c) \) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
Example as done by system

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c)\) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
3. Generate \([f(x) \simeq x] \triangleright \Box; \) Backtrack, learn \(\neg[f(x) \simeq x]\)
Example as done by system

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c)\) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
3. Generate \([f(x) \simeq x] \triangleright \Box\); Backtrack, learn \(\neg[f(x) \simeq x]\)
4. Add \([f(f(x)) \simeq x] \triangleright f(f(x)) \simeq x\)
5. \(a \sqsubseteq b\) yields only \(f(a) \sqsubseteq f(b)\)
6. \(a \sqsubseteq f(c)\) yields only \(f(a) \sqsubseteq f(f(c))\)
 rewritten to \([f(f(x)) = x] \triangleright f(a) \sqsubseteq c\)
7. Reach saturated state and detect satisfiability
Issues about completeness

- Γ is refutationally complete
- Since Γ does not see all the clauses, DPLL(Γ + T) does not inherit refutational completeness trivially
Issues about completeness

- \(\Gamma \) is refutationally complete
- Since \(\Gamma \) does not see all the clauses, \(\text{DPLL}(\Gamma + \mathcal{T}) \) does not inherit refutational completeness trivially
- \(\text{DPLL}(\mathcal{T}) \) has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: *iterative deepening* on inference depth
Issues about completeness

- Γ is refutationally complete
- Since Γ does not see all the clauses, DPLL(Γ + T) does not inherit refutational completeness trivially
- DPLL(T) has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: iterative deepening on inference depth
- However refutationally complete only for T empty
 Example: \(R = \{ x = a \lor x = b \} \), \(P = \emptyset \), \(T \) is arithmetic
 Unsat but can’t tell!
Solution

- Sufficient condition for refutational completeness with $\mathcal{T} \neq \emptyset$: \mathcal{R} be *variable-inactive* (tested automatically by Γ)
 - it implies stable-infiniteness
 (needed for completeness of Nelson-Oppen combination)
 - it excludes cardinality constraints (e.g., $x = a \lor x = b$)
Solution

- Sufficient condition for refutational completeness with $\mathcal{T} \neq \emptyset$: \mathcal{R} be *variable-inactive* (tested automatically by Γ)
 - it implies *stable-infiniteness* (needed for completeness of Nelson-Oppen combination)
 - it excludes cardinality constraints (e.g., $x = a \lor x = b$)
- Use *iterative deepening* on both *Deduce* and *UnsoundIntro* to impose also termination: $\text{DPLL}(\Gamma + \mathcal{T})$ gets “stuck” at k
How to get decision procedures

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- Find sequence of “unsound axioms” U
- Show that there exists k s.t. k-bounded DPLL($\Gamma + \mathcal{T}$) is guaranteed to terminate
 - with $Unsat$ if $\mathcal{R} \cup P$ is \mathcal{T}-unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T}-sat
Decision procedures

- \(\mathcal{R} \) has single monadic function symbol \(f \)
- *Essentially finite*: if \(\mathcal{R} \cup P \) is sat, has model where range of \(f \) is *finite*
- Such a model satisfies \(f^j(x) \simeq f^k(x) \) for some \(j \neq k \)
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup \mathcal{P}$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- *UnsoundIntro* adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$ for $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
Decision procedures

- \mathcal{R} has single monadic function symbol f
- **Essentially finite**: if $\mathcal{R} \cup P$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- **UnsoundIntro** adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$ for $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
- Clause length limited by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination without getting stuck
Situations where clause length is limited

Γ: Superposition, Hyperresolution, Simplification

Negative selection: only positive literals in positive clauses are active

- \(R \) is Horn
- \(R \) is ground-preserving: variables in positive literals appear also in negative literals; the only positive clauses are ground
Concrete examples of essentially finite theories

Axiomatizations of type systems:

Reflexivity \quad x \sqsubseteq x \quad (1)

Transitivity \quad \neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq z) \lor x \sqsubseteq z \quad (2)

Anti-Symmetry \quad \neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq x) \lor x \equiv y \quad (3)

Monotonicity \quad \neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \quad (4)

Tree-Property \quad \neg (z \sqsubseteq x) \lor \neg (z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x \quad (5)

\[\text{MI} = \{(1), (2), (3), (4)\} \text{: type system with } \text{multiple inheritance} \]

\[\text{SI} = \text{MI} \cup \{(5)\} \text{: type system with } \text{single inheritance} \]
Concrete examples of decision procedures

DPLL(Γ+T) with UnsoundIntro adding $f^j(x) \simeq f^k(x)$ for $j > k$
decides the satisfiability modulo T of problems

- MI ∪ P (MI is Horn)
- SI ∪ P (all ground-preserving except Reflexivity)
- MI ∪ TR ∪ P and SI ∪ TR ∪ P (by combination)

$TR = \{ \neg(g(x) \simeq null), \ h(g(x)) \simeq x \}$

where g represents the type representative of a type.
Summary of contributions and directions for future work

- DPLL(\(\Gamma + \mathcal{T}\)) + unsound TP: termination
- Decision procedures for type systems with multiple/single inheritance used in ESC/Java and Spec#
- DPLL(\(\Gamma + \mathcal{T}\)) + variable-inactivity: completeness for \(\mathcal{T} \neq \emptyset\) and combination of both built-in and axiomatized theories
- Extension to more presentations (e.g., \(y \sqsubseteq x \land u \sqsubseteq v \supset map(x, u) \sqsubseteq map(y, v)\))
- Avoid duplication of reasoning on ground unit clauses