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Abstract

Hidden Markov Model (HMM) is an ubiquitous tool for probabilistic modelling of
sequential data, whose importance has rapidly increased during the last decade. As
shown in several research papers appeared in literature, HMMs are very effective
in all the applications involving sequence modelling. Nevertheless there are some
drawbacks and some open issues to be addressed; moreover, in some applications,
the use of HMMs has not been exhaustively investigated.

This thesis is therefore aimed at reaching a twofold objective: first of all, the
individuation and the analysis of the methodological open issues, with the proposal
of some original contributions; secondly, the application of the HMM methodology
to Computer Vision and Pattern Recognition problems.

From a methodological point of view, the contributions of this thesis regard
the following issues: model selection, classification and clustering. In relation to
the model selection problem, a formal proof of the equivalence between Gaussian
continuous HMMs is first of all presented, able to reduce, in the continuous case,
the complexity of the model selection problem. Three original methods are then
proposed, able to effectively and accurately find the best model configuration from
data.

Concerning the classification issue, some critic considerations about the stan-
dard Maximum Likelihood classification scheme are presented. Subsequently an al-
ternative classification scheme is introduced, founded on the similarity-based clas-
sification paradigm, able to substantially improve the classification performances.

With regards to the HMM clustering issue, which has been poorly faced in
the literature, some contributions are presented in this thesis, mainly regarding
the development of new distances between models and new clustering algorithms.
Subsequently, an alternative scheme is proposed, founded on the similarity-based
representation introduced in the classification context, able to enhance the clus-
tering performances with respect to standard approaches. All of the proposed
methodological algorithms developed in this thesis are evaluated and validated
by the use of synthetic and real experiments, showing the appropriateness of the
proposed methodologies.

From an application point of view, the employment of HMM-based techniques
has produced a direct surplus in the following contexts: 2D shape classification,
face recognition and video analysis. For the first application, a HMM-based ap-
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proach is proposed, able to accurately recognize planar shapes, even in presence of
translation, rotation, occlusion, affine projections and noise. Concerning the face
recognition problem, a new scheme is introduced, based on HMM and Wavelet
coefficients. The obtained classification accuracy outperforms all other results pro-
posed in the literature on standard databases. Finally, a HMM-based clustering
approach is used to analyze a static camera video sequence; the proposed method
is able to divide the scene into non overlapping regions, each characterized by
chromatic, temporal and spatial homogeneity.

The satisfactory results obtained by HMM approaches in these application con-
texts show the effectiveness and the wide applicability of the proposed techniques.
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Introduction

Pattern Recognition is an important research area, with a long and fecund history.
It encompasses a wide range of information processing systems, all aimed at the
resolution of problems of great practical significance. Statistics is the most general
and natural framework in which Pattern Recognition problems can be formulated,
where both information to be processed and obtained results are expressed in prob-
abilistic form. Among the several statistical techniques proposed in the past, one
family has assumed a great importance in the last years: the family of Probabilistic
Graphical Models. These approaches represent a synergy between the probabilistic
and the graph theory. From one hand, graphs permit a real and effective represen-
tation of the interrelationship (dependency or independency) occurring between
the components of the model (random variables). From the other hand, the prob-
abilistic theory provides a precise mathematical formalization of algorithms and
results, allowing their interpretation in a probabilistic context. Some examples of
probabilistic approaches belonging to this family are Markov Random Fields [146],
Bayesian Networks [95] and Hidden Markov Models [180].

This thesis could be collocated in the aforesaid context, and it concerns the
analysis and investigation of the Hidden Markov Model approach for Pattern
Recognition and Computer Vision. The Hidden Markov Model (HMM) method-
ology is a Probabilistic Graphical Model ubiquitously employed for the statistical
modelling of sequential data. HMMs can be considered as a stochastic generaliza-
tion of finite-state automata, where both transitions between states and generation
of output symbols are governed by probability distributions [180]. These models
are also referred to as Markov sources or probabilistic functions of Markov Chains.

The importance of HMMs has rapidly and impressively grown up only in the
last decade, even if they were introduced by Baum and et al. in the late 1960s and
early 1970s [15,14,17,16,13]. Hidden Markov Models have universally been used
in almost all the applications dealing with sequential data modelling, due to their
intrinsic attractive properties. These characteristics were properly and effectively
resumed in few sentences by Juang in the introduction of the special issue on
HMM in Vision of the International Journal of Pattern Recognition and Artificial
Intelligence (IJPRAI) [115]: “The HMM is a powerful mathematical formalism and
yet is computationally straightforward. Most of its related algorithms are linear-
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time and intuitive. The model is a complex of thoughts but its reasoning and
execution are brilliantly simple. It is a simple complex.”.

1.1 Motivations

As shown in several research papers present in the HMM literature, Hidden Markov
Models are very suitable for sequential data modelling. Their application to se-
quence modelling problems has exponentially grown in the last decade, demon-
strating their usefulness and efficacy. Nevertheless, it is impossible to find a tech-
nique able to solve all problems, and each methodology has its own drawbacks.
In this sense, also the HMM methodology presents some defects, and some efforts
should be done for fixing them. Moreover, the wide application of these models has
revealed the importance of some aspects (e.g. model selection) of this technique
disregarded in the past, or to which few attention has been paid.

The first and most important methodological issue, not yet completely solved,
is surely the model selection problem, regarding the determination of the HMM
structure, namely the topology and the number of states. The former regards the
possibility of introducing some constraints in the HMM structure, such as forcing
the presence or absence of connections between certain states. The latter con-
cerns the determination of the number of states, and is definitely more interesting:
it represents the first and fundamental step in the selection of the model, that
mainly prevents overtraining situations. Another still unsolved issue derives from
the local/greedy behavior of the standard algorithm used to estimate the HMM
parameters from training data. This learning procedure, starting from some initial
estimates, converges to the nearest local maximum of the likelihood function. The
initialization, therefore, crucially affects the obtained model estimate, since the
likelihood function is highly multi-modal, and this behavior has a strong influence
on the effectiveness of the learning process. It has been demonstrated that appro-
priate model selection and initialization of the training procedure are crucial for
an effective data modelling, and should be carefully addressed for exploiting all
the potentialities of this technique.

Another important open issue concerns the classification scheme: the standard
HMM-based approach to sequence classification consists of training one HMM for
each class, and then using them as class-conditional densities in a standard Bayes
classification paradigm. Some questions may arise: is this classification scheme
reliable? Does this scheme use all available information? Are alternative schemes
possible? At the moment, definitive answers to these questions are missing, this
thesis presents a contribute in this sense.

A final question regards the unsupervised classification or clustering of se-
quences. This topic presents several interesting characteristics, from both a the-
oretical and an applicative point of view. From a theoretical point of view, two
considerations reveal the importance of this issue. First, it is well known that data
clustering is inherently a more difficult task if compared to supervised classifica-
tion, in which classes are already identified, so that a system can be adequately
trained. Second, this intrinsic difficulty worsens if sequential data are considered:
the structure of the underlying process is often difficult to infer, and typically differ-
ent length sequences have to be dealt with. The problem of clustering of sequences
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represents therefore a real methodological challenge in the Pattern Recognition
area, and much effort has been lavished on it by the scientific community.

Moreover, this problem has also a great practical relevance, increasing in impor-
tance in recent years, due to its wide applicability in emergent contexts like data
mining and bioinformatics problems (like DNA genome modelling and analysis).

These open issues regard methodological aspects of the Hidden Markov Models
methodology. Other considerations could be done with concerns to the applica-
tion context: after reviewing the HMM literature, it has been noted that in some
emerging applications, like face recognition, the use of the HMM methodology has
not been exhaustively investigated, and some substantial improvements could be
obtained with their use.

Starting from these general considerations, the objective of this thesis is there-
fore twofold: first, investigate some of the presented methodological open issues,
with the aim of gaining an better insight into them and finding some original solu-
tions. The second objective is to apply the Hidden Markov Model methodology to
Pattern Recognition and Computer Vision problems, showing that these models
permit to obtain results that represent relevant contributions also in the specific
application domain.

1.2 Contributions

In this section the original contributions proposed in this thesis are summarized.
These contributions regard both methodological open issues and applications. All
the methodological open issues presented in the previous section are addressed
in this thesis. Even if these issues are still not completely resolved, this thesis
contributes to get a better insight into these problems, and proposes some original
algorithms that clearly improve the state of the art.

More in detail, this thesis largely addresses the model selection and initial-
ization issues. First of all, a formal proof of the equivalence between continuous
Gaussian HMMs is derived: this proof permits to reduce, in the continuous case,
the problem of selecting the best model (i.e. choosing the number of states and
number of Gaussians for state) to a simpler one, where only the number of states
is needed. Then three original methods are proposed, each one characterized by
different features, and all aimed at automatically discovering the most appropriate
structure of the model. The first proposed method is directly linked to the initial-
ization step, and results in a very fast approach. The second one makes use of
a syntactic equivalence relation, the probabilistic bisimulation [10], and is aimed
at reducing an oversized model to a more compact representation. The third one
recovers from the drawbacks of standard model selection criteria by performing a
sequential pruning learning, able to reduce the impact of the initialization issue
and to reduce the needed computational requirements.

Regarding the classification problem, some critic considerations about the re-
liability of classification results are presented; subsequently, an alternative scheme
is proposed, inspired by the similarity-based classification paradigm. This scheme,
differently from the standard Bayesian classification approach, makes use of all the
available information, resulting in a substantial improvement of the classification
accuracy.



4 Introduction

Finally, in the present study the use of HMM for unsupervised classification
is investigated. The standard approach is summarized, introducing some modi-
fications that permit a more accurate and efficient clustering. Subsequently, an
alternative scheme is proposed, founded on the similarity-based representation in-
troduced in the classification context. This scheme permits a great improvements
of the clustering results, with respect to the standard approach.

With regards to the applications, the use of Hidden Markov Model methodology
has produced relevant results in different application scenarios. First, the use of
HMM in the 2D shape classification context is presented: a very robust system
is proposed, able to recover from object perturbations as translation, rotation,
occlusion, noise and affine projections. Second, the face recognition problem is
addressed, proposing a system outperforming all other techniques proposed in
literature, using HMM and wavelet features. The last application describes the
spatio-temporal segmentation of video sequences, where HMMs are employed for
segmenting the scene into regions of chromatic, temporal, and spatial homogeneity.
This segmentation is then directly used in a background modelling system, able
to recover from sudden not uniform illumination changes in the scene.

1.3 Organization of the thesis

The thesis is divided in an introductory chapter and two main parts. The first
chapter formally introduces the HMM methodology, and provides a not exhaustive
list of the fields in which HMMs have been successfully employed. The two following
main parts regard the methodological issues and applications, respectively.

In the methodological part, Chapter 3 deals with the model selection prob-
lem: the state of the art is summarized, and three original methods are proposed.
The subsequent Chapter 4 faces the classification problem: after presenting the
standard classification rule, some considerations about its reliability are proposed,
and an alternative scheme is introduced. Finally, Chapter 5 deals with the cluster-
ing task: the standard approach and some variations are presented; an alternative
scheme is then proposed, founded on the similarity-based representation paradigm.

Algorithms presented in this part are evaluated using synthetic and real ex-
periments, derived from different applications in Computer Vision and Pattern
Recognition, as 2D shape classification, face recognition, EEG segmentation and
DNA gene modelling. In the second part of the thesis, with regards to applications,
only those systems for which the employment of HMMs produces a surplus in the
application context are presented. The others are only briefly explained in the first
part, when needed. More in detail, Chapter 6 presents a planar shapes classifica-
tion system, Chapter 7 addresses the face classification problem with HMMs, and,
finally, in Chapter 8, the spatio-temporal segmentation of video sequences using
HMM is presented.

1.4 Publications

Some parts of this study have been published in conference proceedings or in inter-
national journals. More specifically, the two model selection approaches proposed
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in Chapter 3 have been published in [27] and [24], the approach presented in the
first part of Chapter 5 in [167], and part of the application described in Chapter 8
in [53]. A preliminary version of the method proposed in Chapter 6 for 2D shape
classification appeared in [25].

Other parts of the thesis are still under consideration for publication. More in
detail, the alternative classification scheme introduced in Chapter 4 has been sub-
mitted to the Pattern Recognition journal [28], the 2D shape classifier described
in Chapter 6 to the IEEE Transaction on Pattern Analysis and Machine Intel-
ligence [26], and the HMM-based video segmentation presented in Chapter 8 to
the IEEE conference on Computer Vision and Pattern Recognition 2003 [52]. The
rest of the thesis is still unpublished: in particular the alternative approach to
clustering proposed in Chapter 5 and the the face recognition system introduced
in Chapter 7 are works still in progress, which will be submitted when completed.
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Hidden Markov Models

This chapter introduces the Hidden Markov Model methodology: the literature
is briefly reviewed, applications are described and some technical details are pre-
sented.

The literature concerning Hidden Markov Models is very vast. At the risk of
unintentional unfairness, the first cited paper is nevertheless the survey that most
strongly influenced the author: the Rabiner paper [180], which clearly introduces
Hidden Markov Models and their application to speech recognition. Other useful
review papers were proposed by Bengio [20], where recent learning algorithms
and extensions of the basic model are reviewed, and by Ghahramani [83], in which
HMMs are introduced in the context of recent literature on Bayesian Networks [95].
Finally, a very comprehensive list of references on Hidden Markov Models can be
found on [41], updated to March 2001.

The chapter is organized as follows: in Section 2.1, a non comprehensive list of
applications where HMM were successfully employed is presented. Subsequently,
in Section 2.2, HMMs are formally introduced, and the related three common
problems are described.

2.1 Applications of Hidden Markov Models

Speech recognition is surely, in order of time, the first and most important applica-
tion of HMMs. Hundreds of papers appeared on this argument, but, for not unfairly
leaving out important works, only few historical papers are reported: [138], [180],
and [179], which not only contains information about HMM, but also a very com-
prehensive review of the speech recognition problem.

In the last decade HMMSs were successfully applied to a impressively large
number of problems: in the following, a list of applications using HMMs is reported,
with some references as example:

e handwriting character recognition: on-line [217,97,136] and off-line [168] recog-
nition;

e computer vision: image classification [145], gesture recognition [69,225], action
classification [112], face classification [194,125,70], 2D shape classification [94],
texture classification [178] and 3D range object recognition [90];
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signal processing [54];

finance [190, 188];

meteorology [188];

geomagnetism [188];

neurons signal analysis [182,39];
acoustics [184];

bioinformatics: DNA sequence and protein analysis [68] and identification of
ion channel currents [218,220,219];
EEG modelling [174,175];

robotics [92];

communications [129];

This is far from being an exhaustive list, but its aim is simply giving an idea of the
several possible applications of this methodology: for a wider list of references, see
the very comprehensive [41]. Other examples of applications will be presented in
the following chapters of this thesis: in the second part, in particular, some original
contributions to HMM applications will be proposed.

2.2 Fundamentals

A discrete-time first-order HMM [180] is a probabilistic model that describes a
stochastic sequence O = Oy, 0a, ..., Or as being an indirect observation of an un-
derlying (hidden) random sequence Q = Q1, @2, ..., @1, where this hidden process
is Markovian, even the observed process may not be so. Let us briefly recall the
concept of Markovian process: a process is said to be Markovian of order p if

P(Q¢|Q¢-1,Q¢—2, -, Q1) = P(Q¢|Q¢—1,Q¢—2, .-, Qt—p) (2.1)
The process associated with the HMM is Markovian of order one, i.e.
P(Q4|Qt-1,Qt—2, -, Q1) = P(Q¢|Q¢—1) (2.2)

A discrete first-order HMM is formally defined by the following elements:

o AsetS ={S1,52, - ,Sk} of (hidden) states. Although these states are hidden,
there are some practical applications (especially in speech and handwriting
recognition tasks) where some physical significances could be attached to the
said states. We denote the state at time ¢ as Q.

e A transition matrix A = {a;;}, of dimension k x k, where element a;; > 0
represents the probability of going from state S; to state S;:

ai; = A(S; = Sj) = PlQ41 = Sj|Q¢ = Si] 1<i,j<k (2.3)
Of course

k
a;; >0 and Zaij =1
=1

Such a matrix is called a stochastic matriz;
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o Aset V={v,vq, - ,vy} of observation symbols: this is the alphabet, and it
corresponds to the physical outputs of the process being modelled.

o A (kxm) emission matrix B = {b(j|5;)}, indicating the probability of emission
of symbol v; from state .S;:

b(j|Si) =P[Oy =v;|Q:=S;] 1<i<k, 1<j<m (2.4)

with .
b(jlS;) >0 and D ob(ils) =1
j=1

e An initial state probability distribution = = {m;},
T = W(S,) = P[q1 = Sz] 1 S ) S k, (2.5)
with,

k
m >0 and Zm =1
i=1

An HMM is completely specified by a 5-tuple A = (S,V, A, B, w), and defines a
joint probability distribution on the space of hidden and observed sequences, i.e.,
P(O = 0,Q = q|).

The HMM could also be used as generator model, in order to give an obser-
vation sequence O = 0;,0s,...,Op. This is carried out by following the algo-
rithm [180]:

1. choose an initial state Q1 = S; according to the initial state distribution 7r;

2. sett =1;

3. chose O; = v; according to the symbol probability distribution in state S,
that is b(j]S:);

4. transit to a new state QQ¢+1 = S; according to the state transition probability
distribution for state S;, i.e. a;j;

5. set t = t+1; if t < T return to step 3, otherwise terminate the procedure.

2.2.1 Types of HMM

The previous definition specifies discrete, ergodic and stationary Hidden Markov
Models. These three characteristics are related to two parameters: the emission
matrix (discrete) and the transition matrix (ergodic and stationary). There are
different alternatives to them, implying different types of Hidden Markov Models.

With regards to the transition matrix, the ergodic model is the most common
type: the HMM has a full state transition matrix, and every state could be reached
from every other state of the model (see Fig. 2.1(a)). For some applications, as
speech recognition, other topologies have been found to account for the specific
problem better than the standard ergodic topology. One example of such a model
is the left-right HMM [11], presented in Fig. 2.1(b). In this case, the HMM has
only a partial state transition matrix: as time increases, the state index increases
(or remains the same), i.e. the states proceed from left to right. Formally, this
implies
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O
(2
IS

(b)

Fig. 2.1. Different topologies: (a) three state ergodic HMM; (b) three state left-right
HMM.

a,-J-:O, Vi <i

Another aspect concerning the transition matrix is its stationarity: if
PlQuy1 = Sj|Q¢ = Si] = P[Qt4r4+1 = Sj|Qe4r = Si] = ai;  Vr

then the Hidden Markov Model is called stationary ( a;; does not vary over time).
Otherwise, HMM is called non-stationary.

With regards to the emission probability, it is worth noting that in many inter-
esting applications V is a continuous set, e.g. V = IR, and that it is advantageous
to use HMMs with continuous observation densities. In this case, instead of a ma-
trix of symbol probabilities B, for each state S; we have an emission probability
density function (pdf) b(o|S;), for o € V, and of course with [;, b(0[S;) do = 1. The
most general representation of the pdf is a finite mixture of the form

b(0|S;) = Z CimF(0, i, Uim) 1<i<k (2.6)

where o0 is the vector being modelled, ¢;,, is the mixture coefficient for the mth
mixture in state S; and F is any log-concave or elliptically symmetric density, with
mean vector f;,,, and covariance matrix Uj,,. For real (scalar or vectorial) obser-
vations, a very common approach is to model b(0|S;) as a mixture of Gaussians,

b(o[S;) Z cijN 0“"137 ) - (2.7)
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In the equation above, N (o|u,X) denotes a Gaussian density of mean p and
covariance X, evaluated at o. The observations from state S; are therefore modelled
as samples from a Gaussian mixture with M; components. In this mixture-based
case, for which the adaptation of the Baum-Welch procedure is straightforward
[116], B contains all the mixtures parameters (all the M;’s, all the p,;’s, etc.); the
HMM, in this case, is completely defined by A = (S, A, =, B).

Although the general formulation of continuous density HMMs could be applied
to a wide range of problems, there is another very interesting class of HMMs that
seems to be particularly suitable in certain cases, as for example speech recognition
or EEG modelling: the autoregressive HMMs [117]. In this case, the observation
vectors are drawn from an autoregressive process, and the emission probability
b(0¢|S;) is defined as

P(04]8i) = N(O¢ = Fyiy, 07) (2.8)

where Fy = —[04—1, 042, -+ ,04_p], T; is the (column) vector of AR coeflicients
for the ith state and o7 is the estimated observation noise for the i-th state. The
prediction for the ith state is _

Oz = thz
The order of the AR model is p.

2.3 The three basic problems of HMM

There are three main problems related to the HMM use:

1. Given the HMM A = (S,V,A,B,x), and the observation sequence O =
01,02, - ,0r (with Oy € V, for t = 1,2, ...,T), compute the marginal prob-
ability P(OJ|A), usually called the likelihood function, representing the prob-
ability that O was generated by the model A. This is usually defined as the
evaluation problem.

2. Given A = (S,V,A,B, ), and an observed sequence O = Oy, 0a,...,Or, de-
termine the state sequence Q = Q1,Qs,---,Qr (with Q; € {S:...Sx}) that
best “explain” the observations, i.e. that most probably generated the obser-
vation. This is usually called the decoding problem.

3. Given a set of L observed strings O = {O(l)}, where 1 <1 < L, and 0¥ =
01, O3, ...,O7y, adjust the parameters of a HMM A = (S,V, A, B, 7) in order
to maximize P(O|A). This is usually referred to as the training problem.

2.3.1 Solution to Problem 1

Given the HMM X = (S, V, A, B, 7), and an observations sequence O = 01,03, -+ , O,
the goal is the computation of the marginal probability P(O|). By using marginal-
ization and the Bayes theorem, P(O|A) could be computed as

P(O|X) = > P(0,Q|N)
all Q

= > P(0|Q,\)P(Q|))
all Q
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Now, assuming statistical independence for observations, we have that

T
P(0|Q,)) = [] P(0:]@Q:, N)
t=1

= 5(01]Q1)b(02(Q2)...b(O1|Q)

(2.9)
The other factor P(Q|\)) could be computed as
P(QIN)) = 70,00,Q20Q2Qs+-0Qr_1Qr
Putting all together, we obtain
P(O]A) = Y P(OIQ,N)P(QIN)
all Q
= Y. 7q:b(011Q1)aqq:b(02|Q2) g, - b(O1|QT)
all Q1,Q-,....Qr
(2.10)

A little thought should convince the reader that the calculation of P(O|\) with
(2.10) involves the order of 27 - kT calculation: this computation is unfeasible, and
a more efficient procedure is required. Such a method exists, the so-called forward-
backward procedure [14,17]. This technique is based on two variables, the forward
variable a4 (i) and the backward variable f;(7). The former (a¢(7)), is defined as

at(i) = P(Ol...Ot,Qt = S,|}\) (211)

and represents the probability to have observed the sequence O;...0; up to time
t, and being in state S;. It is recursively computed by the following formulas

aq (i) = m;b(01|S;) 1<i<k

k
at+1(i) = [Z at(j)aji b(0t+1|Si) 1 S t S T — 1, 1 S i S k
j=1

The backward variable is defined as
Bt(l) = P(Ot+1...OT|Qt = S“)\) (212)

and represents the probability to observe the symbols O¢1...O1, being in the state
S; at time ¢. This variable is recursively computed:

Br(i) =1 1<i<k
k
Bi(i) = aib(Or1|S)Bia(j)  t=T—1,..,1, 1<i<k
j=1

P(O|A) is then computed as,
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P(O|X) = Z o (i)Be (i) Vit (2.13)
By fixing ¢ = T we obtain
k
P(OIX) = ar(i) (2.14)
i=1

2.3.2 Solution to Problem 2

Given A = (5,V, A,B, ), and an observed sequence O = Oy, O3, ..., Or, the aim
is to determine the “optimal” state sequence that generated O. Several criteria
could be adopted to define the concept of “optimality”. Finding the single best
path that maximizes the probability to generate the sequence is the usual one.
The goal is therefore to find the state sequence Q Ql, Qz, .- ,QT, such that

Q= P(0,QN).
arngax ( RY;

This problem is solved by the Viterbi algorithm [222,79]. This procedure starts by
defining the quantity

5t(l) = ngx P(Q17Q27 JQt = SiJOhO?J"';Otl)‘) (215)

representing the best score (i.e. the highest probability) along a single path, at
time ¢, which accounts for the first ¢ observations and ends at state S;. To retrieve
the state sequence, the argument of the §; has to be stored for each ¢ and each i:
this is obtained using the vector (7).

The Viterbi algorithm is then defined by the following recursive steps:

1. Initialization:

61 (Z)
1 (i)

T (01'5,) 1<i<k
0 1<i<k

2. Recursion: _ .
6:(i) = lrg%g[ét 1(9)ai]b(0]S;) 1<j<k

(i) = arg max [0 1 ()ay;]

3. Termination:

P = max [0 (4)]

Qr = arg max [67(0)

4. State sequence backtracking:

N

Q1 =’¢t+1(Qt+1) t=T-1,T-2,..,1
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2.3.3 Solution to Problem 3

Given a set of L observed strings © = {O®}, where 1 < | < L, and O =
01,03, ...,07,, assumed to be independent samples taken from a common HMM
A=(5,V,A,B,r), the aim is to determine A. This is the most difficult problem,
which is usually solved by adopting the Maximum Likelihood (ML) criterion, that
is,

~

L
A = argmax P(O|\) = arg maXH POD|N);
A A
The best-known algorithm to implement this ML criterion is the so-called Baum-
Welch re-estimation technique [15,14,17,16,13]. This is a particularization of the
well known Ezpectation-Mazimization (EM) algorithm [57,226) for ML estimation
problems with missing data (the missing data in this case is the hidden sequence

Q).
In order to describe the procedure for the re-estimation of the HMM parame-
ters, two variables have to be introduced:

e &(i,7): it represents the probability of passing from state S; at time ¢ to state
S; at time ¢t 4 1, given the observations and the model, i.e.

gt(lvj) = P(Qt = Sint-‘rl = SJ|O7)‘) (216)
This variable is computed using forward and backward variables as

é.t(laj) = P(Qt = SiaQt-i—l = SJ|07A)

_ PQ¢ = 5i,Qu11 = 55,0(N)
P(O[A)
_ @1(8)aijb(O0r411S5) Br41(5)
P(O|A)
_ _ ou(i)ai;b(0441]55)Brv1(J)
2i 225 ae()aib(O1]S5) Bet1 (7)

Note that the sum of &(i,5) over time ¢ could be interpreted as the expected
number of transitions from state S; to state Sj.

e (7): it represents the probability of being in state S; at time ¢, given the
observation and the model, i.e.

7i = P(Q: = Si|O, A) (2.18)

(2.17)

This variable is computed as

7:(i) = P(Q¢ = Si|O, A)

P(Q¢ = S;,0|A)
P(O[N)

_ay(i)Be(d)
T Ea@)Bi(i) (2.19)
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The variable ~;(t) could be also expressed in terms of the variable £:(3, j), giving

"(i) = Z &(i, §) (2.20)

In this case too, the sum of 74() over the time ¢ can be interpreted as the
expected number of transitions from S;.

Given those two variables, the re-estimation procedure determines the values of
the parameters A, B, with the following procedure:

m; = expected frequency in state S; at time ¢t = 1
= (i) (2.21)

expected number of transitions from state S; to state .S;

a;; = —
Y expected number of transitions from state .S;

i €t (ia .7)
==L (2.22)

T-1
Z 72 (4)
t=1

expected number of times in state S; and observing symbol v;

b(v;]S;) =
(v;155) expected number of times in state S;

3
L

0]

~

9||M
=

@
=+

et Sl (2.23)

3
L

-
Il
-

If we define the current model as A = (S,V, A, B, w), and use it to compute the
right hand side of (2.21), (2.22) and (2.23), we define the re-estimated model as
A= (S,V,A,B, 7). It has been shown by Baum and his colleagues that

P(O|X) > P(O[))

which means that, at each iteration, the likelihood has increased, until a maxi-
mum is reached. The final result of this procedure is the trained HMM, called the
Mazimum Likelihood estimate of the HMM.

Moreover, it has been proved [180] that this formulation could be perfectly
casted into the expectation-mazimization (EM - [57,226]) framework. Finally, as
this problem is an optimization problem, some gradient descent techniques have
been employed [138], yielding nevertheless solutions comparable to those of stan-
dard re-estimation procedure above presented.

This technique is quite effective and really fast: typically the algorithm con-
verges after about ten iterations. The main drawback is its local behavior, implying
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the convergence to the nearest local maximum. Since the likelihood is highly mul-
timodal, the initial conditions could crucially affect the effectiveness of the learn-
ing. Another severe limitation is the fact that re-estimation formulas are based
on computation of frequencies, or expected times, of events. This implies that a
big training set is indispensable in order to obtain reliable estimate of the HMM
parameters.



Part I

Methodological Issues






Summary

This part contains the description of the methodological contributes to the Hidden
Markov Models problem developed in this thesis. More in detail, Chapter 8 intro-
duces the Model Selection problem, regarding the question of choosing some quanti-
tative characteristics of the model, as number of states, type of connections etc. A
formal proof on the equivalence between Gaussian continuous HMMs is proposed:
this permits to reduce the problem of selecting the best model (i.e. choosing the
number of states and the number of Gaussians for state), to a simpler one, where
only the number of states is searched for. Subsequently, three original methods are
proposed, each one characterized by different features: the first method presented
is directly linked to the initialization phase, resulting in a very fast approach; the
second one proposes to use a syntactic method, called probabilistic bisimulation, to
solve the problem; the third one overcomes drawbacks of standard model selection
techniques, improving also the initialization stage.

Subsequently, Chapter 4 deals with the classification scheme intrinsically linked
with HMM wuse: first the standard classification scheme is introduced, together
with some quantitative considerations about reliability of this standard rule; sub-
sequently, a new classification scheme is proposed, inspired by the classification by
similarity paradigm, able to really improve performance of HMMs. This scheme
introduces a mew representation space, where sequences are featured by pairwise
distances, allowing optimal discrimination with standard point (not sequence) clas-
sification techniques.

Finally, in Chapter 5 the clustering problem is addressed: clustering of se-
quences using HMMs was poorly addressed in the literature, only few papers ap-
peared on this topic. Here two new approaches are introduced: the first represents
a slight modification of the standard approach, aimed at giving a more understand-
able and intuitive measure of distance between HMMs. The second is an alternative
scheme, based on the similarity representation introduced in the classification con-
text, able to reduce the complex problem of clustering of sequences to a simpler
and more addressable problem of clustering of points, for which numerous methods
have appeared.






3

Model Selection

3.1 Introduction

The core entities of the statistical approach to the Pattern Recognition are rep-
resented by the probability density functions (pdf): these quantities are typically
unknown, and should be estimated from data. There are several tools used to
model an arbitrarily complex pdf, some examples are Gaussian Mixture Mod-
els (GMM [154]) and Hidden Markov Models. In the last years, standard tech-
niques have been established for fitting a model to data, such as Expectation-
Maximization (EM) [57,226] or minimum least square methods. These techniques
assume the “size” of the fitting model known, finding the most appropriate values
for the model parameters. The problem of finding the best model size is usually
referred to as the model selection problem, and it represents a crucial step in the
modelling issue. Its importance could be understood by considering the simple
problem of approximating a set of points with a polynomial curve. Once decided
the degree of the polynomial, well established techniques for finding its coefficients
are available (e.g. least mean square method). The choice of the degree, that rep-
resents in this case the model selection issue, is critical: if a too small degree is
chosen, the model is not able to capture the significant behavior of the curve; on
the other hand, the choice of a too large degree results in a too much detailed
representation, unable to adequately generalize, as the model tries to assimilate
all the details, also those derived from noise.

In the HMM case, the model selection issue is related to the the determina-
tion of the topology and the number of states k. The former aspect concerns the
possibility of introducing some constraints in the HMM structure, such as forcing
the presence or absence of connections between certain states. The topology is of-
ten dependent by the specific application addressed, and typically chosen a priori:
great advantages could be derived from such tailored topologies, as circular HMM
for shape classification [7] or lexeme HMM for handwriting recognition [144], or
HM-Network for speech recognition [208]. Nevertheless, in a strict sense, there
is actually no selection or search for the best topology. The topology is in fact
designed and chosen ad hoc, depending on the particular application context.

The second issue is more interesting, and concerns the determination of the
number of states: this represents the first and fundamental step in the selection of
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the model. Some aspects have to be considered; the first is the complexity of the
modelled class: if a large variation between classes is present (consider as example
the class of “.” and the class of “W” in the handwriting character recognition),
it is obvious that the size of the model could not be the same for all classes, but
it has to change, in order to adapt itself to the complexity of the class modelled.
On the other hand, too large a model could produce a situation of “overfitting”,
where the model is too specifically learned on the training patterns, and is not
able to generalize to other test patterns. Choosing accurately the model size for
each class is therefore crucial in order to obtain a good modelling.

It is well known that the model selection problem can not be addressed by
the ML criterion [75]. The reason for this is that the models are nested, i.e., an
HMM with fewer states can always be seen as a particular case of a larger model.
Then, the maximized likelihood is a non-decreasing function of the number of
states and cannot be used as a model selection criterion. To overcome this problem,
typical model selection criteria, as Bayesian inference criterion (BIC) [196] - deeply
detailed in the following, adds a penalty term to the likelihood, discouraging larger
models.

In the case of HMMs with emission densities modelled by Gaussian mix-
tures, the model selection involves also the choice of the number of components
at each state, M, ..., M. In this case, nevertheless, there is an additional non-
identifiability issue. For example, consider an HMM with two states, such that one
of the states has a two-component mixture emission density, and the other state
has a single-component Gaussian emission density. This HMM is equivalent to
another one with three states characterized by single-Gaussian emission densities.
This fact could be generalized: in Section 3.3 it is shown that, for each HMM with
more than one Gaussian per state there is another HMM, with more states but
only one Gaussian per state, that is equivalent to it. Therefore, the search could
be restricted only to the number of states, without any care about the number of
Gaussians for state.

The rest of the chapter is organized as follows: in Section 3.2, the state of
the art is detailed, together with a brief introduction about Bayesian Theory,
while in Section 3.3, the proof of equivalence between continuous HMMs with
different number of Gaussians per state is presented. The next three Sections deal
with original contributions of the author in the field of model selection, each one
featured by different characteristic: the first method, proposed in Section 3.4, is
linked to the initialization phase, resulting in a very fast approach; the second
one, detailed in Section 3.5, proposes the use of a syntactical method to solve the
problem; the last, explained in Section 3.6, overcomes the drawbacks of standard
model selection techniques, improving also the initialization stage.

3.2 State of the art

Despite its importance, the state of the art of the HMM model selection problem
is quite poor: the mostly used solution is still to fix a priori the number of states
and the connectivity of transitions, with the help of some heuristic knowledge
(for example, one can try with different number of states and look for the best
behavior [94]).
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The state of the art could be divided in four categories: deterministic ap-
proaches, where the topology and number of states are merely derived from con-
siderations about specific applications, standard model selection approaches, where
standard model selection criteria are applied to the HMM context, splitting and
merging approaches, where the best model is obtained by successive split or merge
operations, and Bayesian approaches, where the optimal model is determined by
using the Bayesian Theory.

3.2.1 Deterministic approaches

These approaches are characterized by a substantial use of the application knowl-
edge, and typically are not employable in different contexts. Some examples
are [92,136,230]. In [92] HMMs are used for the prediction and the analysis of
sensor information recorded during robotic telemanipulation tasks. Each state is
then associated with one of the process subtask: the size of the model is therefore
determined by the complexity of the process. The transition probabilities encode
the ease with which the operator completes the task.

In [136], the authors propose to determine the topology by a data-driven ap-
proach, in the case of on-line Korean handwriting recognition. Starting from the
observation that in the Korean script each sample could be represented as a com-
bination of straight lines, the exploited idea is to assign one state to each straight
line class, determined using a clustering approach. A left-to-right topology is em-
ployed, and a parameter tying scheme is proposed, whose aim is to avoid the
excessive growth of the number of states.

In [230], the authors compared three different approaches to the choice of the
length of the HMM for single handwritten character recognition systems: the stan-
dard fixed length models, the Bakis-model, where the number of states is propor-
tional to the average number of observations of the corresponding training samples,
and the Quantile model, where the number of states of the HMM is defined as a
specified quantile of the character length histogram. The system was deeply tested
on isolated words recognition task.

The major drawback of these approaches is that the said methods are very
specifically tailored for particular applications, and cannot be used or exported in
other contexts.

3.2.2 Standard Model Selection criteria

The standard model selection criteria approaches addressed the problem of deter-
mining the best structure of HMM by using standard model selection criteria, i.e.
criteria that are not finely tuned for HMMs, but are general, and employable in
different contexts.

A method that could be used to estimate the number of states is the so called
Cross walidation (CV - [207]): this method is computationally heavy and does
not use the available data efficiently. In CV, the observed data is split in two
subsets: one becomes the training set, the other is called test set (the splitting
strategy depends on the specific details of the CV technique chosen); different
models are then obtained using only the training set (e.g., varying the model
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structure) and the one showing best performance on the test set is chosen. CV
represents a widely applied method for estimating parameters values (as the K
parameter in the K-Nearest Neighbor classification), and is also employed to obtain
statistically reliable evaluation of system performances.

More specifically linked to the HMM issue, in [144], the Bayesian inference
criterion (BIC) [196] is used, in order to determine the number of states or the
number of Gaussians for state for continuous HMMs. The topology employed is
fixed, and consists in a left-right structure, with an absorbing state allowing the
handling of incomplete patterns. The system is tuned for handwriting character
recognition, and is compared to application-specific heuristic approaches in terms
of resulting model size.

In [91] the problem of choosing the appropriate number of states in speech
recognition task is addressed using Bayesian inference criterion (BIC) [196] and
Minimum Description Length (MDL) [185] criteria, together with some heuristics.
This approach is tested on simple alphadigits recognition.

3.2.3 Splitting and merging approaches

This class of approaches is characterized by the same idea: starting from an in-
appropriate but simple model, the correct model is determined by successively
applying an operation that modifies the structure, until some stop criterion is
reached. The difference between splitting and merging approaches is evident: the
former starts from a concise model and grows it by splitting its states, while the
latter starts from a general oversized model and shrinks it by merging or pruning
its states.

To the former class belongs the approach proposed in [101], where the prob-
lem is addressed by using a splitting strategy together with the Akaike’s infor-
mation criterion (AIC) [5]. This criterion is based on the Kullback-Leibler dis-
crepancy [131,130], a measure of distance between probability distributions. The
proposed approach is incremental, and determines the structure by adding states
(by splitting) and transitions to an initial simple model; the process is ended when
the AIC criterion reaches a minimum. The state to be split is chosen by measuring
the “badness” of each state, measured with the probability to stay in that state
times the entropy of the state. The transitions to be added are chosen by evaluat-
ing the increase in the likelihood produced by each connection potentially added,
and choosing the transition that, if added, maximally increases the likelihood: an
approximated procedure is proposed in order to make the likelihood computa-
tion feasible. The approach is tested on artificial data and real phone recognition
problem.

Two historical and widely cited approaches are [208] and [199]. The former [208]
was proposed in the 1992, and consists in a successive state splitting algorithm used
in the context of speech recognition for efficient allophone modelling. This method
is strictly tuned for Hidden Markov Networks (HM-Net), an ad hoc topology specif-
ically designed for speech recognition, illustrated in Fig. 3.1. The algorithm chooses
to split the state that presents the larger variability, measured by analyzing the
state Gaussians means and variances. The chosen state could be split in the tem-
poral or in the contextual domain, as illustrated in Fig. 3.2, depending on which
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Fig. 3.1. The architecture of the HM-Net.
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Fig. 3.2. Two types of state splitting proposed in [208].

domain splitting results in the maximum likelihood. The problem of this method
is that it works properly only for well defined training topologies, or speaker de-
pendent data. This method, in fact, splits the most “variable” state that, in case
of speaker independent data, reflects the speaker’s variability, rather than coartic-
ulations or temporal effects.

This drawback is resolved in [199], where a similar approach is proposed, also
aimed at estimating the architecture of a Hidden Markov Network for the speech
recognition problem. The approach calculates for each state the expected likelihood
gain obtained by the splitting (in both temporal and contextual domains) and
splits the state with the highest expected likelihood gain.

A pruning strategy for HMM topology estimation is proposed in [216], in par-
ticular aimed at the estimation of the number of states of discrete HMM. The
proposed algorithm iteratively prunes state transitions, by training one HMM for
each potential pruned connection, and choosing the topology that presents the
maximum likelihood. The pruning procedure stops when there is a sudden re-
duction in the likelihood. The major drawbacks of this approach are the large
computational burden required (at each iterations, all potential pruned HMMs
are trained) and the empirical content of the stopping criterion.
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3.2.4 Bayesian approaches

This section describes some interesting approaches to the model selection issue for
Hidden Markov Models, which make use of the Bayesian Theory: this theory is
briefly introduced in the following section.

Introduction to Bayes Theory

The Bayes theory represents a particular way of formulating and dealing with
statistical decision problems. It is able to formalize the a priori knowledge on the
problem, and to combine it with the available observations, in order to obtain an
optimal (in some sense) decision criteria. In the literature, several books deal with
this topic (some examples are [22], [187], and [23]); nevertheless, it is worthwhile to
cite the soon available but still unpublished [75], the book that mainly introduced
the author into the basics of the Bayesian Theory!.

In order to understand the Bayesian approach to the parameter estimation
problem, let us introduce the difference between the Mazimum Likelihood (ML)
approach (as Baum-Welch re-estimation), and the Bayesian approach. Given a
set YV = {y1 ---yn} of observations (supposed independent, identically distributed
(i.i.d.)) derived from a fixed but unknown probability distribution P(y|M), the
goal is to infer the model M from the data. Supposing that there are different
classes M; from which to choose the model M: M; could represent different archi-
tectures of the model (for example, different topologies, in the HMM case).

Before dealing with the comparison between model architectures M;, let’s in-
troduce how each model is characterized using the two approaches. Fixed a model

M;, the Maximum Likelihood (ML) approach finds the parameters éi(ML) of the
model M; that maximize the log likelihood £(8;) = log P()|6;), i.e.
6" = argmax{log P(V16:)} (3.1)

In other words, the ML approach characterizes the model M; by a point estimate
of its parameters 6;.

The simplest model selection criteria that intuitively could be used is to com-
pute the ML-estimation parameters éEML) for all classes M;, and to choose the
class My, for which the likelihood P(Y|Myr) is maximal. Unfortunately, this
criterion could not be used for two reasons: first, it is well known that ML ap-
proach tends to overfit the data; secondly, ML prefers complex models, since they
have more parameters and fit better the data.

The Bayesian approach provides, in principle, a solution to these problems.
The basic idea under this approach is the following: instead of characterizing each
model M by computing a point estimation of the parameters, this methods com-
putes, for each model class M;, the entire posterior probability P(M;|)). In the
Bayes theory, the posterior probability P(M;|Y) represents all the information on
M; derivable from the observations ), and is obtained by considering the param-
eters 6 as random variables, and integrating them out. Successively, the model

! Thanks to Mério A.T. Figueiredo that gave me a chance to read the draft version.
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selection phase, i.e. the choice between different classes of models, is performed
by comparing directly the posterior distribution P(M;|)).
More in detail, the posterior probability P(M;|)) is computed using the Bayes
rule:
P(Y|M;)P(M;)
P)

where P()|M;) is again the likelihood or evidence, and P(M;) is the prior probabil-
ity, resuming the a priori knowledge on model M;. The entire posterior probability
P(M;|Y) is obtained by considering the parameters 6; as random variables, and
integrating them out from the formula:

P(M,|Y) = (3.2)

P(M;|Y) oc P(M;)P(Y|M;)
= P(M)) / P(Y,6;|M;)db;

= P(M;) [ P(YI6:, M) P(O:| M)t (3.3)

where P(M;) is the model prior, summarizing the a priori knowledge on the model
M;, and P(6;|M;) is the parameter prior, summarizing the knowledge about pa-
rameters 6; given a fixed model M;.

The simplest way to use this theory is the following: assuming that the poste-
rior distribution P(M;|Y) is unimodal, it could be approximated by its maximum

< (MA
P(Gi(M P)D?), where

éi(MAP)

= argmax{P(M;{Y)} (3.4)
In this case, the Bayesian estimate degenerates to a point estimate, as in the
ML case; therefore a similar model selection rule could be used, called Maximum

A posteriori (MAP) rule. This rule chooses the model My ap that maximizes
< (MAP
the posterior probability P(Gi( )|y) over all model M;, computed using Bayes

theorem:

~ (MAP) ~ (MAP)
MMAP = argmzaxP(Gi )P(y|0z

)

Py L 10g PG, 7)) (3.5)

= arg mzax{log P(y|é,~(MA
where the passage to the logarithm function does not affect the computation of
the optima, but results in a more manageable function. Looking at the eq. (3.5),
observe that the MAP approach maximizes the likelihood of the data plus a regu-
larization term: this term typically assigns a penalty to the model size, increasing
for larger models. In other words, by the use of a prior probability, the Bayesian
approach is able to penalize complex models, preventing overfitting and allowing
optimal structure determination.

Obviously, in this simplified MAP case, not the whole potentialities of the
Bayesian approach are used, especially knowing that, in real applications, the
posterior probability is typically highly multimodal, and major utility could be
derived by using full Bayesian approach. Nevertheless, the major drawback of this
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approach is that the computation of the integral in (3.3) is intractable, even for very
simple cases (e.g., factor analysis, see [31]). Different approaches have been pro-
posed to approximate it, mainly falling in three general categories: Markov Chain
Monte Carlo methods [86,152], large sample methods (as Laplace approximation,
exemplified in the Section 3.4.3) [183], and variational methods [106,105,84].

Bayesian Model Selection for Hidden Markov Models

The most famous Bayesian approach to model selection for Hidden Markov Model
is without doubts the algorithm proposed by Stolcke and Omohundro in [205,206],
where a merging state strategy was implemented in order to maximize the posterior
probability P(M;|X) of the model M;, given the data X . The posterior probability
P(M;|X) is computed, as explained in the previous section, using the Bayes rule

P(M;|X) oc P(M;)P(X|M;) (3.6)

The merging strategy starts from the most specific model, that reproduces exactly
all sequences of the training set: one parallel path for each sequence, and, in each
path, one state for each symbol. Then, successive merging operations are applied to
this model, where the states to be merged are those maximizing the P(M;1|X);
the merging algorithm is stopped when the posterior P(M;|X) reaches a local
maximum. Several approximations were introduced, in order to make the approach
feasible: in particular, the likelihood P(X|M;) is computed only on the Viterbi
path, and it is assumed that the merging operation does not affect the Viterbi
path.

Another interesting Bayesian approach for Hidden Markov Model is proposed
in [33,35], where an entropic prior is used to penalize the likelihood, discouraging
low entropy parameters. The author introduces a modified version of the standard
EM algorithm, able to drive to zero weakly supported parameters, skeletonizing the
model and concentrating evidence on surviving parameters. This pruning strategy
guarantees the increasing of the posterior probability at each step, and results in
compact and sparse models, with interpretable states. The approach was applied to
several real problems, as music, handwriting, video time-series, but no to synthetic
examples. A similar but more formally justified idea was used in [73] for mixture
of Gaussians, where an improper Dirichlet prior and a modified EM were used to
enhance the annihilation process.

One variational approach to Bayesian HMM model selection was proposed by
Mackay in [151]: in this paper, the goal is to approximate the entire posterior
probability, using an ensemble. This approximation is obtained by maximizing
a variational free energy, which measures the relative entropy between the ap-
proximating ensemble and the true distribution. Using the Neal and Hinton [159]
observation that the EM algorithm can be viewed as a variational free energy
minimization method, they propose an EM-based algorithm to find the optimal
approximate posterior distribution, using only the assumption that the approxi-
mating function (the so-called ensemble) is separable in the HMM parameters A,
B, 7 and in the unknown state sequence S. Even if very interesting, this approach
was not implemented, remaining only a theoretical formulation.
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Other Bayesian approaches were recently proposed: in [188], a reversible jump
Markov Chain Monte Carlo scheme was used to approximate parameters and num-
ber of states, and tested on finance, meteorology and geomagnetism data. In [29],
the HBIC (HMM BIC) criterion was introduced, obtained by approximating the
Bayesian integral (3.3) with Laplacian approximation: this results in a criterion
that takes into account the complexity of the HMM problem, adding more terms
in the BIC computation; instead of using the same prior for all parameters, in
this approach different priors are used, determined by hand, by fitting them to the
data.

3.3 Equivalence between continuous Hidden Markov Models

In this section, we show that, given an HMM A with k states, where the emission
probability of each state S; is a mixture of (univariate or multivariate) Gaussians,
each Gaussian having parameters 6;,,,

M;

b(OIS) = 3 cimN(Ol0im) (3.7)

m=1

there is another HMM X with k' = Zle M; states, with only one Gaussian for
state, that is equivalent to A. Here, equivalence is understood in a likelihood sense,
that is, P(O|A) = P(O|X’), for any sequence O = O1,Oa, ..., Or.

First we will describe how the A’ model is built; subsequently we will show
that the two models are equivalent. Given A = (S, A, 7, B), the equivalent model
X = (8", A", 7', B') is defined as follows:

e New states: we split each state S; into M; states, one for each of the M;
Gaussians of the mixture of S;. Thus we obtain k' = Ele M; states and

SI = {S{a 75119’} = {Sila ---:S{Mlaséla ---;SéMzaSéla "-:S;ch}a (38)

where we have introduced the double index notation in which S}, corresponds
to the m-th Gaussian of the original state S;.

¢ Emission probabilities: naturally, the emission probability of state S}, is
the corresponding Gaussian

b'(01Sim) = N(O|0im) (3.9)
e State transition probability: using the double index notation, where
;k,jm = P(Qt+1 = S;m|Qt = S;k) (310)
denotes the probability of going from state Sy, to state S7,,, we set
A;k,jm = Az']' Cim, (311)

where ¢;,, is the mixing weight of the m-th component from the original state
S;. Notice that A} does not depend on k and that, as required,

ik, jm
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M; k M;
! _ ! — .. P
E Az’k,jm—E: E Az’k,jm_E:AlJ E:ij—l-
im j=1 m=1 j=1 m=1

e Initial state probability: similarly to the previous definition, we set
T'(Sim) = 7(S}) Cjm (3.12)
which is also clearly normalized.

The proof of the equivalence between the two HMMs uses the forward-backward
procedure (see, e.g., [180]), the standard technique for computing P(O|\). This
technique is based on the forward variables a;(S;), defined as

Ott(Sz') = P(Ol, veey Ot,qt = S,|A) (313)

which are iteratively computed according to

aq (S,) = ’IT(S,)b(OﬂS,) (3.14)
k
ar1(Si) = b(0411(Si) D o (S;) Aji (3.15)
j=1

Given the sequence O = Oy, ..., Or, P(O|A) is computed by marginalization,

k k
P(OA) =Y P(O1,.,0r,Qr = SilA) = Y ax(S;) (3.16)

i=1 i=1

With the goal of showing that P(O|A) = P(O|X’), let us rewrite P(O|N’) as

kl Mz
PON) =Y ar(s) =32 3 ar(Si) (317)
i=1 i=1 m=1
that is, using the double index notation introduced in (3.8). Let us also define
M;
ar(Si) = Y ar(Shy) (3.18)
m=1

Clearly, if we show that, for i = 1,...) k,
ar(S;) = ar(S;) (3.19)

then, we will be able to conclude, as desired, that

k k kM K’
S ar(S) =Y ar(S) =" > ar(Sh,) =Y ar(S))
=1 i=1 =1 m=1 =1
P(O|X) PO

We will now show (3.19) by induction on the length T of the sequence O.
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o We start with T'= 1. From (3.14), we know that

a1(S;) = m(S;) b(018;) = Zc,m (O10im) (3.20)

Now, we can also write

M; M;
L(S;) = N(010;
a1 (Si) = Z '( (O1]0im)
m=1 m=1
M;

= > 7(Si) im N (O10imm) = ( Zcm (O116im)

3
I

where the first equality is (3.18), the second one is (3.14), the third results
from the definitions of the model A’ (3.9) and (3.12). Then we have shown that
aq (Sl) = Olll (Sz)

e To show the recursion, we have to prove that
aT(Si) = OLL[(S,) = o741 (Sz) = OLIT_H (Sz) (3.21)

Invoking (3.15), we can write

aT_H [Z aT z] (2 CimN(OT-{-lleim)) (3.22)

Also, by using (3.18), and again (3.15), we have

aT—i—l E aT+1 zm

M;

k M,
= Z CimN (Or+1|0im) ZAjiZaT(Sg'f)
m=1 j=1 =1

M; k
< sz./\/' 0T+1|0im)) ZAji a{T(‘S’J) (323)
j=1

m=1

where the third equality results from (3.11), and the last one from (3.18).
Finally, comparing (3.23) with (3.22) clearly shows that the implication in
(3.21) is true.

This concludes our proof that P(O|A) = P(O|X).
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In this section a simple but fast approach to the model selection problem is pre-
sented, able to reduce computational burden required by standard model selection
techniques. The proposed approach is directly linked to the initialization issue of
the training process, so we first introduce this issue.

3.4.1 Initialization

As explained in Section 1.1, the initialization of the training procedure crucially af-
fects the effectiveness of the obtained model parameters, as the learning procedure
is a local optimization strategy, and the likelihood function is highly multi-modal.
Careless initializations could lead to poor estimates of the model, and this be-
havior strongly affects the model order selection criteria. A typical solution, used
for discrete HMM but deleterious for continuous HMMs, is to use several random
initializations and choose as final estimate the one with the highest likelihood.

An alternative approach is to perform a preliminary clustering of the coeffi-
cients, using for example a Gaussian Mixture Model (GMM) [154] clustering, in
order to initialize the emission matrix of the HMM before starting the training pro-
cess. In larger detail, given a set of sequences {O'} = {0i...0%, }, the initialization
phase proceeds as follows:

1. Consider the set D = {0}, 03, ...,0%,,07,03...}, that is the set of values of
the unrolled sequences; each sequence is considered as a set of scalar values
(no matter in which order the coefficients appear).

2. Cluster the set D into k clusters using a GMM clustering approach, i.e., fitting
the data using k Gaussian distributions, where k is the number of states of
the HMM; the Gaussian parameters are estimated by an EM-based [57,226]
method.

3. The mean and variance of each cluster are then used to initialize the Gaussian
of each state, with a direct correspondence between clusters and states.

3.4.2 The proposed approach: motivations

Standard methods for model selection address the problem by training several
models, with different structures, and then choosing the model that maximizes a
certain selection criterion. Although these approaches perform rather accurately,
they require one model training for each model structure, thus involving a consid-
erable computational burden.

In order to reduce the computational load, in our approach the model selection
issue is addressed in the initialization phase. In particular, the choice of the model
is determined by a model selection analysis of the GMM clustering phase: the
number of states of the HMM is set as the number of Gaussians of the mixture
that best fits the unrolled sequence. Only one HMM training session is therefore
needed, with a noticeable reduction of the computational load. It is worth noting
that this model selection scheme determines the model that best fits the unrolled
sequence: in this sense this is a coarse model selection scheme, as only the sequence
values are considered and not the order in which they appear. The dynamics of
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the sequence, i.e., the way in which these segments are ordered, is thus encoded
into the transition matrix.

To choose the GMM model that best fits the data, the Bayesian Inference
Criterion (BIC) approach [196] is adopted: this Bayesian criterion derives from the
Bayes Theory, presented in Section 3.2.4, and is detailed in the following section.

3.4.3 The Bayesian Inference Criterion

As explained in Section 3.2.4, the goal of the Bayesian approach, given a model
M; and the data set D, is to estimate the entire posterior probability P(M;|D),
by integrating out the parameters 6;. The posterior is computed as

P(M;|D) « P(M;)P(D|M;) (3.24)
where P(M;) is the model prior, and P(D|M;) is called the integrated likelihood,
determined by

P(DIM,) = POM,) [ P(DI6. Mi)P(6,M)do, (3.25)

The problem of the Bayesian approach is that this integral in not computable,
and some approximations should be done. The BIC criterion is the result of one
such approximation, more specifically it derives from the “Laplace method for
integrals”. Let us consider only one model M;, so that the equation (3.25) could
be rewritten as:

HDﬁiéPWWWWMH (3.26)

Let us suppose, for simplicity, that the data set D is composed by n i.i.d. obser-
vations {yi...yn }. Define the function g(8) as

9(0) = log(P(D|6)P(8)) (3.27)

Let 6 be the value of @ that maximizes the function 9(0), i.e. 0 is the MAP
estimate. Consider the Taylor series expansion of g(@) in 6:

9(8) = 9(8) + (0 -6)"¢'(8) + %(0 ~6)79"(6)(6 - 8) +o(|l6 - 8])

where the superscript 7' denote the matrix transpose, and ¢'(8) and ¢"(6) denotes
the first derivatives vector and the Hessian matrix, respectively. These quantities

are defined as 99(8) 20(6)
/ _ g g9
g(e) - ( 801 y 802 7"')

and

96,00, 00,00,
g = | 290
96,00,

~—
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Now @ is the maximum of ¢(8), and hence ¢'(0) = 0; so we could obtain

9(0) ~ 9(8) +5(0 - 89" (B)(0 - ) (3.25)

Please note that this approximation is good only if 8 is close to 8. However there are
two considerations that justify this approximation: the first is that, if the number
of observations n is large, the maximum of the likelihood P(D|@) converges to
the maximum of the posterior 8 [30]; the second fact is that, in the case of a
large n, the likelihood is sharply peaked around its maximum: only values of @
that are close to 8 will contribute much to the integral (3.26) defining P(D) [211].
Using these two considerations we could consider the quantity in (3.28) as a good
approximation of (3.26), if n is large. So,

P(D) = /0 ICPT:
~ e9(0) /e%(afé)Tg”(é)(efé)dg (3.29)

Recognizing the integrand in the equation (3.29) as proportional to a multivariate
normal density, we could use the “Laplace method for integrals”, that approxi-
mates P(D) as

2 _1
P(D) ~ 9@ 2781472 (3.30)

where d is the number of parameters in the model and A = —g"(). The error
introduced in the approximation is O(n~!) [211], where O(n™!) represents any
quantity such that nO(n~!) — a constant, as n — oo. Passing to the logarithm
representation,

. . d 1
log P(D) = log P(D|6) +log P(6) + 7 log 27 — - log|4] + on™ 1Y  (3.31)

Now, for large number of samples n, the MAP estimate correspond to the Maxi-
mum Likelihood estimate 8. Moreover, for i.i.d. observations, A ~ nI'(@), where
1'(0) is the Ezpected Fisher Information Matriz for one observation. This quantity
was introduced by Fisher in 1922 [77], and represents a d x d matrix, defined as

I'(0) = Ey, (%)21
_ &”P(X16)
=5, |5

where the expectation is taken over values of y;, with @ held fixed. This quantity
is really important, as it represents a sort of measure of the “averaged concavity”
of the likelihood, i.e. measuring how “prominent” the maximum is. A particularly
important relation involving the variance of an unbiased? estimator 6(y) and the
Fisher Information matrix is the Cramer-Rao bound [213], which states that

2 Let 0 be a parameter to be estimated from observations y which are generated accord-
ing to some likelihood function P(y|6), and let 6(y) be some estimator of §. Then this
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By [((9@) - 0)2] > 1

Roughly speaking, this theorem says that the variance of an unbiased estimator is
bounded by the inverse of the Fisher Information matrix: it is intuitively acceptable
that a parameter can be more accurately estimated if the associated log-likelihood
has a clear maximum.

Coming back to the BIC derivation, the determinant of A is then approximated
by |A| ~ n?[I*(@)|. This approximation, together with the 8 ~ 0, introduce an
O(n?) error into equation (3.31), which becomes

R A d d 1
log P(D) =log P(D|6)+log P(8)+ 3 log 27— 3 logn— 5 log |T*(8) |+O(n% ) (3.32)
Removing terms of order O(1) or less, we obtain
A d
log P(D) = log P(D|6) — 3 logn + O(1) (3.33)
This equation says that the log-integrated likelihood is equal to the maximized
likelihood, minus a correction term depending on the size of the model.

Practically, given a set of candidate models Mj...Mpg, for each M; the BIC
criterion is computed, following the formula

BIC(M;) = logp(O|7) — 41 10g(n) (3.34)

where M; denotes the ML estimate of the model M;, and | M;] is the total number
of free parameters of M;. The chosen model M;
maximum BIC value, i.e.

pic is then the one showing the

iprc = arg max BIC(M;) (3.35)

BIC for Hidden Markov Models

In this section the BIC formulation for the HMM case is presented, in order to
exemplify the theoretical formulation of the previous section. Let O denote the
observed data-set, and let n be the total number of observations in O, i.e., n =
Zlel T;. In the HMM case, fixed the minimum and the maximum number of states
kmin and kmaz, the BIC criterion is applied as follows:

For k = knin t0 kmae, do:
1. initialize the HMM using whatever approach (at least, randomly);
2. train the initialized HMM with k states, obtaining the HMM Ay;

estimator is said to be unbiased if verifies

B, [o)] = [ dwpwie =6
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3. compute the BIC value BIC(Ag), using the formula (3.34). In this case,
the number of free parameters is the sum of the following factors:
e initial state probability: K — 1 parameters;
e transition probability: k(k — 1) parameters;
e emission probability: kd + k@
mensionality of the observation.
Chose the HMM )\,;BIC that maximizes the BIC value BIC(\;), i.e.

parameters, where d is the di-

kpic = arg max BIC(Ag) (3.36)

3.4.4 The proposed approach

Given a set of sequences {O'} = {04...0%, }, the goal is to estimate the number of
states k of the HMM that better models the sequences. Fixed the minimum and
the maximum number of states, i.e. ki, and kpnq., the proposed strategy works
as follows:

1. Consider the set D = {0}, 03, ...,01,,07,05...}, that is the set of
values of the unrolled sequences;
2. for k = knin t0 kmag, do:

e fit the set D with a k Gaussians mixture model, using the Expec-
tation Maximization (EM - [57,226]) algorithm; denote by Gy, the
Gaussian mixture obtained.

e compute the BIC(Gy) value (3.34).

3. Choose the clustering Gy that maximizes the BIC criterion (3.34), i.e.,

7(:\]301 = arg In]?x BIC(gk)

4. Initialize (with QEBOI) and train an HMM with EBOI states.

In the following, we call this approach the BOI (Bic On Initialization) approach.
It is clear that with the BOI approach only one HMM training is needed, with
a notable reduction in the computational load with respect to the standard BIC
approach, where kpoz — kmin + 1 training are needed.

It is evident that this approach could be used not only with the BIC criterion,
but with any standard model selection criterions, as Minimum Description Length
(MDL - [185]), Minimum Message Length (MML - [165]), Akaike’s Information
Criterion (AIC - [5]), or others (for a complete list of references on this topics
see [74] and [189]).

3.4.5 Experimental results

In this section the proposed approach is compared with standard BIC method,
presented in Section 2, where the initialization (step 1) is performed using the
GMM clustering approach described in Section 3.4.1. It is worth noting that a
comparison in term of accuracy of model order estimation in synthetic experiments
is not fair, as the proposed approach is not able to take into account the transition
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matrix of the HMM, resulting in a coarser model size estimation. It is indeed
interesting to compare the classification accuracy of BOI and BIC approaches in
real cases, as, for instance, the face recognition problem.

The face recognition task is addressed as explained in Chapter 7.2, where DCT
coefficients are used as features: all details are given in the mentioned chapter,
and here only briefly sketched. From a face image, the sequence of sub-images
is gathered by a raster scanning, and for each sub-image DCT coefficients are
computed. In our experiment, the sub-images are of dimension 16x16, with 50% of
overlapping; three experimental sessions are performed, using 10, 8 and 3 DCT co-
efficients for each sub image, respectively. The database used is the ORL database,
composed by 40 subjects, and for each subject, 10 poses are given: 5 are used for
training, the remaining for testing. Experiments were repeated 20 times, in order
to increase the statistical significance of the results. ky,;n, and k4, were fixed to 2
and 7, respectively. Classification accuracies for the three experiments are reported
in Table 3.1, together with relative standard deviations.

Table 3.1. Averaged classification accuracies in face experiment using BIC and BOI
techniques, with (a) 10 DCT coefficients, (b) 8 DCT coefficients and (c) 3 DCT coeffi-
cients.

Method|Averaged accuracy|Standard Deviation
BIC 97.50% 1.52%
BOI 98.17% 1.35%

(a)

Method|Averaged accuracy|Standard Deviation
BIC 97.08% 1.66%
BOI 97.93% 1.73%

(b)

Method|Averaged accuracy|Standard Deviation
BIC 96.72% 1.64%
BOI 92.88% 2.711%

(c)

We could note that the two approaches perform equally well in average, even
if there is a discrepancy between the results of the two experiments: obviously
the performance obtained depends on the specific task. Moreover, the supremacy
of the BIC approach in the third example is more evident, as expected. These
tables confirm that the proposed approach, even if “coarse” in some way, is really
effective in discovering the true structure of the problem, obviously relatively to
this case.

In order to get a better insight into the proposed technique, we compare, for
each one of the 40 subjects, the number of states estimated by the BOI approach
with the number of states estimated and the BIC approach. These quantities,
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averaged over all 20 experiments, are plotted in Fig. 3.3, where the 40 subjects are
subdivided in 4 plots for augmenting the readability.
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Fig. 3.3. Estimated number of states using BOI (left bar) and BIC (right bar) in the
face experiments, using 10 DCT coefficients.

From this figure it is evident that the number of states estimated by the BOI
approach is everywhere lower than the BIC estimate. One explanation could be
the following: the BOI approach is inherently simpler than the BIC one, since it
considers only the unrolled sequence, and bases its decision only on the examina-
tion of the Gaussian mixture fitting. The differentiation between states is therefore
decided merely on the basis of the static components of the sequence, while the
dynamics cannot be taken into consideration. This could lead to an erroneous
merging of those states that present similar static behaviors but different dynamic
structures. The BIC approach, instead, is based on the HMM training, and is
therefore able to take into account both the static and the dynamic behavior of
the sequences: this is the reason for the identification of more states.

3.4.6 Conclusions

The proposed approach addresses the model selection issue in the initialization
phase, resulting in a quite simple but fast technique. The number of the states
of the HMM is estimated by finding the Gaussian mixture that better fits the
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unrolled sequence, with respect to some predefined model selection criterion. In
this way, only one HMM training is needed, with a great reduction of the com-
putational load needed by a standard model selection approaches. Experimental
results on face recognition task show that the the classification accuracies of the
proposed approach are comparable with those of the standard BIC technique, even
if requiring much lower computational resources.



3.5 The Bisimulation approach

In this section a syntactic approach for addressing the model selection problem
is presented, in particular with the aim of determining the number of states in
discrete emission HMMs.

3.5.1 Motivations

Most of the standard approaches to HMM model selection are devoted to find the
optimal model on the basis of a criterion function by exploring all (or a large part
of) the search space, resulting typically in a computational expensive procedure.
The technique here proposed is instead a direct method to identify the model
without searching the whole space, resulting less computationally intensive.

The proposed approach consists in eliminating syntactic redundancy of a Hid-
den Markov Model using a technique called bisimulation. Bisimulation represents
a notion of equivalence between graphs (or between nodes in a graph) whose use-
fulness has been demonstrated in various fields of Computer Science. It is used for
the testing process equivalence in Concurrency [155], as a notion of equivalence
between Kripke Structures in Model-Checking [21], to provide operational seman-
tics to query languages in Web-like databases [148], and to replace extensionality
in the context of non well-founded sets in Set Theory [2].

With this approach, the structure of a HMM is reduced by computing bisimula-
tion equivalence relation between states of the model, so that equivalent states can
be collapsed. We employed both the notions of probabilistic and standard bisim-
ulation. It is shown, by experiments on DNA sequence modelling and 2D shape
recognition, that bisimulation reduces the number of states without significant loss
in term of likelihood and classification accuracy.

3.5.2 Bisimulation

Bisimulation is a notion of equivalence between graphs useful in several fields of
Computer Science. The notion was introduced by Park for testing process equiva-
lence, extending a previous notion of automata simulation by Milner. Milner then
employed bisimulation as the core for establishing observational equivalence of the
Calculus of Communicating Systems [155].

In [121], Kanellakis and Smolka relate the bisimulation problem with the gen-
eral (relational) coarsest partition problem and pointed out that the partition
refinement algorithm in [166] solves this task. More precisely, in [166] Paige and
Tarjan solve the problem in which the stability requirement is relative to a relation
E (edges) on a set N (nodes) with an algorithm whose complexity is O(|E| log | N]).

Standard Bisimulation.

Bisimulation can be equivalently formulated as a relation between two graphs and
as a relation between nodes of a single graph. Since the interest is in reducing
states of a unique graph, the latter definition is adopted.
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Definition 3.1. Given a graph G = (N, E) a bisimulation on G is a relation
bC N x N s.t. for all ug,u; € N s.t. ugbuy and for i =0,1: if (u;,v;) € E, then
there exists (u1—;,v1—;) € E s.t. vo buy.

In order to minimize the number of nodes of a graph, we look for the maximal
bisimulation = on G. Such a maximal bisimulation always exists, it is unique, and it
is an equivalence relation over the set of nodes of G [2]. The minimal representation
of G = (N, E) is therefore the graph:

(N/ =,{(Im]=, [n]=) : (m,n) € E})

which is usually called the bisimulation contraction of G. In the above formula,
N/ = represents the quotient set of N w.r.t. the equivalence =, [m]= and [n]= are
the equivalence class of m and n, respectively.

Using the algorithm in [166] the problem can be solved in time O(|E|log|N|);
for acyclic graphs and for some classes of cyclic graphs it can be solved in linear
time w.r.t. |[N| + |E| [63,62].

Bisimulation on labelled graphs.

If the graphs are such that nodes and/or edges are labelled, the notion can be
reformulated as follows:

Definition 3.2. Let G = (N, E, £) be a graph with a labelling function £ for nodes,
and labelled edges of the form m = n (a belongs to a set of labels). A bisimulation
on G is a relation b C N x N s.t. for all ug,u; € N s.t. ug buy it holds that:
L(uy) = L(uz) and for i = 0,1, if u; = v; € E, then there exists ui_; — v1_; € E
s.t. vgbuy.

If exclusively the nodes are labelled, the procedure in [166] can be employed to find
the bisimulation contraction, provided that in the initialization phase nodes with
the same labels are put in the same class. The case in which edges are labelled
can be reduced to the last one by replacing a labelled edge m — n by a new
node v labelled by a and by the edges {(m,v) and (v,n). Finding the bisimulation
contraction can therefore be done also in this case by using the algorithm of [166];
moreover, the procedure of [166] can be modified in order to deal directly (i.e.,
without preprocessing) with the general case described.

Probabilistic Bisimulation

The notion of bisimulation over labelled graphs (Def. 3.2) has been introduced
in a context where labels denote actions executed (e.g. a symbol is emitted) by
processes during their run. Labels can also store pairs of values (z,y): an action
x and a probability value y (that could be read as: this edge can be crossed with
probability y and in this case an action z is done). These graphs are called Fully
Probabilistic Labelled Transition System (FPLTS).

In this case another notion of bisimulation is probably more suitable. Consider,
for instance, the graph of Fig. 3.4 (we use ni—ng to refer to the nodes: they are
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Fig. 3.4. n; and n4 are not bisimilar, but probabilistically bisimilar

not labels). n; and ng are trivially equivalent since they have no outgoing edges.
Nothing can be done in both cases. The four nodes na, ns, ns,ng are in the same
equivalence class, since they have equivalent successors (reachable performing the
same action b, with probability 1). The nodes n, and n4 are instead not equivalent,

since, for instance, there is the edge 1y <a£>'4) ng but no edges labelled (a, 0.4) starts
from n4. However, one of the equivalent states can be reached both from n; and
n4, performing action a with probability 0.7: the two nodes should be considered
equivalent.

The notion of probabilistic bisimulation [10] is aimed at formally justifying
this intuitive concept. We start by providing two auxiliary notions: given a graph
G = (N, E) with edge labelled by pairs as above, and b C N x N a relation, then
for two nodes m,n € N and a symbol a, we define the functions B and S as follows

B(m,n,a) = {un: Ig(m () pweEEANLbN)}

S(ma n, a) = ZTn(a—’g)uEE,ubn q
Definition 3.3. Let G = (N, E) be a graph with edge labelled by pairs consisting
of symbols and probability values, a probabilistic bisimulation on G is a relation

bC N x N s.t.: for all wg,u1 € N, if ug buy then for i = 0,1 if u; (a—’g)) v; € B,
then there exists v1_; € N s.t.:

Ur—5 mii) vi—; € E,
S(us,viya) = S(ur—s,v1-4,a), and
and for all m € B(u;,v;,a) and n € B(uy_;,v1_;,a) it holds that m bn.

In [10] a modification of the Paige-Tarjan procedure is presented for this proba-
bilistic case and proved to correctly return the probabilistic contraction of a graph
G = (N, E) in time O(|N||E|log |N|). In the example of Fig. 3.4 the two nodes n4
and n4 are put in the same class.

In the proposed approach, the possible labels for edges are further extended.
Triplets {p1,a,p2) are admitted, where a is a symbol while p; and p, are proba-
bilistic values. The notion of the above Definition 3.3 is extended point to point.
In other words, the reasoning is as if the edge (p1,a,p2) is replaced by the two
edges (a,p1), (G, p2) and @ can not be confused with a (see Fig. 3.5).
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Fig. 3.5. n1 and n4 are probabilistically bisimilar. n; and ng are not.

3.5.3 The Strategy
HMMs as labelled graphs

Probabilistic bisimulation is defined on FPLTS, which are slightly different from
HMMs. Neglecting notation, the real problem is represented by the emission
probability of each state, which has not counterpart in FPLTS. As described in
Sect. 3.5.2, the problem could be solved by choosing an appropriate initial parti-
tion, whose sets contain states with the same emission probability and then run the
algorithm of [166]. This approach is correct, but it is too restrictive with respect to
the concept of probabilistic bisimulation. In other words, using this initialization
the classes of bisimulation equivalence are created by using the concept of syntac-
tic labelling, loosing instead the semantic labelling concept, which is the kernel of
the probabilistic bisimulation.

Thus, another method is proposed, a bit more expensive in terms of memory
allocation and computational cost, but offering a better semantic characterization.

Definition 3.4. Given a HUM X = (S,V,A,B, ), trained with a set of strings
from the alphabet V = {v1,vs,-+ ,u}, the equivalent FPLTS is obtained as fol-
lows. For each state S;:

o Let A; be the set of edges outgoing from the state S;, defined as
A; ={(S:,S;) 1ai; #0, 1 <j <k}

e cach edge e in A; is replaced by m edges, whose labels are (a;;,vp,b(p|S;)),
where, for 1 <i,j <k, 1 <p<m:
ai; is probability of e;
vp 45 p-th symbol of V;
- b(p|S;) is probability of emission of v, from state S;.

Given an HMM with k states, F edges and m symbols, with this approach the
complexity of bisimulation contraction grows from O(Eklogk) to O(mEklogk) for
time, and from O(Ek) to O(mEk) for space.

By applying bisimulation to a HMM another important issue has to be con-
sidered: the partial control of compression rate of the strategy. To this aim, the
concept of quantization of probability is introduced: given a set of quantization
levels (prototypes) in the interval [0, 1], each probability is approximated with the
closest prototype. A uniform quantization is adopted on interval [0,1]. To control
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<0.56,a2,0.33>
a10.33 0.56 <0.56,b,0.50>
b [0.50
c10.12

<0.56.c.0.12>

Fig. 3.6. Basic idea of procedure to represent HMM as a FPLTS.

this approximation a reduction factor is defined, representing the number of lev-
els that subdivide the interval: it is calculated as (number of prototypes - 2). For
example, reduction factor 3 means that probability are approximated with the val-
ues {0,0.25,0.5,0.75,1}. Thus, the notion of equivalent labels is governed by the
test of equality of their quantization, where gquant(p) is defined as the prototype
7 closest to p.

As a final consideration, the reduction factor represents a tuning parameter for
deciding the degree of the compression adopted. Obviously, for a low value of the
factor, the information lost in approximation is high, and the resulting model can
be a very poor representation of the original one.

Algorithm

Given a problem, determining the optimal number of HMM states is performed
through the following steps:

1. Train the HMM with a number of states that is reasonably large with respect
to the problem considered. This number strongly depends from available data,
and it can be determined using some heuristics.

2. Transform the HMM in labelled graph (FPLTS), using procedure described in
Def. 3.4 of Sect. 3.5.3. In this step the reduction factor has to be chosen, provid-
ing a measure of the accuracy adopted in the conversion. It also gives a rough
meaning of reduction rate: lower precision likely means higher compression.

3. Run the bisimulation algorithm on such graph, obtaining equivalence classes.
Optimal number of states k' is represented by cardinality of the quotient set
(i.e. the number of different classes determined by bisimulation).

4. Retrain the HMM using k' states.

This method is designed for discrete HMM, but can be generalized for other ty-
pologies by working on Step 2 of the procedure.

3.5.4 Experimental results

The aim of the following experiments is to show that this method reduces HMM
states without significant loss in terms of likelihood and classification accuracy. We
tested these two properties on two distinct problems: DNA modelling, i.e. using
HMM to model and recognize different DNA sequences (typically, fragments of
genes), and 2D shape classification, using the method proposed in [25]. In all tests,
the initialization problem was addressed by the following procedure: starting from
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random initial estimates of A, B and 7, each HMM was trained in three learning
sessions, using Baum-Welch re-estimation; the chosen model is the one presenting
the maximum likelihood. Each learning ended when likelihood is converged or after
100 training cycles. Performances are measured in terms of the following indices:

o Compression Rate, representing a percentage measure of the number of states
eliminated by bisimulation:

CR = 100 (korig - kreduct)
korig

where E;cquct are the number of states after bisimulation on a HMM with kyr4g
states; this index measures the degree of the compression obtained by apply
the bisimulation;

o Log Likelihood Loss, estimating the difference in LL between original and re-

duced HMM:
LLom'g - LLreduct)
LLorig
where LL;eqyet and LL,y;9 are log likelihood of HMM with krequet and korig
number of states, respectively. This index indicates how much likelihood is lost

in the reduction: low values indicate that the reduction is able to eliminate
redundancy of the model, without affecting the intrinsic characteristics.

LLL =100 (

DNA modelling

Genomic offers tremendous challenges and opportunities for computational scien-
tists. DNA are sequences of various lengths formed by using 4 symbols: A, T, C,
and G. Each symbol represent a base, Adenine, Thymine, Cytosine, and Guanine
respectively. Recent advances in biotechnology have produced enormous volumes
of DNA related information, needing suitable computational techniques to manage
them [192, 68].

From a machine learning point of view [193], there are three main problems
to deal with: genome annotation, including identification of genes and classifica-
tion into functional categories, computational comparative genomic, for comparing
complete genomic sequences at different levels of detail, and genomic patterns, in-
cluding identification of regular pattern in sequence data. Hidden Markov Models
are widely used to resolve these problems, in particular for classification of genes,
protein family modelling, and sequence alignment. This is because they are very
suitable for modelling strings (as DNA or protein sequences), and can provide
useful measures of similarity (LL) in comparing genes.

In this paper, HMMs are employed in order to model gene sequences for clas-
sification purposes. This simple example is nevertheless significant to demonstrate
HMM ability in recognizing genes, also in conditions of noise (as biological mu-
tations). Data were obtained extracting a 200 bp (base pair) fragment of a recA
gene sequence of a Lactobacillus species. We trained 95 HMMs on this sequence,
where k (number of states) grows from 10 to 200 (step 2). We applied the bisim-
ulation contraction algorithm on each HMM, with reduction factor varying from
1 to 9 (step 2), computing the number of resulting states. We then compared Log
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Likelihood (LL) of original sequence produced by original and reduced HMMs,
obtaining results plotted on Fig. 3.7(a).

DNA sequence: reduction 1-5-9 DNA sequence: reduction 1-5-9

—140F

2
reduced states

Log likelinood
38

8

!
3

o 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140
states. states

(2) (b)

Fig. 3.7. DNA modelling experiment: (a) comparison of Likelihood curve for original
and reduced HMM, and (b) compression rate, for reduction factor equal to 1, 5 and 9.

One can notice that the two curves are very similar, in particular when reduc-
tion factor is high. In Table 3.2, averaged and maximum loss of likelihood (LLL)
are presented for each value of reduction factor, with maximum compression rate:
loss of Log Likelihood is fairly low, decreasing when augmenting precision of bisim-
ulation (reduction factor). This kind of analysis is performed to show the satisfying
evolution of the HMM likelihood when number of states is decreased using bisim-
ulation.

Table 3.2. Maximum compression rate, average and maximum Log Likelihood loss for
DNA modelling experiment at varying reduction factors.

Reduction factor[Max CR (%)|Average LLL (%)|Max LLL (%)
1 50.00 9.57 32.20
3 38.16 6.69 20.07
5 33.14 5.45 20.31
7 34.87 5.91 18.90
9 34.04 5.77 22.30

In Fig. 3.7(b) original number of states vs. reduced number of states are plotted,
at varying number of states. More precisely, for a generic value k on the abscissa
axis, ordinate axis represents the number of states obtained after running bisimu-
lation on k-states HMM. It is worth noting that compression rate increases when
the number of states grows: this is reasonable, because small structures cannot
have a large redundancy.

The second part of this experiment tries to exploit the performance of our
algorithm regarding the classification accuracy. To perform this step we trained
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two HMMs with 150 states on 200 bases fragments of two different recA genes:
one was from Corynebacterium glutamicum and second was from Mycobacterium
tubercolosis. Each HMM was then reduced using bisimulation, varying reduction
factor from 1 to 9 (step 2). Then, HMMs were retrained with reduced number
of states, resulting in 10 reduced HMMs (5 for each sequence). Compression rate
varies from 32% for reduction factor 1 to 22% for reduction factor 9 (see Table
3.3). We tested classification accuracy of HMMs using 300 sequences, obtained by
adding synthetic noise to the original two. The noising procedure is the following:
each base is changed with fixed probability p (ranging from 0.3 to 0.4), and follow-
ing some determined biological rules (for examples, A becomes T with probability
higher than G). Each sequence of this set was evaluated using both models, and
classified as belonging to the class whose model showed the highest LL. Error rate
was then calculated counting misclassified trials and dividing by the total number
of trials. Fig. 3.8 shows error rate for original and reduced HMMSs, varying the
probability of noise. One can notice that error rate trend is quite similar, and that
error is very low, always below 5%, proving that HMMs work very well on this
type of problems. In Table 3.3 (a—b), average errors on original and reduced HMMs

T
Hl original
5H Il reduct. 1 4
[ reduct. 3
4 H ] reduct. 5 i
I reduct. 7
|| Il reduct. 9

P=0.3 P=0.325 P=0.35 P=0.375 P=0.4
noise level

Fig. 3.8. Error rate for different noise level for DNA modelling experiment.

are presented, varying noise level and reduction factor value, respectively. For the
latter, maximum compression rate and maximum LL loss are also presented. One
can notice that the difference between two errors grows with noise level, i.e., the
error value becomes higher when the noise level increases, and differences can be
more significant. Nevertheless, LL losses are very low if compared with compres-
sion rate and amount of noise. Actually, classification errors remain below 5%,
even on experiments with 40% noise level. Moreover, error level seems to be lower
in the reduced case than in the original one. Reasonably, HMMs with less states
are able to generalize better, so that they recognize also sequences with higher
noise, even if we expect a breakdown point, causing a reversing behavior between
original and reduced HMMs.
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Table 3.3. Error on original and reduced HMMs for DNA modelling experiments in
function of (a) varying noise level, and (b) varying reduction factor value.

Noised Error on Error on
Level |Original HMM |Reduced HMM
(%) (%)
0.300 0.00 0.00
0.325 0.33 0.13
0.350 1.67 0.80
0.375 1.67 1.07
0.400 4.67 2.60
(a)
Reduction|Average|Average| Error on Error on
Factor CR LLL |Original HMM |Reduced HMM
(%) | (%) (%) (%)
1 32.00 3.89 1.67 1.27
3 25.33 1.72 1.67 0.80
5 22.00 4.15 1.67 0.80
7 21.33 5.61 1.67 0.80
9 21.66 2.14 1.67 0.93
(b)

2D shape recognition

The 2D shape classification experiment used here is presented in [25], sharing
some of the ideas presented in Chapter 6. Briefly, the idea is to characterize an
object by its contour, modelled using the chain code. This sequence is then used
to train a discrete HMM. Even if the chain code coding is not very accurate (a less
rough approach is discussed in Chapter 6), the HMM is well suitable for 2D shape
classification: in [25] it was shown that HMM is able to correctly discriminate
between objects, even if noisy, scaled or occluded.

In the proposed experiment, although limited to a couple of similar objects,
the degree of occlusion is quite large, and noise has been included to affect object
coding, (without heavily degrading classification performances).

In our experiment, given an image of 2D objects, data are gathered assigning
at each object its chain code, calculated on object contours. Edges are extracted
using Canny edge detector [40], while chain code is calculated as described in [111].
Fig. 3.9 shows the two simple objects, a stylized hammer and a screwdriver, used
in the experiment. One HMM for each object is trained, varying the number of
states from 4 to 20. After applying bisimulation contraction, with reduction factor
from 1 to 9, HMMs are retrained with reduced number of states and compared in
term of Log Likelihood. Average and maximum Log Likelihood loss are calculated,
and results are shown in Table 3.4, with maximum compression rate for different
reduction factor values. Average LLL values are comfortably low: bisimulation does
not seem to affect HMM characteristics, but is able to remove syntactic redundacy
from the model. Nevertheless, we can also observe that average loss is very low



3.5 The Bisimulation approach 49

Fig. 3.9. Toy images for 2D shape recognition using Chain Code.

Table 3.4. Maximum compression rate, average and maximum Log Likelihood loss for
2D shape recognition test, for different reduction factors.

Reduction factor|Max CR|Average LLL|Max LLL
1 16.74 4.91 72.20
3 9.43 0.55 29.39
5 6.33 2.30 72.26
7 6.40 1.72 72.85
9 4.71 1.28 68.73

if compared with related maximum LLL. This is because compression is not so
strong, as evident in Table 3.4, and therefore some learning session on reduced
HMM can produce better results in terms of Log Likelihood. LL of an HMM on
a sequence typically grows with k. On the other hand, LL depends on how well
the training algorithm worked on the data. Baum-Welch re-estimation ensures to
reach the nearest local optimum, without any information about global optimum.
So, for closed k1, ko, with k1 < ko, a HMM with k; states can possibly show
larger LL than one with ko states, because the training algorithm worked better.
To partially solve the problem of convergence, each HMM was trained three times,
starting with different random initial conditions. The case of so high LL loss may
be explained by a low compression rate (the HMMs have the similar number of
states) and a very bad training (in this case three trials seems to be insufficient to
ensure correct learning).

For testing classification accuracy, two synthetic test sets were created. The
first set is obtained considering, for each object, fragments of their chain code of
variable length, expressed as percentage rate of the whole length: this simulates
the occlusion of the object. The occlusion percentage varies from 10 to 80 percent
(20% and 90% of the object is still visible), and the point where fragment starts was
randomly chosen. This aspect is important in order to evaluate the independence
of the method from which part of the object is actually occluded.

The second set is obtained by adding synthetic noise to the two chain codes,
using a procedure similar to that used for DNA noising procedure. Each code is
changed with fixed probability P, i.e. if cc; is the original code, with probability
P, (((cc; — 1) £ 1) mod 8) + 1 is carried out. Probability ranges from 0.05 to
0.35, and, for each value, 60 sequences are generated. As usual, a sequence is
assigned to the class whose model shows the highest Log Likelihood, and error
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rate is estimated counting misclassified patterns. For each of the two test sets, we
calculate performance using original and reduced HMMs and varying reduction
factor from 1 to 9. In Table 3.5, averaged errors for original and reduced HMMs
on a set of pieces are presented varying reduction factor from 1 to 9. We can see
that the difference between the two errors is very low.

Table 3.5. Error on original and reduced HMMs for 2D shape recognition experiment
(fragments set): (a) varying resolution factor; (b) varying fragment length.

Reduction Error on Error on
factor |Original HMM(%) |Reduced HMM (%)
1 2.52 2.91
3 2.52 2.19
5 2.52 1.51
7 2.52 0.44
9 2.52 2.70
(a)
Fragment Error on Error on
Length (%)|Original HMM (%) |Reduced HMM (%)
20 % 4.50 4.33
30 % 3.60 3.28
40 % 2.77 2.32
50 % 3.23 2.31
60 % 3.23 1.75
70 % 2.83 1.36
80 % 0.00 0.23
90 % 0.00 0.01
(b)

The same results are presented in Table 3.6 for a set of noisy sequences, varying
reduction factor (Table 3.6(a)) and noise level (Table 3.6(b)).

A consideration can be made on the HMMs performance when applied to this
problem: average error in recognizing the fragment sequence is 1.21%, a very low
value. This means that a simple HMM can be invariant with respect to some type
of object occlusions. Nevertheless, noise seems to be a more serious problem, but
working on topology and training algorithms classification accuracy may be less
affected by this problem.

Another point regards the similarity of the two objects which may seriously
affect performances. This problems may be attenuated by using very different
objects.

Comparison with other methods

In this section, the proposed approach is compared with BIC method, described
in Section 3.4, with respect to the 2D shape experiment. 18 HMMs were trained,
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Table 3.6. Error on original and reduced HMMs for 2D shape recognition experiment
(noised set): (a) varying resolution factor; (b) varying noise level (b).

Reduction Error on Error on
factor |Original HMM(%)|Reduced HMM (%)
1 29.08 24.83
3 29.08 29.05
5 29.08 21.14
7 29.08 28.23
9 29.08 25.97
@
Noise Error on Error on
level (%)|Original HMM (%)|Reduced HMM (%)
5 11.33 9.64
10 20.5 17.24
15 27.11 23.61
20 31.67 28.21
25 35.24 31.70
30 37.78 34.16
35 39.95 36.33
(b)

with states number varying from 3 to 20, and for each model the BIC value was
computed. BIC vs number of states curves are plotted in Fig. 3.10, for the two
objects. The chosen HMMs are those showing the highest BIC value (corresponding

BIC
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Fig. 3.10. BIC value vs number of states curves for the 2D shape recognition experiment

with (a) the hammer and (b) the screwdriver.

to 12 and 14 states, for screwdriver and hammer, respectively).
The bisimulation approach trains one HMM with 20 states; then it applies
bisimulation, and, finally, it trains another HMM with calculated number of states,
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varying reduction factor for 1 to 9 (step 2). To compare the two methods a test set
is created by adding synthetic noise (of various entity) to the two chain codes, in
a way similar to that presented in the previous section, obtaining, for each noise
level, 120 sequences to be classified. The classification errors obtained by applying
the two approaches were calculated, and presented in Table 3.7, in function of
variable noise level. We can notice that, on the average, classification accuracy

Table 3.7. Comparison between BIC method and our approach: “S.” stands for screw-
driver and “H.” stands for hammer.

States Classification Error
Method |S.|H. |Noise|Noise|Noise|Noise|Noise|Noise|Noise
0.05 [ 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35
BIC 12|14 {13.33(25.00(32.50 (36.88 (39.83 [41.81 {42.98
Bisim RF 1(14|15|20.00{30.00|33.89(36.25|42.67 |44.44|48.57
Bisim RF 3(15|16|21.67(34.17|39.44(42.08|43.67 [44.72|45.48
Bisim RF 5|18 18 [{10.00|10.83(22.78(29.17|34.67|40.28 |35.71
Bisim RF 7(17|19|28.33[38.33|42.22{44.17|45.33[46.11|46.67
Bisim RF 9(20|20 (31.67(37.50(37.22(37.08(37.00(34.17|30.24

is quite similar: in fact BIC method needs 18 training session, while our method
only two, plus the time necessary for determining bisimulation contraction (that is
O(mEklogk), given an HMM with & states, E edges and m symbols). In problems
with a short alphabet (as DNA modelling and chain code problems), our method
is definitively faster than BIC, while it gives approximately the same classification
accuracy.

3.5.5 Conclusions

The presented approach, which makes use of the probabilistic bisimulation, is
used to estimate the minimal structure of a HMM. It has been shown that start-
ing from a redundant configuration, bisimulation allows to merge equivalent states
while preserving classification performances. Redundant and minimal HMM ar-
chitectures have been tested on two different cases, DNA modelling and 2D shape
classification, showing the usefulness of the approach. Moreover, the method has
been compared with the BIC criterion, showing comparative performances but
with a less computational complexity.
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3.6.1 Motivations

In this section, a new model selection approach is proposed, aimed at improving
standard model selection methods which can be used for HMMs, as the mini-
mum description length (MDL) principle ( [185]), the Bayesian inference criterion
(BIC) ( [196]), and the minimum message length (MML) criterion ( [165]). These
methods address the model selection problem by training several models, with
different structures, and then by choosing the one that maximizes a certain selec-
tion criterion. These approaches perform rather accurately, allowing an increase
in performance (e.g., [144], [183], and [230]). Although these techniques are less
computationally expensive than Cross Validation [207], they still involve a consid-
erable computational burden, since one full training is required for each candidate
model structure. Moreover, all these approaches suffer for the already explained
problem of the initialization of the parameter in the training, that crucially af-
fects the obtained model estimate: this behavior strongly affects the model order
selection criteria.

The approach proposed in this section simultaneously addresses the two issues
mentioned above: the computational burden of model selection, and the initial-
ization phase. The key idea is to use a decreasing learning strategy, starting each
training session from an informative situation derived from the previous training
phase. More specifically, the proposed procedure consists in starting the model
training using a large number of states, run the estimation algorithm, and, after
convergence, evaluate the chosen model selection criterion for that model. Then,
the “least probable” state is pruned, and this configuration is taken as initial situ-
ation from which to start again the training procedure. In this way, each training
session is started from a “nearly good” estimate. A related approach has been
successfully used for Gaussian mixtures in [74]. The key observation supporting
this approach is that, when the number of states is extremely large, the initializa-
tion dependency of the estimate is much weaker than when the number of states
is close to the optimum. Moreover, the “good” initialization drastically reduces
the number of iterations required by the learning algorithm, resulting in a less
computational demanding procedure. The idea of pruning model selection was
successfully employed also in the field of Neural Networks (see [30] and the ref-
erences herein contained). The proposed method could be applied for all types of
HMMs, discrete, continuous, autoregressive and so on. Moreover, it can be used
with any model selection criterion: we consider the BIC, and the mizture minimum
description length (MMDL), a criterion proposed in [74] for Gaussian mixtures and
here extended to HMMs. It is worth noting that although Gaussian mixtures can
be considered as (simple) special cases of HMMs, applying MMDL and the pruning
strategy to HMMs involves additional conceptual and technical difficulties which
need to be addressed.

The proposed approach and the normal strategy are largely compared in the
experimental session, in terms of accuracy of model selection, classification perfor-
mance, and computational requirements, using both real and synthetic data.
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3.6.2 Model Selection criterions

In the following we will denote an HMM with & states as Ag. The proposed strategy
is applied with the BIC criterion, largely detailed in Section 3.4.3 and with the
MMDL criterion, explained in the following.

Mixture Minimum Description Length for HMM

To explain the rationale behind MMDL, we start with the standard MDL criterion
[185], which coincides with BIC (equation (3.34)):

MDL(k) = log p(O|Ag) — % log(n) (3.37)

where O denotes the observed data-set, n is the total number of observations in
O, A, is the ML estimate of the model with k states, and Ny, is the total number
of free parameters of Aj.

Notice that in the BIC/MDL criterion, each parameter has equal weight in
the penalty term, log(n)/2. In the mixture of Gaussians case, MMDL is based
on the following observation: the parameters of the j-th component are actually
estimated from the observations that are generated by that component, not from
all the observed data. Moreover, the expected number of samples obtained from
the j-th component is nc;, where c; is the probability of the j-th component.
The MMDL criterion for mixtures is then obtained by penalizing each parameter
of component j by log(nc;)/2 (instead of the standard log(n)/2), considering the
quantity nc; as an “effective sample size” for the j-th component.

A similar reasoning can be followed in the HMM context, but care must be
taken in the definition of the “effective sample size”, because here there is noth-
ing similar to the component probability c;. We start by decomposing Nj as
NA + NF + NB, denoting the number of parameters of the transition matrix
A, of the initial state probability 7r, and of the emission probability density func-
tion B, respectively. Following the MMDL rationale, we will weight the emission
probability parameters of each state using the “effective sample size” correspond-
ing to that state. The elements of the transition matrix and of the initial state
probability vector will be weighted with the standard log(n)/2, since they are
estimated from all the samples.

The role of “state probabilities” (equivalent to ci, ..., ¢x, in the mixture case)
will be played by the stationary probability distribution peo = [Poo(1), ---, Poo (k)]
This seems to be a natural choice, since p, represents the “average” occupation
of each state, after the Markov chain has achieved the stationary state. This distri-
bution is computed as follows: consider the Markov chain Q = Q1, @2, @3... with
the state set S = {Si,..., Sk}, the stochastic transition matrix A, and the initial
state probability . We can define the vector of state probabilities at time ¢ as

Pt = [Pt(1)= "'pt(j)a pt(k)] = [P(Qt = Sl),P(Qt = 52); ---aP(Qt = Sk)]

Of course, p; can be computed recursively from p; = wA, pa = p1A = TAA,
and so on. That is p; = wA?. We are interested in p,, which characterizes the
equilibrium behavior of the Markov chain, i.e., when we let it evolve indefinitely.
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Since it is a stationary distribution, p,, has to be a solution of po, = pPecA, or,
in other words, it has to be a left eigenvector of A associated with the unit eigen-
value. Under some conditions (see, e.g., [36], for details), the Perron-Frobenius
theorem states that matrix A has a unit (left) eigenvalue and the corresponding
left eigenvector is po,. All other eigenvalues of A are strictly less than 1, in abso-
lute value. Finding po, for a given A then amounts to solving the corresponding
eigenvalue/eigenvector problem.

Coming back to the MMDL formulation, we have that, for an HMM with &
states, the MMDL cost function is

NA+ NF log

MMDL(k) = log p(O|Ax) — 5 (n) — NTIB > log(n peo(m))

where NP is the number of parameters of the emission density of an HMM with
just one state. Finally, notice that A has k(k — 1) free parameters, 7 has (k — 1)
free parameters, and NB = d + d(d + 1)/2, if we assume a full covariance matrix
for each component and d-dimensional observations. Accordingly, after dropping
all terms that do not depend on k,

2 2 k
MMDL(k) = logp(O}e) — o-log(n) = =520 3™ lognpo(m)  (3.39)

m=1

Notice that Peo = [Poo(1), ---, Poo (k)] is a function of X: via the estimate of the
transition matrix.

3.6.3 The sequential state pruning strategy

The strategy is summarized as follows:

1. Choose some model selection criterion, such as BIC/MDL (Eq. (3.34)), or
MMDL (Eq. (3.38)); set kmin and kpqz, which are the minimum and maximum
number of states allowed.

2. Initialize the HMM estimation algorithm with k,,,,, states using some standard
heuristic (e.g., randomly, or using clustering). Let us denote as /\i the initial
model used in the training procedure for the HMM with % states.

3. While k > k,;in, do:

a) run the Baum-Welch algorithm until some convergence criterion is met;
let Xk be the set of estimated parameters.

b) compute and store the value of the model selection criterion; let this be
denoted as CY.

c¢) find the least probable state (i.e., the smallest element of p);

d) prune the least probable state and deleting the corresponding elements
from A, B, obtaining a reduced model .

e) set A, — A, and k « k — 1.

4. The final chosen model, X*, is the one yielding the maximum of the selection
criterion. Formally:

A* =X+, where k* = arg max Ch



56 Model Selection

The computational overhead introduced by this procedure is due mostly to the
computation of py, involving the computation of eigenvalues of A. However, this
is computed only once for each k, at the end of the Baum-Welch training session.
For the MMDL approach, there is actually no computational overhead, since pqo
is also needed when evaluating the selection criterion (equation (3.38)).

3.6.4 Testing

To assess the performance of the proposed approach, we have performed tests in
which we compare two strategies:

e Standard BIC (or MMDL) method: we train one HMM for each k (number
of states), with k varying from kpmaz t0 kmin. Each learning session (Baum-
Welch algorithm) is initialized using a Gaussian mixture model, which is better
than the usual random initialization. Each learning session is stopped when the
relative increase of the likelihood function falls below a threshold. For each k,
we compute and store the BIC (or MMDL) value, and, finally, we choose the
model yielding the best value.

e Pruning BIC (or MMDL) method: as described in Section 3.6.3.

In all the considered HMMs, the emission probability density of each state
is a single univariate Gaussian. The two strategies are compared in terms of 1)
accuracy of the model size estimation, 2) total computational cost (total number
of iterations) required by Baum-Welch procedure, and 3) classification accuracy
on three recognition tasks (one synthetic and two real data problems).

Accuracy of model selection

We have tested our procedure on three different problems. For each one, the test
set contains 5 sequences, each 400 observations long, synthetically generated from
a known HMM. To increase statistical significance, all experiments were repeated
50 times. We set knin and k.. to 2 and 10, respectively.

The first model is shown in Fig. 3.11(a): A is the transition matrix, = is
the initial state probability, and p and o are the means and variances of the
Gaussian emission densities of each state. This is a relatively simple model, where
Gaussians of different states are very well separated. The results (in Table 3.8(a))
show that, with regards to the accuracy in the selection of the true k, all model
selection procedures perform perfectly. Regarding the computational requirements,
the pruning strategy is less demanding, requiring about the 77% of the number of
Baum-Welch iterations of the normal procedure.

The second model is more challenging, since two of the emission Gaussians
overlap, with common mean but different variances (see Fig. 3.11(b)). Also in
this case, there is no difference between BIC and MMDL, but there is a great
difference between the two training strategies. In Table 3.8(b), the accuracies are
reported, showing that the pruning methodology performs perfectly, with 100%
accuracy, whereas the accuracy is 54% for the standard algorithm. Nearly an half
of the models selected with the normal strategy have a wrong number of states
(typically too many). This is confirmed in Fig. 3.12(a), where histograms of the
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Fig. 3.11. Three models for the synthetic data test: A is the transition matrix, 7 is the
initial state probability, 4 and o the parameters of the emission density.

Table 3.8. Results on synthetic data. (a) First, (b) second, and (c) third experiments.

Selection accuracy  Avg. iterations

Standard BIC 50/50 (100%) 110
Standard MMDL| 50/50 (100%) 110
Pruning BIC 50/50 (100%) 84
Pruning MMDL 50/50 (100%) 84
(a)
Selection accuracy  Avg. iterations
Standard BIC 27/50 (54%) 175
Standard MMDL| _ 27/50 (54%) 175
Pruning BIC 50/50 (100%) 103
Pruning MMDL 50/50 (100%) 103
®)
Selection accuracy  Avg. iterations
Standard BIC 43/50 (86%) 186
Standard MMDL| 43/50 (86%) 186
Pruning BIC 49/50 (98%) 98
Pruning MMDL 49/50 (98%) 98
(c)

selected numbers of states are shown. Also in this case, the average number of
iterations required by the pruning method is significantly lower.
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Fig. 3.12. Histograms of the selected number of states for the standard and the pruning
strategies; the correct number of states is 4. (a) Second and (b) third experiments.

The third model is obtained from the second one by changing the transition
matrix (see Fig. 3.11(c)). From Table 3.8(c) and Fig. 3.12(b), it is clear that,
also in this example, the pruning strategy performs better, with a nearly perfect
accuracy, versus about 86% for the standard method. The average number of
iterations required by the pruning strategy is 52.7% of that required by the normal
procedure.

Classification Accuracy

We now study the performances of the proposed method in terms of classification
accuracy on recognition tasks, using both synthetic and real data.

Synthetic Data

In order to test the classification accuracy of the two methods, we have used the
following testing procedure.

e Two training sets are generated, according to two models, each corresponding
to one of two different classes.

e Two HMMs, one for each class, are trained using both methods (pruning and
standard) and both model selection criteria (BIC and MMDL).
Two test sets from the same true models are then generated.
The classification accuracies using these test sets (a sequence is assigned to the
class whose model has the highest likelihood), are finally estimated.

For each model, the training set contained 5 sequences of length 400. The test set
was composed by 20 sequences, 10 from the first class and 10 from the second.
To increase statistical significance, experiments were repeated 25 times. As before,
kmin = 2 and kg, = 10.

In the first experiment, the HMM models used for each class are those shown
in Figs. 3.11(b) and 3.11(c), only differing in the transition matrix A. The experi-
mental results are shown in Table 3.9(a). Both techniques perform perfectly, with
the pruning method requiring fewer Baum-Welch iterations.
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Table 3.9. Classification accuracies on synthetic data. (a) First and (b) second experi-
ments.

Classification accuracy |Avg. iterations
Mean Std. Dev.
Normal BIC _ [20/20 (100%)  0/20 110
Normal MMDL |20/20 (100%) 0/20 110
Pruning BIC _ |20/20 (100%) 0/20 84
Pruning MMDL|20/20 (100%)  0/20 84
(a)
Classification accuracy |Avg. iterations
Mean Std. Dev.
Normal BIC 18.44/20 (92.2%) 2.31/20 163
Normal MMDL, |18.44/20 (92.2%) 2.31/20 163
Pruning BIC 19.60/20 (98.0%) 0.76/20 107
Pruning MMDL(19.60/20 (98.0%) 0.76/20 107

(b)

The second classification task considered was a very difficult one: the first
model is the one shown in Fig. 3.11(b), the second one is almost the same, the
only difference being the variance of the Gaussian of the first state: 0.4 instead
of 0.2. The two HMMs are quite similar, but, as we can see in Table 3.9(b),
the classification performance is very good. More in detail, the pruning strategy
is better, with an accuracy of 98%, i.e., 6% larger than that of the standard
procedure. In this case, the effectiveness of the learning is crucial for the correct
discrimination. Moreover, the number of iterations required in the training phase
is reduced for the pruning method, nearly 65% of the standard method.

Real Data

Finally, we have conducted two classification experiments with real data. The first
one involves a 2D shape recognition problem, using HMMs as described in Chapter
6. The second is a face recognition experiment, using HMMs as proposed in [125],
described in Section 7.2.

The 2D shape recognition test is performed on a part of the data set described
in [197], with four classes, each containing 12 different shapes. An object from each
class is shown in Fig. 3.13. Just as in the synthetic experiments above reported, the
pruning method performs better on this real-data problem (see Table 3.10), and
involves a smaller computational burden. The classification accuracies reported are
computed using the leave-one-out (LOO) method. This means that the training set
is each time different, composed by all sequences except one, while the remaining
is left out and used for testing. The left out sequence changes until all sequences
have been tested, and results are averaged. Experiments were repeated 10 times
to increase the statistical significance.

Face recognition is addressed using the method proposed in [125], highly de-
tailed in Section 7.2, and here briefly resumed. The approach considers DCT (Dis-
crete Cosine Transform) coefficients as features; given a sequence of sub images of
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/ o —

Fig. 3.13. Examples of shapes from database used.

Table 3.10. Classification accuracies on real data considering 2D shape classification.

Classification accuracy |Avg. iterations
Mean Std. Dev.
Normal BIC 44.4/48 (92.5%) 1.26/48 94.1
Normal MMDL (45.3/48 (94.37%) 0.95/48 94.1
Pruning BIC  [45.7/48 (95.21%) 0.48/48 76.6
Pruning MMDL |45.7/48 (95.21%) 0.67/48 76.6

the face image, obtained with a raster scanning, the DCT coefficients of each sub
image are computed, and vectorized using a zig-zag scan. The chosen number of
coefficients determines the dimensionality of the observation, and 10 coefficients
are used in our experiment. Subimages were of dimension 16x16, with an over-
lap of 50%. The experiments have been conducted on the ORL database®, which
consists in 40 subjects with 10 faces each. For each subject, five faces were used
for training and the others for testing. The results, shown in Table 3.11, were ob-
tained by repeating the experiments 25 times and averaging the results. They are
very satisfactory: the classification accuracies are similar, but our method reduces
substantially the number of the iterations required.

Table 3.11. Classification accuracies on real data: face recognition.

Classification accuracy Avg. iterations
Mean Std. Dev.
Normal BIC 194.35/200 (97.17%) 1.54/200 86.2
Normal MMDL (194.85/200 (97.42%) 1.64/200 86.2
Pruning BIC 195.85/200 (97.42%) 0.95/200 51.4
Pruning MMDL(195.21/200 (97.61%) 0.92/200 51.4

A general consideration could be done looking at the standard deviations pre-
sented in all results tables: performances of the proposed approach are more stable,
as the corresponding standard deviations are lower than those obtained with stan-
dard techniques. This confirms the fact that with our method the initialization is
better addressed, resulting in a more stable and initialization-independent training
process.

3 Downloaded from http://www.uk.research.att.com/facedatabase.html.
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Comparison between BIC and MMDL criterions

In all synthetic experiments, the BIC and MMDL criteria chose the same topol-
ogy, leading to the same model selection accuracy. Nevertheless, in the real-data
case, the MMDL criterion slightly outperforms BIC in the resulting classification
accuracy, showing that, as claimed in [74], in some cases this criterion is better
able to select a more suitable model structure.

3.6.5 Conclusions

The key idea of the proposed approach is to perform a decreasing learning strat-
egy, starting each training session from a “nearly good” configuration, derived
from previous training by pruning the “least probable” state. The proposed strat-
egy can be applied for all types of HMMs and can be used with any model selection
criterion. We have considered the Bayesian inference criterion (BIC), and we have
adapted the mixture minimum description length (MMDL) criterion to the HMM
case. Experimental results on synthetic and real problems are really promising,
since the proposed approach, in these experiments, is more accurate in finding the
true model, more effective in classification accuracy, while having reduced com-
putational requirements. Moreover, the performances of the proposed approach
are more stable, as the corresponding standard deviations are lower than those
obtained with standard techniques. This suggests that with the proposed method
the initialization is better addressed, resulting in a more stable and initialization-
independent training process.






4

Classification with HMM

The classification of sequential data is an interesting and important research area.
Its importance has rapidly grown in the last years for both methodological and
applicative reasons. From a methodological point of view, probabilistic modelling
and classification of sequences is a challenging problem, because intrinsically more
difficult than in the standard scenario, where each observation is a set (vector)
of features. In fact, since the sequences length may vary, it is not possible to
directly use standard pattern recognition techniques. With regards to application,
some sequence classification problems have become very popular in recent years,
as DNA and protein modelling or data mining: these problems, moreover, usually
involve very large data sets.

Hidden Markov Models (HMMs) are one of the widest employed probabilistic
models for sequential data, mostly applied to classification problems, for which
a standard and well established protocol exists. This standard scheme, which is
directly derived from the Bayesian approach to the classification problem, is pre-
sented in the next section.

Some questions could arise about this classification scheme: is this scheme
reliable? Is it possible to measure the trustworthiness of a classification? Are there
alternative schemes that could be adopted? Some considerations about the first
two questions are presented in Section 4.2; the last question is directly addressed
in Section 4.3, where an alternative scheme is proposed, inspired by the similarity-
based classification paradigm.

4.1 Standard classification scheme

The standard HMM-based approach to sequence classification is directly derived
from the standard Bayes classification paradigm [65]. This paradigm is strictly
linked to the Bayesian theory explained in Section 3.2.4, which refers to param-
eter estimation. The Bayesian classification paradigm is simple: it assigns an un-
classified item z to the class showing the maximum a posteriori probability, i.e.

{(z) = arg max P(Ci|z) (4.1)
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where £(z) is the class (or label) assigned to the pattern z by the classifier, £(z) €
{1..C}, with C is the number of classes. The main problem of this approach is
that posterior probability is usually not known, and also difficult to estimate from
data in a direct manner; fortunately, there is a theorem that provides a simpler
way to compute this quantity, the Bayes theorem [65]:

P(z|C;)P(C})

P(Cilz) = P()

(4.2)
where P(C;) represents the a priori probability of the class C;, and P(z|C;) is
the likelihood, representing the probability that the pattern x has been generated
from the class C;. These quantities are more easily estimable from data than the
posterior probability. Since P(z) is independent from the class, the criterion (4.1)
could be rewritten as

{(z) = arg max P(z|C;)P(C}) (4.3)

In the HMM case, the conditional class probabilities P(z|C;) are modelled with
HMNMSs, one for each class. In this way the class likelihood of an unknown sequence
O could be computed as P(O|C;) = P(O|)\;). By applying the Bayesian classifi-
cation rule (4.3), and by assuming a priori equiprobable classes, so that the prior
probability P(C;) could be dropped from the criterion (4.3), we have that the
unknown sequence O will be assigned to the class whose model shows the highest
likelihood, i.e.

£(0) = arg max P(O|N\) (4.4)

where A; is the HMM modelling the ¢-th class. This rule is called the Maximum
Likelihood (ML) classification rule, and represents the typical HMM-based classi-
fication scheme. In the sequel, in order to distinguish it from the next method, we
will call this the MLope approach (with OPC' standing for “one per class”).

A somewhat different rule could also be used in some contexts (see for example
Chapter 6). Instead of training one HMM for each class, we could train one model
for each training sequence, and assign an unknown sequence O to the class of the
model showing the highest likelihood. More formally, let )\gk) denote the HMM

model trained on sequence ng), which belongs to class k. The classification rule,
under this approach, is then

£(0) = argmax P(O|A{") (4.5)
2,
We call this the MLopgs approach (with OPS standing for “one per sequence”).

Notice that this may be seen as a 1-nearest-neighbor (1-NN) classifier, with the
proximity measure defined by the likelihood function.

4.2 Reliability of the classification scheme

Both classification schemes are Maximum Likelihood approaches, where the model
showing the highest likelihood “wins”, i.e. decides the class to be assigned. Unfor-
tunately, this criterion is not able per se to provide a “reliability” measure of the
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classification decision. For instance, consider a two-class problem, with two models,
A1 and Ao, an unknown sequence O, and two possible different situations. In the
first situation, we have P(O|A1) > P(O|Az2), with P(O|A1) = P(O|Az), whereas
in the second P(O|A;) > P(O|A2). In both cases, the classification scheme assigns
O to the class C, but the “reliability” of the second classification is without doubt
much higher, as the system is more “sure” that the class is C;.

Starting from this consideration, two measures of the “reliability” of the classifi-
cation are proposed, able to quantify, in a likelihood sense, the potential robustness
of the classification. The two introduced measures are defined for the correctly
classified patterns and for the misclassified patterns, respectively. In particular,
the former, called RCC (Reliability in Correct Classification), is determined by
computing, in each correctly classified experiment, the log-likelihood difference
between the “winning” model and the second choice, and then averaging between
all correctly classified patterns. More in detail, given the HMMs A;..A¢, modelling
the C classes, and the set of sequences to be classified T = {O;...0n}, let us de-
note as £(0;) the class assigned to the sequence O; by the classifier, and as ¢(O;)
the corresponding true class. The RCC(T) factor is then defined as

1
€1 (T)

RCC(T) = ree(7) (4.6)

O;eT s.t. £0;)=c(0;)

where € (7) is the number of correctly classified patters in 7, and rcc(q) is defined
as

rec(i) = P(OilAq0,) = max P(Oi) (4.7)
This value could be considered as a likelihood-based measure of the “safety” or
“reliability” of the classification, because the larger this measure, the more reliable
the classification result.

In the case of misclassified patterns, the complementary reasoning could be
adopted: we could compute the log-likelihood difference between the chosen model
and the model of the actual object class. This results in defining the factor REC
(Reliability in Erroneous Classification), defined as

1

rec(?) (4.8)
O;eT s.t. £(0:)#£c(0;)

where €2(7) is the number of misclassified patterns in 7, and rec(s) is defined as
rec(i) = |P(OiA40,) - P(Oi|)\c(0i))‘ (4.9)

This value quantifies the distance, in terms of likelihood, between the correct choice
and the (wrong) classifier choice, providing a kind of measure of the size of the
“classification error”.

These measures are aimed at quantifying the reliability of the decision taken by
the classification scheme. It is worth noting that these measures do not represent
a rejection rule, and do not provide any precise information about the accuracy-
rejection tradeoff of the classifier system. Rejection is a widely investigated concept
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in the Pattern Recognition area, and consists of a rule that decides not to classify
an object if there is not a sufficient confidence that the decision will be correct.
In the case of rejection the classification is delegated to other more sophisticated
procedures. However, high rejection rate could lead to large time consuming efforts
(due to the sophisticated procedures), therefore a tradeoff between accuracy and
rejection is mandatory. The formulation of the best accuracy-reject tradeoff is
presented in the seminal work of Chow [48,49], where the related optimal reject rule
is also derived. In this rule, a thresholding is applied to the posterior probability
(or to the likelihood, if a priori equiprobable classes are assumed):

> 0, then classify O

< 0, then reject O (4.10)

K3
where 6 is a threshold in the range (0, 1). The large the value of 8, the fewer points
will be classified.

The measures introduced in this thesis do not match this formulation, since no
rejection rule is proposed here. The presented quantities represent only a measure
of the “robustness” of a classification, i.e. a measure of how much “sure” the sys-
tem decisions are. In this sense, our measures share the same philosophy of those
presented in [85], where the introduced quantities estimate the aptitude of a clas-
sifier to reject errors without rejecting correct classification. As in our case, these
two measures are defined in the correct classification case and in the misclassifi-
cation case. The elegant basic concept under these measures is the entropy of the
classification probability. Also in that case, if required, a rejection rule should be
further derived. In our case, to obtain the rejection rule, the proposed measures
should be reformulated in the Chow’s work context, in which Chow’s rejection
rule, or other more complicated ones (e.g. [82]), could be applied.

4.2.1 Experimental evaluation

The objective of this section is to assess the appropriateness of the defined mea-
sures, by analyzing their experimental behavior in difficulty-controllable real and
synthetic tasks.

Synthetic case

In this case, the goal is the following: given a classification task, with an increasing
and controllable degree of difficulty, we want to see if the difficulty is captured
by the proposed REC and RCC factors. If these factors are well defined, the
expectation is that the RCC factor (regarding correctly classified patterns) will
increase as difficulty decreases, whereas the REC factor (regarding misclassified
patterns) will show the opposite behavior, 4.e. it will grow as the complexity of
the task increases.

In order to partially control the difficulty of the task we propose a three-class
problem, when the originating HMMSs are three states models, proposed in Fig.
4.1.

One can notice that the three models are very similar: they shares the same
transition matrix and the same initial state probability. Moreover the emission
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Fig. 4.1. Three generative models used for synthetic testing: (a) class 1, (b) class 2, and
(c) class 3.

probabilities of the states are Gaussians, where means are equal: the only difference
between the three models lies in the variance of the Gaussians, differing of §. Delta
() is the parameter used to drive the difficulty of the classification task: the larger
the 4, the easier the task.

The experimental setup is the following: 30 sequences (with the length of 400)
were generated for each class. HMMs are trained using standard Baum-Welch re-
estimation procedure, initialized with Gaussian Mixture Models as described in
Section 3.4.1. The training process was stopped after likelihood convergence. In
order to guarantee statistical significance to the experiments, each session was re-
peated 20 times, averaging REC and RCC factors. The variable § varies from 0.025
to 0.25. REC and RCC were plotted in Fig. 4.2, together with the classification
results.

From this plot it could be seen that the expected behavior was confirmed:
the RCC factor, computed for correctly classified patterns, increases as difficult
increases, i.e. as the parameter ¢ increases. On the other hand, the REC factor,
computed on misclassified patterns, does not show a particularly expressive pat-
tern. The only interesting consideration is that it is really low if compared to the
RCC factor: so we could infer that the classification is not reliable.

One important observation has to be made: these indices, especially the RCC
one, are able to quantitatively describe the accuracy of the system in a classifi-
cation task, also in case of perfect classification. In fact, we could note that, for
d > 0.125, the system reaches an almost perfect accuracy. Nevertheless, the RCC
index increases for decreasing difficulty, allowing to understand that the task is
easier: this information could not be deduced by merely analyzing the classifica-
tion accuracies, that are almost the same. This is more evident in the real case
proposed in the next section, where HMM accuracy is 100% in some situations.
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Fig. 4.2. Plots of RCC (a) and REC (b) factors in the synthetic experiments, together
with the correspondent classification accuracy (c). All plots are in the same scale.

Real case

The proposed measures have been computed also in the 2D shape recognition task,
using the method proposed in Chapter 6, in the presence of occlusions and in the
presence of noise separately. For the occlusion experiments, the two proposed mea-
sures are plotted, using the same scale, in Fig. 4.3, together with the corresponding
classification accuracies.

In Fig. 4.3(a), as expected, the RCC factor increases as occlusion level de-
creases. In Fig. 4.3(b), only REC values for occlusion levels higher than 35% are
plotted, as no errors are made for lower occlusion levels. From these values, it can
be observed that the REC factor is very low, even lower than the margin estimated
in the case of correct classification (Fig. 4.3(a)). Here it is more evident the fact
that the perfect classification rates, proposed by the system for occlusion lower
than 35%, do not correspond to the same task ease. This information could be
evinced only by looking at the RCC index values.

The same behavior can be noticed looking at the reliability analysis for the
experiments in presence of noise (Fig. 4.4(a) and (b)): the margin between the
log-likelihood difference in the two cases is narrowed, but it is still possible to
discriminate between correct and wrong classifications.
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Fig. 4.3. Analysis of the reliability of the classification rule in occlusion experiments,
at different occlusion levels: (a) RCC factor, (b) REC factor, and (c) the corresponding
classification accuracy. All plots are on the same scale.

4.3 Classification by similarity

As explained in Section 4.1, the standard HMM-based approach to sequence clas-
sification consists in training one HMM for each class, and to classify an unknown
sequence into the class whose model shows the highest probability (likelihood) of
having generated this sequence (Mazimum Likelihood (ML) classification rule).

In this section, an alternative classification scheme is proposed, by extending
the similarity-based paradigm [110,87,107,169,173,170] to HMM-based classifi-
cation. This paradigm, which has recently been introduced, differs from typical
pattern recognition approaches where objects to be classified are represented by
sets (vectors) of features. In the similarity-based paradigm, objects are described
using pairwise (dis)similarities, i.e., distances from other objects in the data set.
Thus, objects are not constrained to be explicitly represented in a feature space;
all that is necessary is a way to compute (dis)similarities between pairs of objects.
The goal is then to learn a classifier only from these relational data.

The literature on similarity-based classification is not vast [110, 87,107, 169,
173,170], and is summarized in Section 4.3.1. The general idea behind all these
approaches is basically the same: given a set of pairwise dissimilarity values, a



70 Classification with HMM

250 T T T T T T T T T 250

200

RCC

0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05
noise level noise level
(a) (b)

Noise level | Accuracy
0.85 71.25%
0.75 80.00%
0.65 83.75%
0.55 91.25%
0.45 97.50%

0.35 100%

0.25 100%

0.15 100%

0.05 100%
(c

Fig. 4.4. Analysis of the reliabilities of the classification rule in noise experiments,
at different noise levels: (a) RCC factor, (b) REC factor, and (c) the corresponding
classification accuracy. All plots are on the same scale.

new representation space can be built, in which each object is described by these
values. In [173], a simple synthetic experiment shows that a complex problem in
a 2D space (requiring a quadratic classifier to achieve almost correct separation),
becomes a linearly separable problem in a dissimilarity space.

The proposed approach extends this dissimilarity-based classification paradigm
to HMM-based sequences classification problems. We propose to build a similarity!
space, representing each object (sequence) by the vector of its similarities with
respect to a predeterminate set of objects (this can be the whole data set, in
the simplest approach), called the representatives set; the classification is then
performed in this new representation space. Similarities are derived by considering
the likelihood P(O|A) as a measure of the similarity between the sequence O
and the HMM specified by the set of parameters A. This similarity measure was
previously used in sequence clustering applications [201,167] (see also Chapter 5).

The similarity-based classification paradigm seems to be particularly well
suited to HMMs, as it can be seen as a natural extension of the standard HMM
classification scheme. Specifically, the standard Maximum Likelihood criterion as-
signs an unknown sequence O to the class whose model shows the highest likeli-

! Note that we refer indifferently to similarity or dissimilarity.
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hood. To this aim, the likelihoods of O with respect to the HMMs of all classes
are evaluated, each stating a likelihood-based measure of the similarity between
that class and the observed sequence. In other words, HMMs are used to compute
similarities between sequences and classes, with each class being represented by a
single HMM. Subsequently, only the maximum of these values is used to take the
classification decision. In the similarity-based approach, the classification decision
is taken using the whole set of similarities between each observed sequence and
all the other sequences. We will show that this strategy results in a substantial
improvement in the classification performance, compared to standard HMM-based
approaches. Moreover, with the use of HMMSs and the similarity representation,
the problem of sequences classification is reduced to a more standard classification
task (where each object is described by a fixed-length feature vector), for which
arbitrarily sophisticated techniques can be used, allowing to increase even more
the classification performance.

The proposed approach was successfully tested on both synthetic and real
data, involving 2D shape recognition and face recognition problems. In compari-
son with the standard HMM-based Maximum Likelihood classification criterion,
our method showed a significant performance improvement in these problems,
confirming all of the potentialities of the similarity-based classification approach.

The main problem of the similarity-based approach, of particular relevance in
practical applications, is the high dimensionality of the resulting similarity space.
Actually, in the basic approach, this dimensionality is equal to the cardinality of
the whole training data set, possibly leading to a huge computational burden. In
the literature, two types of solutions of this problem could be identified, summa-
rized in Section 5. Here, three methods to face this problem are proposed. The
first one aims at removing redundancy from the data by applying linear dimen-
sionality reduction techniques, such as Fisher Discriminant Analysis (FDA) [81]
and Principal Component Analysis (PCA) [113]. The second proposed method is
based on a greedy strategy known as matching pursuit [153], which selects a subset
of representatives based on which the similarity values are computed. These two
approaches are very general, and can be applied in all distance-based classification
contexts. The third proposed approach is more specific to the HMM case, and is
based on a simple adaptation of the similarity-based classification approach to the
standard HMM learning procedure. All these approaches were experimentally eval-
uated, showing the promising discriminative power of the similarity space, even
when the dimensionality is reduced to a more manageable size.

Briefly, the main contribution is the introduction of the similarity-based recog-
nition paradigm in an HMM context, resulting in a significant performance im-
provement with respect to standard HMM-based classification. The mapping to
the similarity space, proposed in our approach, allows to reduce complex prob-
lem of sequence classification to a more standard point classification problem, for
which arbitrarily complex techniques could be used.

From the point of view of similarity-based recognition, we propose two different
approaches to deal with the high dimensionality of the similarity space, which is
one of the main problems of the method. First, the potential of linear reduction
techniques, as PCA and FDA, is exploited, showing that they are able to reduce the
curse of dimensionality impact on the classification process. Second, we address the
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choice of a set of appropriate representatives using the matching pursuit algorithm,
which seems to be a robust and effective approach.

4.3.1 State of the Art
Similarity-based classification

The literature on similarity-based classification is not vast. Jain and Zongker [110]
have obtained a dissimilarity measure, for a handwritten digit recognition problem,
based on deformable templates; a multidimensional scaling approach was then used
to project this dissimilarity space onto a low-dimensional space, where a 1-nearest-
neighbor (1-NN) classifier was employed to classify new objects. In [87], Graepel
et al. investigate the problem of learning a classifier based on data represented in
terms of their pairwise proximities, using an approach based on Vapnik’s structural
risk minimization [215]. Jacobs and Weinshall [107] studied the use of distance-
based classification with non metric distance functions (i.e., that do not verify the
triangle inequality). Duin and Pekalska are very active authors in this area,? having
recently produced several papers [169,173,170]. Motivation and basic features of
similarity-based methods were first described in [169]; it was shown, by experiments
in two real applications, that a Bayesian classifier (the RLNC - Regularized Linear
Normal density-based Classifier) in the dissimilarity space outperforms the nearest
neighbor rule. These aspects were more thoroughly investigated in [170], where
other classifiers in the dissimilarity space were studied, namely on digit recognition
and bioinformatics problems. Finally, in [173], a generalized kernel approach was
introduced, dealing with classification aspects of the dissimilarity kernels.

The dimensionality issue

The main problem of the similarity-based approach, of particular relevance in
practical applications, is the high dimensionality of the resulting similarity space.
In the literature, two types of solutions have been proposed in order to address
this problem. The first consists in building the similarity space using all avail-
able patterns, and subsequently applying some standard dimensionality reduction
techniques. One example of this kind of approach is the multidimensional scaling
method used by Jain and Zongker [110]. Another recent example is presented by
Pekalska and Duin in [172], where a reduction of the dimensionality of the dis-
similarity space is obtained by a modified multidimensional scaling scheme, able
to reduce the computational burden and to allow generalization to new data. The
second type of solution to the dimensionality problem performs by directly choos-
ing a small set of representatives. An example of this type of solution can be found
in [170], where random selection, most-dissimilar rule, and the Condensed Nearest
Neighbor (CNN) rule were employed. Other examples could be also found in [107],
where a new type of CNN method is proposed, or more recently in [171], where
a greedy approach is proposed, able to find prototypes encoding the principal
components of the similarity space.

% See http://www.ph.tn.tudelft.nl/Research/neural/index.html



4.3 Classification by similarity 73
4.3.2 The Similarity-Based Strategy
Introduction

The basic issue of a similarity-based strategy is how to define similarities in an
HMM framework. It has to be remembered that, given an HMM X\ and a sequence
O, there is a standard procedure (forward-backward procedure [16]) to compute
P(O|A), i.e., the probability (density) that the sequence O has been generated by
model A. This quantity is called likelihood, and measures how well the sequence
O “fits” the model A. A natural choice is then to define the similarity D;; =
D(0;,0;) between two sequences O; and O; as
D, =D(0,,0;) = 'EL1%A) (11)
i

where A; is the HMM trained on sequence Oj, and T; is the length of the se-
quence O;. The 1/T; is a normalization coefficient introduced to take into account
sequences of different length. Notice that this similarity is not symmetric.

The idea at the basis of the proposed approach is conceptually simple: building
a new representation space, using the similarity values between sequences obtained
via the HMMs according to (4.11), and constructing a classifier in that space. One
of the justifications for this approach lies in the fact that similarity is high for
similar objects/sequences, i.e., belonging to the same class, and low for objects of
different classes, making discrimination possible [173]. Therefore, we can interpret
the similarity measure D(O, O;) between a sequence O and another “reference”
sequence O; as a “feature” of the sequence O. This fact suggests the construction
of a feature vector for O by taking the similarities between O and a set of reference
sequences R = {O}, so that O is characterized by a pattern (i.e., a set of features)
{D(ank); O € R}

This approach is well suited for HMMs. With the classical approach, given
a sequence O, the rule defined by (4.5) uses HMMs to compute the similarities
between O and all the sequences in the training set. Subsequently, it seeks the
most similar training sequence, and classifies O as belonging to the class of this
sequence (exactly as in a 1-NN classifier). Therefore, this process does not use
all the information contained in the complete set of similarities. In our approach,
instead, all this information is used. Notice that the fact that two sequences, say
O; and Oy, present similar degrees of similarity to several other sequences (e.g.,
they are both very similar to some sequences, and also both very dissimilar to
some other sequences) enforces the hypothesis that O; and O; belong to the same
class.

Formal Definition

Formally, the proposed strategy is defined as follows. Consider a classification
problem with C' classes; for each class k € {1,2,...,C}, we have a set of Ny, training

sequences Ty, = {ng)...O(Nkz}; thus N = }~, N}, is the total size of the training set
c
T = U=y Tr-
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Let R = {Py,...,Pgr} be a set of R “reference” or “representative” objects;
these objects may belong to the set of training sequences (R C 7) or may be oth-
erwise defined. Now let D (O) be a function that returns the vector of similarities
between an arbitrary sequence O and all the sequences in R, that is

D(0,P))
Dr(0) = : € R® (4.12)
D(OJ PR)

We will designate the space IR® in which the dissimilarity vector exists as the
“similarity space” and denote it as Sg, where the subscript R is used to emphasize
the dependance of the similarity space on the set R. Once this similarity space is
defined, any standard classifier can, in principle, be used.

Regarding the choice of R, different approaches can be adopted; the basic one,
described in next subsection, is to choose R = T, the whole training set. With
this choice, the dimensionality of Sg = St is equal to N, the cardinality of the
training set 7. Obviously, this represents a problem, because it makes the proposed
method unapplicable in most cases; nevertheless, it is interesting to investigate the
discrimination ability of this space.

Subsequently, the problem of reducing the dimensionality of the space is ad-
dressed by three different approaches: in the first one, linear projection techniques
are applied to the whole similarity space S7; in the second one, we will modify
the strategy used to compute the distance D(-,); in the third one, we finally use
a greedy strategy, based on a matching pursuit algorithm, in order to choose a
“good” set of representatives.

Basic Approach: R =T

When we take R = 7T, the dimensionality of Si is equal to N, the cardinal-
ity of 7. Notice that in this case we are required to design a classifier on a N-
dimensional space using only NV training sequences; this is an extreme case of the
curse of dimensionality, suggesting that some dimensionality reduction technique
should be adopted. Linear transformations, such as Principal Component Analy-
sis (PCA) [113] (see appendix A.1) or Fisher Discriminant Analysis (FDA) [81]
(see appendix A.3), were conceived as means of reducing the dimensionality of a
space while preserving almost all the “relevant information” contained in a data
set. The reduction of the space dimensionality absorbs some of the impact of the
curse of dimensionality; moreover, it could sometimes eliminate some redundancy
present in the data (as shown in the experiments), leading to a better classification
performance.

Choice of the Set of Representatives R

If we want to avoid the curse of dimensionality without having to resort to PCA
or FDA, smarter ways of choosing R have to be devised. Clearly, the choice of R
is critical since only if this set is adequately chosen, the discrimination power of
the space Sk will be large. Here, two methods are proposed, namely, the One Per
Class (OPC), and the Matching Pursuit (MP) procedures.
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The “One Per Class” Approach.

In this approach, which is similar to the MLopc scheme described in Section
4.1, instead of training one HMM for each sequence, a model is trained for each
class using all sequences of that class. Using these HMMs, the feature vector of a
sequence O is a C-dimensional (for a C-class problem) vector given by

) log P(O[A1)
Dopc(0) = = : (4.13)
log P(O[Ac)

where X; is the HMM estimated from the set of all training sequences from class j,
and T is the length of sequence O. In this case, Dopc(O) can be seen as containing
the similarities between O and each of the C classes. We can imagine the set R
as containing C sequences {P1,...,P¢}, such that P; is an (imaginary) sequence
such that if we applied the learning algorithm to P; we would still obtain A;. In
the following, we will denote the similarity space obtained with this approach as

Sopc-
The Matching Pursuit Approach.

The MP approach is based on the following idea: instead of using all sequences of
the training set, one can choose those that are more “useful” in classification, i.e.,
more discriminant in some sense. This choice is made incrementally, starting with
an empty set, and adding at each step the object that yields the largest “perfor-
mance improvement”. The process is stopped by some convergence criterion.

The MP algorithm was introduced in the signal processing community as an
algorithm to decompose a signal into a linear combination of basis functions from
a redundant dictionary [153]. It is a general, greedy, approximation scheme that
works by sequentially appending functions to an initially empty set. At each step,
the basis function appended is the one that produces the largest decrease in the
approximation error. Recently, Vincent and Bengio [221] used MP to obtain kernel-
based solutions to machine-learning problems.

Formally, the MP algorithm is defined as:

e Set R = 0 (the empty set);
e Until some stopping criterion is met, repeat:
— For each sequence ng) ¢ R, compute the Leave One Out (LOO) classifica-
tion error rate of the 1-NN classifier using the feature vector D ( Ruogk)}(‘).

Let’s denote this error as ER(ng)).

— The new representative set is R = R U {O{")

> '}, where

(i*,k*) =arg  min ER(ng)).
G,k):0F gr

In the following, we denote the similarity space obtained with this approach as
Syp- Note that, unlike the OPC approach, this scheme is very general, and can
be used in all other instances of similarity-based classification.
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4.3.3 Results and discussion

In this section, experimental results are reported, in order to validate the proposed
approach. Firstly, we investigate the discriminative power of the space Sg with
R = T, i.e. using, as reference set, the whole training set 7. The standard ML
classification scheme and the proposed approach are compared, with both synthetic
and real data. The use of PCA and FDA is investigated in this context, also with
the aim of visualizing the data. Secondly, experimental results concerning the
two different choices of R (OPC and MP) are reported. All the experiments are
repeated 10 times and the results are averaged, so as to increase the independence
of the results from the training of the HMMs.

Basic Approach: R =T
Synthetic Data.

We consider a 3-class synthetic problem, defined by the parameters given in Fig.
4.5. The training set is composed of 30 sequences (of length 400) from each of

1/3[1/3]1/3 [1/3] pi =10 =06
A =11/3]1/3]1/3| * =[1/3| B = |p2 =3 |07 = 0.6
1/3]1/3|1/3 1/3] ps =5 |03 = 0.6

(a)
1/3[1/3]1/3 [1/3] pi =101 =05
A =11/3]1/3]1/3| * =[1/3| B = |p2 =3 |07 = 0.5
1/3[1/3[1/3]  [1/3] pi3 =5 |03 = 0.5

(b)
1/3[1/3[1/3 [1/3] pm=1o=04
A =11/3]1/3]1/3| ® =([1/3|B = [p2 =3 |07 = 0.4
1/3]1/3|1/3 [1/3] ps =5 o5 = 0.4

(c)

Fig. 4.5. Generative HMMs for synthetic data testing: A is the transition matrix, 7
is the initial state probability, and B contains the parameters of the emission density
(Gaussians with the indicated means and variances).

the three classes; the dimensionality of the similarity space Sr is thus N = 90.
Notice that this classification task is not easy, as the three HMMs are very similar
to each other, only differing slightly in the variances of the emission densities.
We compare the standard ML classification criterion with a simple classifier
in the similarity space Sg, the k-nearest-neighbor (k-NN), for ¥ = 1 (1-NN) and
k = 3 (3-NN), using Euclidean distance. This classical technique assigns a given
object O to the class having the largest number of representatives in the set of the
k objects in the training set that are nearest to O. This classifier is widely used,
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as it is simple, fast, and reasonably accurate. The major drawback of nearest-
neighbor classifiers is their sensitivity to noisy patterns on the training set, and
the need to store all the training samples.

Accuracies were computed using the Leave One Out (LOO) procedure. This
means that the dissimilarity space Si is actually built by using the representatives
set R consisting of 89 sequences, while one sequence is left out and used for testing.
The procedure is repeated until all sequences have been tested (i.e. 90 times), and
results are averaged. Results of different classifiers are shown in Table 4.1. We

Table 4.1. Classification accuracies using basic approach on synthetic data.

Classifier |Accuracy

MLorps 95.67%
1-NN on S7| 98.89%
3-NN on S7| 98.89%

can observe that there is an improvement when using the simple classifier in the
similarity space. It is worth recalling that, as mentioned above, the three classes
are very similar and the classification task is very difficult.

In order to get a better insight into the structure of our similarity space, we
have applied PCA and FDA to the space Sy. Plots of the 2D projections of the
training set thus obtained are shown in Fig. 4.6. It is clear that FDA is really
effective in separating the classes, and even PCA leads to a satisfactory result,
even if it ignores the class labels. In both cases, the three classes in the training
set would be easily separable, although generalization would clearly be better with
the FDA projection.

Classification accuracies were also obtained in these reduced spaces, in order to
investigate discrimination ability of the similarity space. In this case, we use 1-NN
and the Mahalanobis classifier (MC), which classifies an unknown observation as
belonging to the class whose mean is nearest, using a Mahalanobis distance [65].
Accuracies (again computed with the LOO procedure) are presented in Table 4.2.
For FDA, the maximum dimensionality allowed is C' — 1, where C' is the number of

Table 4.2. LOO accuracies on synthetic data, projected using PCA and FDA.

Dimensionality
2 3 4 5
1-NN on PCA space|98.89% 98.89% 98.89% 98.89%
MC on PCA space (98.89% 97.78% 97.78% 96.67%
1-NN on FDA space| 100% - - -
MC on FDA space | 100% - - -

classes [81]. In this case, therefore, the maximum dimensionality is two. Comparing
Table 4.2 with Table 4.1(a) we can note that the performances on the FDA reduced
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Fig. 4.6. 2D projections of the synthetic training set using (a) PCA and (b) FDA.

space is increased, reaching a perfect classification rate (which is not surprising in
view of Fig. 4.6 (b)).

Real Data.

The proposed approach has been tested on two real applications: a 2D shape recog-
nition task, described in Chapter 6, and a face recognition problem, using HMMs
as proposed in [125] (briefly resumed in Chapter 7). For the former application,
the shape contours are represented by their curvature, modelled using continu-
ous HMMs. Differently from the approach proposed in Chapter 6, we do not use
here any model selection technique. Testing was performed on part of the object
set used in [197], composed by seven classes, each containing 12 different shapes.
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As before, accuracies are computed using the LOO scheme. The database used is
shown in Fig. 4.7.
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Fig. 4.7. Objects set used for testing.

For the face recognition task, HMMs were used as proposed in [125], described
in Chapter 7, considering DCT coefficients as features. Given a sequence of sub-
images of the face image, the DCT coefficients of each sub-image are computed, and
vectorized using a zig-zag scan. The number of coefficients chosen determines the
dimensionality of the observation, and 10 coefficients are used in our experiment.
The sequence of sub-images is obtained by sliding over the face image a square fixed
size window, in a raster scan fashion, with a predefined overlap. The window size
and the overlap ratio were fixed to 8% and 50% respectively. Testing was performed
using the Bern face database®, which consists of 30 subjects with 10 face images
each. For each subject, five faces were used for training and the others for testing.
We have chosen to use this database, instead of the ORL used in [125], because
with that database HMMs are able to reach an almost perfect classification, so
without any possibility of improvement.

Also in this case, the classical ML classification criterion was compared with
the similarity-based approach, using a k-NN rule (for ¥ = 1 and ¥ = 3) in the
similarity space St. Accuracies are presented in Table 4.3(a) and (b), for 2D
shape recognition and for face classification tasks, respectively.

In the 2D shape case, the improvement in classification rates is even larger,
of about 18% for the 1-NN classifier and of about 13% for the 3-NN. This shows
that this similarity-based feature space is very well suited for this real case; the
explanation could be the following. Looking at Fig. 4.7, we can note that there are
many differences among items in the same class; the use of all similarities between
items may add a lot of discriminative power to the method. This additional dis-
criminative power increases more when the differences among items of same class
are large. Also in the face recognition case there is a noticeable improvement in
the accuracies of classification, confirming the wide applicability of this method to
real cases.

3 Downloaded from ftp://iamftp.unibe.ch/pub/Images/FaceImages
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Table 4.3. Classification accuracies using basic approach on real data: (a) 2D shape
recognition, and (b) face recognition.

Classifier |Accuracy Classifier |Accuracy

MLops 80.95% MLors 50.60%
1-NN on 87| 98.81% 1-NN on 87| 72.07%
3-NN on S7| 93.21% 3-NN on S7| 60.53%

(a) (b)

FDA and PCA were also studied in the case of the 2D shape recognition ex-
periments. Plots of projected training set are shown in Fig. 4.8. As in the previous

PCA Reduction

2000

XX x
e
s
1000 * igﬁﬁr o O
a
* ol
or o
o
< 1000 (?b v
- [ [ v v
4 v
-2000+ v v vV
v
-3000
- 6000 740‘00 720‘00 l‘] 20‘00 4(;00 SD‘OO 80‘00 IOl‘JOO
PCA 1
(a)
Fisher Reduction
=31
3154
S
* x
32F x
~ ™
=
23 25
[} @ © O v
i w
-33r
o+
-3.35[
34 . . . . ,
2.85 29 2.95 3 3.05 3.1 3.15 32
Fisher 1
(b)

Fig. 4.8. Data set for 2D shape recognition experiment, reduced and plotted using: (a)
Principal Component Analysis; (b) Fisher Discriminant Analysis.
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subsection, classification accuracies were calculated for different dimensionalities,

using the LOO procedure, and the results are reported in Table 4.4. In this case, the

Table 4.4. LOO accuracies on 2D shape recognition task, after PCA and FDA projec-
tions.

Dimensionality
2 3 4 5
1-NN on PCA space|80.12% 97.74% 98.21% 98.33%
MC on PCA space (81.19% 92.86% 91.67% 93.33%
1-NN on FDA space| 92.5% 95.05% 96.31% 97.14%
MC on FDA space |86.55% 92.62% 90.12% 91.31%

reduction of dimensionality to 2 decreases the classification performance, which,
in any case, is still better than the results obtained using the standard ML cri-
terion. The similarity feature space is complex in this case, due to the presence
of very dissimilar elements in the same class. For low dimensionality, part of this
information is lost, but, by slightly increasing the dimensionality, this information
is correctly recovered, and the performance returns to a very good level.

To investigate the robustness of the approach, we have also tested the behavior
of the method in the presence of shape occlusions. Occlusion is one of the most
severe limitations to the application of typical object recognition techniques. As
proposed in Chapter 6, HMMs are very effective in dealing with object occlusions.
Here we show that the approach proposed in that chapter can be further improved
by using the similarity space representation.

Object occlusion is simulated by considering a fragment of the object boundary,
starting at a randomly chosen location. Each object was occluded 5 times, resulting
in 420 sequences. Occlusion percentages considered were 10%, 30% and 50%; notice
that in the last case, one half of the whole boundary is missing. Also in this case
a LOO scheme was adopted: note that this results in a really complex task, as the
left out sequence (the occluded one) was not used for building the similarity space.
This choice makes all experiments uniform throughout the section, even if it can
be seen as somewhat strange, since typically to recognize an occluded object, also
the original shape is available (this obviously results in a great improvement in
the performances, see Chapter 6).

Results for the different occlusion levels considered, using 1-NN and 3-NN clas-
sifiers, are shown in Table 4.5. We observe a clear improvement in the classification
accuracies of the classifiers in the similarity space.

Choice of representatives set R

In this section, the two approaches for the choice of R described in Section 4.3.2
are tested. These approaches were applied to the 2D shape recognition (using
both the entire and occluded shapes) and to the face classification experiments.
Classification accuracies were calculated as in the previous section. We used 1-NN
classifiers in the similarity spaces Sopc and Syrp-
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Table 4.5. Classification accuracies on data set formed by occluded shapes, at different
occlusion levels.

Occlusion level
10% 30% 50%

MLops |76.90% 71.50% 60.95%
NN on 87 [91.50% 76.43% 64.19%
3-NN on S71(91.90% 73.05% 64.10%

The comparison between the proposed approaches and ML classification is re-
ported in Tables 4.6(a) and (b), for the entire and occluded shapes, respectively,
and in Table 4.7, for the face experiment. For the sake of clarity, results the for
1-NN on S7 (entire similarity space) are also shown, in order to quantify the loss
in classification accuracy determined by the reduction. Moreover, the dimension of
the resulting similarity space S is included in the tables, in order to emphasize the
amount of the reduction obtained. In summary, we can conclude that both ap-

Table 4.6. Accuracies on 2D shape experiments of the OPC and MP approaches for the
choice of the representatives set R, in two different experimental conditions: (a) entire
shapes; (b) occluded shapes, for different occlusion levels (O.L.).

Classifier  |Accuracy Dim. of §
MLorc 89.29% -
MLops 80.95% -
1-NN on S7 | 98.81% 84
1-NN on Sorc| 97.38% 7
1-NN on Syrp | 92.86% 4.06

(a)

Classifier [O.L. = 10% O.L. = 30% O.L. = 50% Dim. of S
MLops 76.90% 71.50% 60.95% -
MLopc 83.05% 77.98% 69.19% -
1-NN on 81 91.50% 76.43% 64.19% 84
1-NN on Sopc| 86.10% 71.11% 57.81% 7
1-NN on Syp 85.90% 72.10% 56.14% 4.26
(b)

proaches seem to be able to preserve most of the performance of the basic approach
(classification on the whole similarity space S7), while achieving a drastic dimen-
sionality reduction. Regarding the 2D shape recognition experiment, by comparing
the performance of the MLopc method, with the standard MLppg criterion, we
can notice that the use of all sequences to learn each HMM enhances the accuracy
of the standard ML classification. HMM is really suitable to be trained using many
sequences, as it is able to deal with their possible different lengths. Nevertheless,
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Table 4.7. Accuracies on face recognition experiments of the OPC and MP approaches
for the choice of the representatives set R.

Classifier |Accuracy Dim. of §
MLoprc 51.67% -
MLops 50.60% -
1-NN on 8t | 72.07% 150
1-NN on Sopc| 69.40% 30
1-NN on Smp | 68.87% 10.1

this could reduce the expressivity of the resulting similarity space, especially in
some real cases, where items of the same class present remarkable differences be-
tween each other. From Table 4.6(b) we can also notice that when increasing too
much the occlusion level, the performances on reduced similarity spaces (MP and
OPC approaches) are lower than standard ML classification level. This is proba-
bly due to the fact that when the percentage of occlusion increases, the HMMs
are less accurately estimated. The obtained similarity space is thus noisy, and the
1-NN rule (which is the simplest classifier) is not able to perform well in such
a noisy space. To verify this explanation, we recomputed the LOO classification
accuracies on the experiment with the occluded shapes, with occlusion level 50%.
We used a carefully trained multi layer feed forward neural network on the MP
reduced similarity space: 1-NN accuracies were about 56% in that reduced space.
Accuracies obtained with the neural network is around 88%, confirming the large
potentialities of this approach: the mapping onto the similarity space allows to
reduce complex sequence classification into easier standard point classification, for
which one could use arbitrarily sophisticated techniques.

In conclusion, the two approaches for the choice of representatives set R are
both effective. OPC seems to be more interesting, as it results directly from the
standard HMM training, without any need to postprocess the space. Neverthe-
less, the resulting dimensionality is equal to the number of classes, reducing the
usefulness of the approach in problems with many classes (e.g., face recognition).
Moreover, the training of one HMM for each class can drastically reduce the dis-
crimination ability of the similarity space when items of the same class are very
different. On the other hand, the MP approach seems to be better in identifying
the representatives that are really useful for the similarity-based classification pur-
pose. The higher computational burden introduced with this approach is its major
drawback.

4.3.4 Conclusions

In this section we have proposed a novel sequence classification scheme by com-
bining Hidden Markov Models with the similarity-based paradigm. This approach
creates a representation space for sequences in which standard feature-based clas-
sification techniques can be used. In the investigated applications, we showed that
a simple classifier in a such space outperforms standard HMM-based classification
schemes. Three approaches to deal with the high dimensionality of resulting space
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were also considered and investigated, showing that the similarity-based represen-
tation seems to be still effective when its dimensionality is reduced in order to
make it more manageable.

Future directions consist in applying and investigating more ad hoc similarity
space classifiers, as those proposed in [173,170], and in studying novel techniques
for reducing space dimensionality.



5

Clustering with HMM

5.1 Introduction

Unsupervised classification (or clustering) of data [108,109] is undoubtedly an
interesting and challenging research area: it could be defined as the organiza-
tion of a collection of patterns into groups, based on similarity. It is well known
that data clustering is inherently a more difficult task if compared to supervised
classification, in which classes are already identified, so that a system can be ade-
quately trained. Clustering has been applied in several contexts, as, for example,
data mining, DNA modelling, information retrieval, image segmentation, signal
compression and coding, and machine learning. Hundreds of clustering algorithms
have been proposed in the literature, mostly divided in two categories: iterative
partitional techniques and agglomerative hierarchical techniques. The former class
of algorithm attempts to obtain that partition which minimizes the within-cluster
scatter or the between-scatter matrix. The latter class organizes data in a nested
sequence of groups which can be displayed in a form of a dendrogram or a tree.
This tree is then cut at the chosen depth level in order to obtain the desired
clustering.

5.1.1 Clustering algorithms

This subsection is aimed at briefly introducing some details about these basilar
approaches to clustering, since some of them will be employed through the rest of
this chapter.

As claimed in the previous section, the most part of the clustering algorithms
proposed in the literature could be divided in two categories [108,109]: agglomer-
ative hierarchical and iterative partitional techniques. The former class produces
a sequence of clustering with a decreasing number of clusters. The clustering pro-
duced at each step typically results from the previous one by merging the two
most similar clusters into one.

Most hierarchical clustering algorithms are variants of the Single Link (SL)
[202] and the Complete Link (CL) [124] algorithms. These two algorithms differs
in the way they characterize the similarity between a pair of clusters. In the Single
Link method, the distance between two clusters is the minimum of the distances
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between all pairs of patterns drawn from the two clusters. In the Complete Link
algorithm, instead, the distance between two clusters is the mazimum of all pair-
wise distances between patterns in the two clusters. Both these approaches have
some advantages and some disadvantages: in particular, Complete Link is able
to produce compact clusters, while Single Link has the tendency to find elon-
gated clusters. On the other hand, the Single Link algorithm is more versatile,
as it could extract also concentric clusters, while the Complete Link cannot. It
should be noted, nevertheless, that Complete Link algorithm is able to produce
more useful dendrograms, with respect to several application contexts, as shown
in [108].

Another interesting variant of these methods is the the minimum-variance
(Ward) [224,158] scheme. In this case, the distance d(i, j) between two clusters C;
and C} is defined as

nin;

2
—— || m; —m; 5.1
ni +n; [| my i |l (5.1)

d(i,j) =
where n, and my are the cardinality and the centroid of the cluster Cy, respectively.
It has been shown in [210] that this approach merges the two clusters that lead to
the smallest possible increase in the total variance.

Another typology of clustering algorithms, which is in contrast with the hier-
archical clustering class, is represented by the partitional clustering family: these
methods produce a single partition of the data instead of a clustering structure,
such as a dendrogram produced by hierarchical technique. The partitional algo-
rithms usually perform clustering by optimizing a criterion function that could
be defined locally or globally. Starting from an initial cluster assignment, the al-
gorithm optimizes this function by iteratively re-assigning patterns to clusters,
until a stable situation has been achieved. A typical problem of these approaches
is the sensitivity to the initial clustering. The most used solution is to run the
algorithm several times, and to choose the best obtained clustering configuration.
An example of such techniques is the well known k-means method [108,12], a fast
and effective clustering approach. This approach finds the optimal partition by
evaluating, at each iteration, the distance between each item and each cluster de-
scriptor, and by assigning it to the nearest class. At each step, the descriptor of
each cluster is re-evaluated by averaging its cluster items. The system stops when
no changes are present in the clustering. A simple variation of the method, called
partition around medoid (PAM) [122], determines each cluster representative by
choosing the point nearest to the centroid.

A final consideration can be formulated about these two methodologies: parti-
tional methods have the advantage of being very fast, as not the whole dendrogram
tree needs to be deduced: this could be a crucial factor in those applications involv-
ing large data sets, for which the construction of a dendrogram is computationally
prohibitive. On the other hand, hierarchical algorithms are more versatile, as able
to more properly perform also in cases of non-isotropic clusters.

5.1.2 Sequential data clustering

The intrinsic difficulty of the unsupervised classification of patterns with respect
to supervised classification worsens if sequential data are considered: the structure
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of the underlying process is often difficult to infer, and typically different length
sequences have to be dealt with. Clustering of sequences has assumed an increasing
importance in recent years, due to its wide applicability in emergent contexts like
data mining and DNA genome modelling and analysis.

Sequence data clustering methods could be generally classified into three cate-
gories: proximity-based methods, feature-based methods and model-based methods.
In the proximity-based approaches, the main effort of the clustering process is
in devising similarity or distance measures between sequences. Once determined
such measures, any standard distance-based method (as agglomerative) could be
applied. Examples of such methods include time series correlation measures, string
distance metrics (as the Hamming distance [108] or string edit distance [186]) and
dynamic time warping method [163]. Feature-based methods extract a set of fea-
tures from individual data that capture the temporal information. By way of this,
the problem of sequence clustering is reduced to a more addressable static point
(vector of features) clustering. Standard examples of these methods use Fourier
descriptors [4] and wavelet coefficients [98]. Finally, model-based approaches as-
sume an analytical model for each cluster, and the aim of clustering is to find a set
of such models that best fit the data. Examples of models that could be employed
include time series models, spectral models and finite state automata (as Hidden
Markov Model).

HMDM-based clustering of sequences

Related to sequence clustering, HMMs have not been extensively used, and only a
few papers are present in the literature. The proposed approaches mainly falls into
the first (proximity-based) and in the third (model-based) category. More specifi-
cally, early works, related to speech recognition, were proposed in [181,137,127]. All
these methods belong to the first category, the proximity-based clustering class.
HMMSs were employed to compute similarity between sequences, and standard
pairwise distance matrix-based approaches were then used to obtain clustering.

The first interesting approach, not directly linked to speech issues, was pre-
sented by Smyth [201] (see also the more general and more recent [37]). This
approach consists in two steps. First, it devises a pairwise distance between ob-
servation sequences, by computing a symmetrized similarity. This similarity is
obtained by training an HMM for each sequence, so that the log-likelihood (LL)
of each model, given each sequence, can be computed. This information is used
to build a LL distance matrix to be used to cluster the sequences in K groups,
using a hierarchical algorithm. In the second step, one HMM is trained for each
cluster; the resulting K HMMs are then merged in a “composite” global HMM,
where each HMM is used to design a disjoint part of this “composite” model. This
initial estimate is then refined using standard Baum Welch procedure. As a result,
a global HMM modelling all the data is obtained. The number of clusters is calcu-
lated using a cross validation technique. With respect to the aforesaid taxonomy,
this approach could be classified as belonging to both the proximity-based class
(a pairwise distance is derived to initialize the model) and the model-based class
(a model for clustering data is finally obtained).

An example of a model-based method for sequence clustering with HMMs is
proposed in [134], where these models are used as cluster prototypes. The cluster-
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ing is obtained by employing the Rival Penalized Competitive Learning (RPCL)
approach [227], originally developed for point clustering, together with a state
merging strategy, aimed at finding smaller HMMs.

A relevant contribute to the model-based HMM clustering methodology has
been provided by Li and Biswas [139, 140,141,142, 143]). Basically, in their ap-
proach (resumed in the Li PhD. thesis [139]), the clustering problem is addressed
by focusing on the model selection issue, i.e. the search of the HMM topology best
representing data, and the clustering structure issue, i.e. finding the most likely
number of clusters. In [140], the former issue is addressed using the Bayesian
Information Criterion [196], and extending to the continuous case the Bayesian
Model Merging approach [205]. Regarding the latter issue, the sequence-to-HMM
likelihood measure is used to enforce the within-group similarity criterion. The
optimal number of clusters is then determined maximizing the Partition Mutual
Information (PMI), which is a measure of the inter-cluster distances. In [141],
the same problems are addressed in terms of Bayesian model selection, using the
Bayesian Information Criterion (BIC) [196], and the Cheesman-Stutz (CS) approx-
imation [45]. A more comprehensive version of this paper has appeared in [143],
where the method is also tested on real world ecological data. These clustering
methodologies have been applied to specific domains, as physiology, ecology and
social science, where the dynamic model structure is not readily available. Ob-
tained results have been published in [142].

5.1.3 Chapter outline

In this chapter the problem of clustering of sequences using HMMs is analyzed, and
some contributions are presented. More in detail, in Section 5.2, after reviewing
the standard proximity-based algorithm used for sequence clustering with HMMs,
a new metric to measure the distance between sequences is proposed. A new par-
titional method, variation of the Partition Around Medoid (PAM) [122] strategy,
is proposed in Section 5.2.2, able to perform pairwise distance-based clustering
in a partitional manner. All these schemes are then evaluated using real data se-
quences, i.e. the electroencephalographic (EEG) signals. Analysis of this kind of
signals has become very important in the last years, due to the growing interest
in the field of Brain Computer Interface (BCI) [175]. In this case, autoregressive
HMMs were employed, with particular care to the HMM training initialization,
with the use of a Kalman filtering and a mixture of Gaussians clustering method.
Subsequently, in Section 5.3, an alternative HMM clustering scheme is pro-
posed, based on the similarity representation introduced in Section 4.3. Also in
this case, we propose to build a new feature space, where each sequence is char-
acterized by its similarity to all other sequences, similarities being computed with
HMMs. In that space, clustering is then performed using some standard point
techniques: the difficult task of sequence clustering is thus recovered to a more
manageable clustering of points (vectors of features). With respect to the taxon-
omy before introduced, this method could be classified as a feature-based method,
and represents an innovative approach in the HMM literature. Experimental eval-
uation on synthetic and real problems shows that this alternative approach largely
outperforms standard HMM clustering schemes in the addressed problems.
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5.2 Standard HMM-based clustering approach

The standard proximity-based method for clustering of sequences using HMMs
could be depicted by the following algorithm: given a set of N sequences {O;...0Ox}
to be clustered:

1. Train one HMM J\; for each sequence O;.

2. Compute the distance matrix D = {D(0O;, O;)}, representing a similarity mea-
sure between sequences or between models; this is typically obtained from the
forward probability P(O;|\;), or by devising a measure of distances between
models.

3. Use a pairwise distance matrix-based method to obtain the clustering, as ag-
glomerative methods.

5.2.1 Distance between sequences using HMM

In the second step the HMMSs computed in the the first step are used to determine
distances between sequences. In the past few authors have proposed approaches to
computing these distances: early approaches were based on the Euclidean distance
of the discrete observation probability [138], others on entropy [114,71], or on co-
emission probability of two models [150], or, very recently, on the Bayes probability
of error [9].

In this section, the appropriateness of three kinds of measures is investigated.
These measures are all based on the likelihood matrix L;;, defined on the basis of
the HMMs {\;} trained on the sequences {O;}:

Lij = P(O;|XAi), 1<i,j<N (5.2)

The first measure, denoted as Lg and proposed in [201], is obtained by merely
symmetrizing the L matrix:

i 1

The second measure, which reminds the Kullback-Leibler information number
[131,130], defines the distance Ly between two sequences O; and O;, and its
symmetrized version Lk s, as

i L;; L;;
LlI](L = L;; [ln L—:| + Lz'j [ln T J] (54)

Jt

i
3 1r . )
Lirs = 5 [L}J(L + L%L] (5.5)

The Kullback-Leibler information number could be an useful quantity in this con-
text, since it represents a measure of distance between probability distribution
functions.

Finally, we introduced another measure, called BP metric, defined as

Lz] I J n J° 27 i
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motivated by the following considerations: the measure (5.3) defines the similarity
between two sequences O; and O; as the likelihood of the sequence O; with respect
to the model A; (trained on Oj;) plus the likelihood of the sequence O; with
respect to the model \; (trained on O;); it does not really take into account the
effectiveness of the HMM learning. In other words this kind of measure assumes
that all sequences are modelled with the same quality, without considering how
well each sequence is modelled by the HMM: this could not always be true. Our
proposed distance also considers the modelling goodness by evaluating the relative
normalized difference between the sequence and the training likelihoods.

5.2.2 Pairwise distance-based clustering algorithms

In the third step, a pairwise clustering technique is needed. The main characteristic
of this kind of methods is that they determine the clustering on the basis of a
pairwise distance matrix, containing the dissimilarity between each pair of patterns
in the data set. The natural choice, in this case, is to use hierarchical algorithms,
already detailed in Section 5.1.1. The disadvantage of this kind of algorithms is
that the whole dendrogram tree needs to be deduced, and this could be a crucial
factor in those applications involving large data sets, for which the construction
of a dendrogram is computationally prohibitive.

In such cases, partitional algorithms should be preferred. In our distance
matrix-based context, nevertheless, the partitional algorithms cannot be applied,
since typically they are not able to deal with only distance matrices. Recently, a
partitional algorithm called “Clustering by friends” has been proposed by Dubnov
et al. in [64], able to obtain a partition of the data from only the distance matrix.
This algorithm, which is nonparametric, iteratively employs a two steps transfor-
mation on the proximity matrix. The first step of the transformation represents
each point by its relation to all other data points, and the second step re-estimates
the pairwise distances using a proximity measure on these representations. Using
these transformations, the algorithm iteratively partitions the data points, until it
finally converges to two clusters.

In this section we propose a new partitional method, called “DPAM” (Distance
matrix Partition Around Medoid), able to directly deal with the pairwise distance
matrix. The proposed approach shares the ideas of the PAM technique, that could
not be used in this context. In fact, it is not possible to evaluate the centroid of
each cluster when having distances between items only, and not their values. The
proposed method is able to determine cluster descriptors in a PAM paradigm, using
items distances instead of their values. The basic idea is to fix as a representative
of the cluster the more “central” element, i.e. the element which has the minimum
distance to all other elements of the cluster. Moreover, the choice of the initial
descriptors could affect algorithm performances. To overcome this problem we have
adopted a multiple initialization procedure, where the best resulting partition is
determined by a sort of Davies-Bouldin criterion [56].
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The DPAM Algorithm

Fixed 1 as the number of tested initializations, N the number of sequences
{01...0n}, k the number of clusters (supposed known) and D(O;, O;) the prox-
imity matrix, the resulting algorithm is the following:

o fort=1ton

— Initial cluster representatives 6; are randomly chosen (j =1,...,k,
9; € {O1,...,0n}).
— Repeat:

Partition evaluation step:
Compute the cluster to which each sequence O; belongs; O; lies
in the j cluster for which the distance D(0Oj;,6;) is minimum.
Parameters upgrade:
Compute the sum of the distance of each element of cluster
C;f from each other element of the jth cluster
- Determine the element in C; for which this sum is minimal
- Use that element as new descriptor for cluster C}
— Until the representatives §; values between two successive iterations
do not change.
- R, ={C},C%,...,CL}
— Compute the Davies—Bouldin-like index defined as:

k
DBLY = 1 max
k — SF#T

Se(CL,0,) + Se(CL,65)
{ D(6r,05) }

where S, is an intra—cluster measure defined by:

201 Ot D(OZ;GT)
SC(CTagT) = = |TC’t|

endfor t
Final solution: The best clustering R, has the minimum Davies—
Bouldin index, i.e.

p=arg tzr{un 7I{’DB’E(’S)}

5.2.3 Application to the EEG modelling

The proposed measures and the proposed algorithm were then tested on a real
complex problem, concerning the modelling of Electroencephalographic (EEG)
signals. These signals represent the brain activity of a subject and give an objec-
tive mode of recording brain stimulation. EEGs are useful tools used for under-
standing several aspects of the brain, from diseases detection to sleep analysis and
evoked potential analysis. The system used to model EEG signal is largely based
on Penny and Roberts paper [174]: the key idea under this approach is to train
an autoregressive HMM (already described in Section 2.2.1) directly on the EEG
signal, rather than use an intermediate AR representation. Each HMM state can
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be associated with a different dynamic regime of the signal, determined using a
Kalman Filter approach [119]. Kalman filter is used to preliminary segment the
signal into different dynamic regimes: these estimates are then fine-tuned with
the HMM. Great attention was paid to the initialization of the HMM training
procedure: first, a Kalman filter AR model is passed over the data, obtaining a
sequence of AR coefficients; then coefficients corresponding to low evidence are
discarded and the remaining are clustered with Gaussian Mixture Models [154].
Finally, the center of each Gaussian cluster is used to initialize the AR coefficients
in each state of the HMM-AR model. To initialize the transition matrix we used
prior knowledge from the problem domain about average state duration densities.
We use the equation a;; =1 — % to let HMM remain in state ¢ for d samples. This
number is computed knowing that EEG data is stationary for a period of the order
of half a second [162].

The number of clusters (i.e. the number of HMM states) and the order of
the autoregressive model were decided by performing a preliminary analysis of
classification accuracy. By varying the number of states from 4 to 10, and by
varying the order of autoregressive model from 4 to 8, we have found that best
configuration was k = 4 and p = 6.

5.2.4 Experiments

In order to validate the exposed modelling technique we worked primarily on EEG
data recorded by Zak Keirn at Purdue University [123]. The dataset contains EEG
signals recorded from different subjects which were asked to perform five mental
tasks: a baseline task, for which the subjects were asked to relax as much as pos-
sible; the math task, for which the subjects were given nontrivial multiplications
problems, such as 27*36, and were asked to solve them without vocalizing or mak-
ing any other physical movements; the letter task, for which the subjects were
instructed to mentally compose a letter to a friend without vocalizing; the geomet-
ric figure rotation, for which the subjects were asked to visualize a particular 3D
block figure being rotated about an axis; and a visual counting task, for which the
subjects were asked to image a blackboard and to visualize numbers being written
on the board sequentially. We applied the method on a segment-by-segment basis,
1s signals sampled at 250Hz and drawn from a dataset of cardinality varying from
190 (two mental states) to 473 sequences (five mental states), where we removed
segments biased by signal spikes derived from human artifacts (e.g. ocular blinks).
First of all, some classification analysis were performed, in order to choose the
best parameter configuration. Classification accuracies were computed for four dif-
ferent subjects in the database, using the baseline and the math task (we choose
four subjects in order to compare our approach with the literature). Obtained re-
sults, compared with those derived using a Neural Network [6] varying the number
of hidden units, are proposed in Table 5.1: the averaged classification accuracy ob-
tained with HMM is about 2% superior than that obtained using Neural Networks,
showing that Hidden Markov Models are more effective on this data set.
Subsequently, the proposed HMM clustering algorithm has been tested, by
evaluating signals obtained from subject two. Experiments were performed with
number of clusters varying from 2 to 5. For each number of clusters, all combi-
nations were experimented, and only best results are displayed. Accuracies were
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Table 5.1. Classification accuracies in EEG modelling using Autoregressive HMM and
Neural Networks as in [6] (for different number of hidden units), for different subjects.

Hidden units in NN Autoregressive

1

2

5

HMM

Subject 1(93.4% + 1.5
Subject 2|96.7% + 1.7
Subject 3(80.9% + 2.5
Subject 4(91.0% + 2.0

93.6% £ 1.5
96.7% £ 1.6
80.7% + 2.6
91.0% + 2.0

93.6% £ 1.5
96.1% + 1.7
82.5% + 2.6
90.0% + 2.1

95.8% + 14
97.4% £ 1.3
83.7% + 2.8
94.0% + 1.8

mean

90.5% + 1.9

90.5% + 1.9

90.5% + 2.0

92.7% + 2.0

computed by comparing the clustering results with real segment labels; percent-
ages are merely the ratio of correct assigned label with respect to the total number
of segments. First we applied the hierarchical complete link technique, varying the
proximity measure: results are shown in Table 5.2, with number of mental states
growing from two to five. We note that accuracies are quite satisfactory. None of

Table 5.2. Results for the application of the Hierarchical Complete Link varying the
distances: BP, defined in (5.6), KL in (5.5) and SM in (5.3).

BP KL SM
2 natural clusters | 97.37% | 97.89% | 97.37%
3 natural clusters | 71.23% | 79.30% | 81.40%
4 natural clusters | 62.63% | 57.36% | 65.81%
5 natural clusters | 46.74% | 54.10% | 49.69%

the experimented method can be considered the best one; nevertheless, measures
(5.3) and (5.5) seem to be more effective. In particular, measure (5.3) seems to be
especially suited for dealing with few clusters, while measure (5.5) performs better
when numerous clusters are present.

Subsequently we applied the partitional algorithm to the same set, setting the
number of initializations 7 to 5 during all the experiments. Results are presented
in Table 5.3: in this last case the BP distance is overall slightly better than the

Table 5.3. Results for the application of the DPAM algorithm varying the distances:
BP, defined in (5.6), KL in (5.5) and SM in (5.3).

BP KL SM
2 natural clusters [95.79% | 96.32% | 95.79%
3 natural clusters | 75.44% | 72.98% | 65.61%
4 natural clusters | 64.21% | 62.04% | 50.52%
5 natural clusters | 57.04% | 46.74% | 44.80%
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others experimented measures. A final comparison of partitional and agglomerative
hierarchical algorithms underlines that there are no remarkable differences between
the proposed approaches. Clearly, partitional approaches alleviates computational
burden, and they should therefore be preferred when dealing with complex signals
clustering (e.g. EEG).

The comparison of the clustering accuracies with the correspondent classifica-
tion accuracies on the second subject, proposed in Table 5.1, showed that there is
only a slight difference, while the classification results get better as expected. This
fact strengthens the quality of the proposed method, since unsupervised classifi-
cation is inherently a more difficult task than the supervised one.

5.3 Clustering with the similarity-based representation

As presented in the previous section, clustering of sequences using HMM is typi-
cally addressed in two steps: first, HMMs are used for obtaining pairwise distances
between sequences, in a likelihood sense; secondly, a standard distance matrix-
based method is applied to the resulting distances matrix to obtain the clustering.

In this section, a novel and alternative scheme is proposed; with respect to the
taxonomy presented in the introduction, it could be classified as a feature-based
method for clustering. This method is mainly based on the similarity space rep-
resentation introduced in Section 4.3. As shown in [110,87,107,173,169,170] and
in Section 4.3, the similarity-based representation is a powerful tool for extracting
features from data. In the similarity-based representation, each pattern is repre-
sented as a vector of distances from a predetermined set of patterns; it has been
shown that this representation is really effective and discriminant. In the case of
sequences the major advantage of this approach is that the problem of (supervised
or unsupervised) classification of sequences is reduced to a more standard and
addressable point (or vector) classification, for which several techniques have been
proposed. The problem is to find a suitable metrics for measuring the distance
between sequences, and, as shown above in this chapter, HMMs can represent a
suitable tool for that target.

The main idea under the proposed approach is to map the sequences of the
data set onto the HMM-based similarity space introduced in the previous chapter,
and to perform some standard point clustering techniques in that space; by way of
this, the difficult task of clustering of sequences is recovered to a more manageable
clustering of points. Experimental evaluation on synthetic and real experiment will
show that this approach largely outperforms standard clustering techniques.

Also in this case it is necessary to deal with the difficult problem of reducing the
dimensionality of the resulting similarity space: this task is here even harder than
in the classification case, since labels are not available and classification accuracy
could not be used as a driving criterion. Two possible solutions to this problem
have been proposed here: the Principal Component Analysis (PCA) [113] and the
Independent Component Analysis (ICA) [99], both approaching the reduction of
the dimensionality of the similarity space by the use of a linear data projection
technique. These techniques are briefly resumed in the appendix A.
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5.3.1 The proposed approach

Given a set of sequences 7 = {O'...0"} to be clusterized, the proposed approach
maps each sequence in the similarity space defined in Section 4.3, performing
subsequently the clustering in that space. The approach can be briefly resumed as
follows:

e let R = {Py,...,Pr} be a set of R “reference” or “representative” objects;
these objects may belong to the set of sequences (R C T) or may be otherwise
defined. In a basic case it could be R = 7T.
train one HMM A, for each sequence P, € R; '
represent each sequence O of the data set with the distance D (O") to the
representative set R, computed with the HMMs A;...Ag as:

D(0',Py) P(O'|A1)
. D(0%, P, P(OY|x
Dr(0') = ( : ) :% ( :l 2 (5.7)
D(0!,PR) P(O%|AR)

where T is the length of the sequence O!. As in Section 4.3, let us call this
space the similarity space Sg € IR®;

e perform clustering in this space, using a general technique (not only hierarchical
clustering, but also k-means or others).

In the most general case, the representative set R is the whole data set T, resulting
in a similarity space of dimensionality equal to the cardinality of the set 7. Even
if unapplicable for large data set, it is interesting to analyze the discriminative
power of such a space.

5.3.2 Experimental results

In this section the proposed technique is compared with the standard HMM clus-
tering presented in Section 5.2. Once obtained the likelihood distance matrix, the
clustering (step 3 of Section 5.2) is obtained by using three algorithms:

e two variants of the agglomerative hierarchical clustering techniques: the Com-
plete Link scheme, and the Ward scheme, already described in Section 5.1.1.

e a non parametric, pairwise distance-based clustering technique, called “Clus-
tering by friends” [64], described in the previous section.

Regarding the proposed approach, once obtained the similarity representation with
R = T (i.e. by using all sequences as representatives), we used three clustering
algorithms:

e again the hierarchical agglomerative complete link and Ward methods, where
distance is the Euclidean metrics in the similarity space: this is performed to
compare the two representations with the same algorithms;

e standard K-means algorithm [108,12], already presented in Section 5.1.1.
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Clustering accuracies were measured by using synthetic and real experiments.
Regarding the synthetic case, we consider a 3-class synthetic problem, where se-
quences were synthetically generated from the three generative HMM defined in
Fig. 5.1. The data set is composed of 30 sequences (with the length of 400) from

1/3]1/3|1/3 [1/3] =1 o7 = 0.6
A =[1/3[1/3]1/3|® =[1/3|B = |2 = 3 |03 = 0.6
1/3[1/3[1/3 1/3] s =5 |02 = 0.6

(a)
1/3[1/3]1/3 [1/3] pi=1]o; =05
A =11/3]1/3]1/3| ® =[1/3| B = [p2 =3 |07 = 0.5
1/3[1/3[1/3 11/3] pu3 =5 |02 =0.5

(b)
1/3[1/3]1/3 [1/3] p1 =1 [0} =04
A =11/3]1/3]1/3| ® =([1/3|B = |u2 =3 |07 = 0.4
1/3[1/3[1/3 11/3] pus =5 |03 =04

(c)

Fig. 5.1. Generative HMMs for synthetic data testing: A is the transition matrix, =
is the initial state probability, and B contains the parameters of the emission density
(Gaussians with the indicated means and variances).

each of the three classes; the dimensionality of the similarity space S is thus
N = 90. Notice that this clustering task is not easy, as the three HMMs are
very similar to each other, only differing slightly in the variances of the emission
densities. The accuracy of clustering could be quantitatively assessed, by com-
puting the number of wrongly composed clusters: a clustering error occurs if a
sequence is assigned to a cluster in which the majority of the sequences are from
another source. Results are proposed in Table 5.4, averaged over 10 repetitions.
The proposed methodology largely outperforms standard clustering approaches in

Table 5.4. Clustering results on synthetic experiments.

Standard classification
ML classification | 94.78%
Standard clustering

Aggl. complete link 64.89%

Aggl. Ward 71.33%

Clus. by Friends 70.11%
Clustering on similarity space Sr

Aggl. complete link 95.44%

Aggl. Ward 97.89%

k-means 98.33%
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this experiment: the best performing algorithm is the partitional k-means on the
similarity space, which produces an almost perfect clustering. It is important to
note that clustering results in the similarity space are better than the standard
ML classification results, confirming the fact, showed in the previous chapter, that
similarity space is an highly discriminant feature space.

The real experiment regards 2D shape recognition, where shapes were modelled
as proposed in Chapter 6; the database was provided by Sebastian et al. [197], and
is shown in Fig. 5.2. In this case, shapes are given without any label; only the num-

Lil L5 EL 70
VOVYPVINIVYIYYYY

TYYYTYYTIYTYY
bdbbbbbbdbdbdidd

> 0 @— O Pb— o 00— & B— o~ I
S D T e O T B I~ D>— D D

— — == ——F — —~ —

Fig. 5.2. Objects set used for testing.

ber of clusters is known: the algorithm tries to group them into different clusters,
basing on their similarity. Results, averaged over 10 repetitions, are proposed in
Table 5.5. We can note that there is a big improvement with the use of the simple
k-means algorithm in our similarity space. From these tables it is suggested that

Table 5.5. Clustering results on real experiments.

Standard classification

ML classification | 81.55%

Standard clustering
Aggl. complete link 78.69%
Aggl. Ward 22.86%

Clus. by Friends 70.0%
Clustering on the similarity space St
Aggl. complete link 63.10%

Aggl. Ward 77.62%
k-means 88.21%

the proposed representation seems to be able to provide a great discrimination,
resulting in a great increasing of the clustering accuracies.
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5.3.3 The choice of the representative set R

The main problem of similarity-based representation is the resulting high dimen-
sionality of the similarity space, which is equal, in the basic approach, to the
cardinality of the data set. Thus, a method for reducing the dimensionality of the
similarity space is needed. Unfortunately, in this case it is not possible to use the
techniques proposed for the classification case in Section 4.3, as for example Fisher
Discriminant Analysis or Matching Pursuit. This is in fact an unsupervised case,
in which no labels are attached to patterns; it is therefore impossible to use this
information, which represents the leading criterion of such methodologies.

Here, the problem is addressed by the use of two similar strategies: the Prin-
cipal Component Analysis [113] and the Independent Component Analysis [99],
briefly resumed in the appendix A. These techniques try to reduce the space di-
mensionality by performing a linear projection of the data onto a lower dimensional
space.

The strategy is indeed simple: the computed space St is reduced using PCA
and ICA, and clustering is performed in such a reduced space. Results on real
experiments, for different reduction levels, are shown in Table 5.6. For clarity rea-
sons, the results obtained in the whole space S are also presented, together with
the dimensionality of the resulting space, in order to give an idea of the reduc-
tion obtained. The use of the Principal Component Analysis and the Independent

Table 5.6. PCA and ICA reduction on the 2D experiment, together with resulting
dimensionality.

Clustering on the similarity space St
Dimensionality k-means Agg. Ward
84 88.21% 77.62%
Clustering on the reduced similarity space
k-means Agg. Ward
Dimensionality| PCA ICA | PCA ICA
2 76.79% 76.55%|67.14% 70.71%
3 84.59% 89.05%|77.38% 84.52%
4 85.59% 78.75%|77.62% 70.83%
5 84.11% 81.31%|77.38% 83.21%
6 84.35% 83.69%|77.38% 82.62%
7 83.51% 84.05%|77.38% 81.31%

Component Analysis seems to be able to remove most of the redundancy present
in the data, in general not decreasing too much the accuracy of the clustering, and
in some case increasing it. The reduction of the dimensionality is notable, passing
from 84 to very few directions.

A comparison between the two reduction techniques reveals that there are not
relevant differences between their accuracy, even if some considerations can be
made:
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e ICA and PCA show the same good behavior when using K-means algorithm;
the best performance, nevertheless, is achieved for different dimensionality: 4
for the PCA and 3 for the ICA;

o ICA seems to be very suited to be used with the Ward agglomerative clustering,
presenting a great improving in the results with respect to the PCA approach;
moreover, the use of ICA permits to enhance very sensibly the performance of
this algorithm, which performs better in this reduced space than in the original
one;

e the best result is obtained by reducing the space to dimensionality 4 by using
ICA and the K-means method; in this case a lot of redundancy is removed,
resulting in an accuracy greater than in the not reduced case.

5.3.4 Future perspectives

A possible problem of these linear reduction techniques is the computational bur-
den needed: training one HMM for each sequence, building the whole space, and
then computing the transformation, could be quite computationally expensive.
Moreover, the system could not generalize to novel patterns, as components have
to be (as principle) re-computed. Thus, other techniques should be derived, and
this will be the topic of the future research. The first idea is to use a greedy
approach similar to the Matching Pursuit algorithm presented in the previous
chapter, where a measure of the clustering goodness has to be substituted for the
classification accuracy. One candidate is the Davies-Bouldin index [56], presented
in Section 5.2.2. The second idea is to cast this problem in a feature selection
context, where the prototypes to be chosen are the features to be selected. Never-
theless, these topics will be object of future investigations.
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Applications






Summary

In this part, some applications of the Hidden Markov Models approach to practical
Computer Vision and Pattern Recognition problems are presented. More specifi-
cally, only those systems for which the employment of HMMs produces a surplus
in the application context are presented.

In particular, in Chapter 6 the use of the HMM for 2D shape recognition is
investigated, analyzing its robustness against rotations, translations, occlusions,
affine projections and noise. Chapter 7 presents the use of HMMs for face recogni-
tion, showing that this method outperforms all other methods in standard database
as ORL. These two applications are important in this thesis, as they have been ex-
tensively used through the first part, in order to test most of the techniques proposed
in Chapter 8, 4, and 5.

Another application, presented in Chapter 8, regards the use of HMM mod-
elling for video sequence understanding. In particular, HMMs are used to sum-
marize a video sequence, gathered from a static camera, in order to obtain a spa-
tial segmentation of the scene: the resulting regions are featured by a chromatic
and temporal homogeneity. An application of this spatio-temporal segmentation
to the background modelling problem is also presented, showing that the proposed
approach could drastically improve the management of sudden not uniform illumi-
nation changes.






6

2D shape classification

6.1 Introduction

Object recognition, shape modelling and classification constitute active research
areas in computer vision. Moreover, these issues are receiving growing attention
thanks to the availability of visual databases and the related necessity for retrieving
information not only by textual queries but also on the basis of the image content.

Three-dimensional (3D) object recognition has been faced by a large number
of different approaches [72]. Among these, many techniques are based on the anal-
ysis of two-dimensional (2D) aspects (images) of objects, and many studies deal
with 2D shape classification or planar object recognition. A basic issue to be re-
solved first consists in the type of representation of an object, i.e., the features
to be used to describe it. Object contours are widely selected features, as they
are easily estimated from an image and well represent the semantic information
also from a perceptual point of view. Different types of approaches have been
proposed in the last few years, such as Fourier descriptors, chain code, curvature-
based techniques, invariants, auto-regressive coefficients, Hough-based transforms,
associative memories, B-splines, and many others, each with different character-
istics, like robustness to noise and occlusions, invariance to translation, rotation
and scale, computational requirements, and accuracy [42].

In this context, this chapter investigates the capabilities of Hidden Markov
Models for 2D shape classification, where shapes are represented by contours and
described using a curvature approach [72]. The use of HMMs for shape analysis has
not been widely addressed. To our knowledge, only a few papers have been found to
exhibit some similarities to our approach [94,7,80,38]. He and Kundu [94] were the
first to employ HMMs for 2D shape recognition. In their approach, contours were
represented by auto regressive coefficients computed on segments extracted from
the shape boundary. Results were quite interesting and presented as a function
of the number of HMM states ranging from 2 to 6, using both stationary and
non-stationary models. In [7], the 2D shape classification task was addressed by
use of circular HMMSs: this particular HMM topology allows one to achieve good
classification accuracy with respect to scaling and deformations, and also presents
useful characteristics for model training and testing. However, in both works, no
examples using shapes explicitly affected by noise or affine object transformations
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are reported. Moreover, even if sensitivity to small occlusions is analyzed, shapes
are always constrained to be closed contours. Another research study [80] addressed
shape recognition: it compared HMMs with a syntactic modelling technique based
on stochastic context-free grammars. No original solutions were proposed for HMM
design, and the goal of this study was to show the advantages of HMMs over
the other method. Recently, another interesting approach was proposed in [38],
in which Fourier spectral features were used to classify 2D shapes. A particular
HMM topology was introduced in order to deal directly with these features, but,
also in this case, shapes were constrained to be closed, and occluded and noisy
views were not explicitly analyzed.

In this chapter, the capabilities of HMMs in recognizing planar objects are
investigated, showing HMMs performances in the cases of translation, rotation,
noise, occlusions, shearing transformations, and combined perturbations. It is
worth noting that our approach does not rely on any specific HMM topology
or particular training algorithm; moreover, object shapes are not constrained to
be closed, or represented by using a specific number of symbols. Actually, when
objects are occluded, the resulting boundaries are not necessarily closed; in this
sense, our algorithm classifies any (closed or open) symbol string.

In training HMMSs, particular attention was devoted to the initialization of
the training session, using a Gaussian Mixture Model clustering approach. As
explained above in this thesis, the initialization issue is a crucial step, because of
the local behavior of the standard procedure used to estimate HMM parameters.
Another practical but fundamental issue to be resolved when using HMMs is the
determination of their structure, namely, the topology and the number of states.
The choice of a good model structure is basic to the effectiveness of the learning.
In our approach, no constraining assumptions are formulated about the HMM
topology, whereas, concerning the number of states, the BIC On Initialization
(BOI) approach detailed in Section 3.4 is applied.

Further, the classification scheme is also evaluated in order to assess and objec-
tively quantify the reliability of the shape recognition. Using the measure proposed
in Section 4.2, the reliability of the classification is tested under various conditions.

The proposed approach was tested using two different databases, in order to
assess the robustness of the method to different transformations of objects, such as
translation, rotation, occlusion, noise, shearing, and combined perturbations. The
resulting high performances on two standard database make the proposed method
an interesting alternative to typical shape classification algorithms.

The chapter is organized as follows. In Section 6.2, the global description of
the strategy used is presented. In Section 6.3, experimental procedures and results
are reported, and Section 6.4 contains the proposed analysis of the reliability of
the classification scheme. Finally, in Section 6.5 conclusions are drawn and future
developments are suggested.

6.2 The strategy

In this section, the proposed strategy is explained. After describing the object rep-
resentation, we detail the classification system, focusing briefly on the initialization
and model selection issues. The whole strategy is summarized in Fig. 6.1.
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6.2.1 Object representation

In our approach, object contours are modelled using curvature [72] coefficients:
the curvature is a scalar value that could be computed locally and represents
an estimate of the second derivative of the boundary. In this way, starting from
a generic boundary point, an object is represented by a sequence of curvature
coefficients, namely, a curvature signal. This method is widely used in representing
contours, thanks to its attractive intrinsic properties: first, this representation
is invariant to object translation; second, object rotation is equivalent to phase
translation of the curvature signal. In other words, the scalar curvature value
computed at each boundary point is rotationally invariant, but the sequence of
these values depends on the initial point. Object rotation implies a change in
the initial point, so the curvature signal, in general, turns out to be shifted. The
third, and most important point, lies in the fact that the curvature value can be
computed for open contours, thus allowing one to deal with occlusions of objects.
The main drawback of this method is sensitivity to noise. One possible solution
is to apply a real, with quite large variance, Gaussian filter to the (X,Y) contour
coordinates, so reducing the noise impact on the signal computation. Moreover,
the use of Hidden Markov Models is able to recover from some noisy situation
quite well, as can be noticed below.
In our approach, the curvature is computed as follows:

1. Contours are extracted by using the Canny edge detector [40], a well-known
edge extraction technique.
. The boundary is approximated by segments of approximately fixed length d .
3. Finally, the curvature value at point z is computed as the angle between the
two consecutive segments intersecting at z.

N

For a not occluded object, the initial point is the rightmost point lying on the
horizontal line passing through the object centroid, following the boundary in an
anticlockwise manner. If the object is occluded, the endpoint allowing the contour
to be followed in an anticlockwise way is considered as the initial point.

6.2.2 Training

The obtained curvature representation is then used to train a continuous HMM,
where the emission probability of each state is represented by a one-dimensional
Gaussian function. Training is performed using the standard Baum-Welch re-
estimation method, which is stopped at likelihood convergence. Each HMM is
carefully initialized, using the GMM clustering strategy described in detail in Sec-
tion 3.4.

The number of states is roughly estimated using the BOI method described in
Section 3.4. In few words, this method chooses the model by performing a model
selection analysis of the GMM clustering phase, i.e., choosing the mixture that best
fits the data is chosen. The number of states of the HMM is therefore set as the
number of Gaussians of the best mixture so that only one HMM training session is
needed. It is worth noting that this model selection scheme determines the model
that best fits the unrolled sequence: in this sense this is a coarse model selection
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scheme, as only the curvature values are considered and not the order in which
they appear. Nevertheless, this is quite a reasonable assumption, which considers a
shape as being made up of approximating segments with nearly similar curvatures,
each group being assigned to a single state. The dynamics of the sequence, i.e.,
the way in which these segments are ordered, is thus encoded into the transition
matrix.

At the end of the training phase, we have one HMM A; for each object obj;.

Training: for any object obj;:
o extract edges with the Canny edge detector;
e calculate the related curvature signature C(obj;);
e train an HMM A\; on C(obj;): the HMM is initialized with the GMM
clustering; the number of HMM states is estimated by using the BIC
criterion in the initialization phase.

Classification: given an unknown sequence O:
o for each model \;, compute the probability P(O|X\;);
o classify O as belonging to class C¢, where

£ = arg max P(O|\;) (6.1)

Fig. 6.1. The global strategy.

6.3 Results and discussion

The proposed method was tested by using two sets of shapes found in the literature.
The first data set was employed by He and Kundu in [94], and is shown in Fig.
6.2. The second data set was used by Sebastian, Klein, and Kimia in [197], and is
plotted in Fig. 6.5. In the first case, one HMM for each object has been trained,
following the strategy proposed in Section 6.2. It is worth noting that each HMM
is trained using the only object model present in the data set (Fig. 6.2), without
any variation, so that the following results are obtained by training a single shape.
As an example, the HMMs of the first two objects, obtained after the training
session, are shown in Fig. 6.3. We can notice that the HMM trained on the second
object (below), appearing visually less complex than the first one (up), presents a
smaller number of states.

Invariance to rotation, occlusion, noise, shearing and a combination of these
transformations is tested, whereas invariance to translation is automatically man-
aged by the curvature representation.
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Fig. 6.2. Shapes used for the testing procedure.
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Fig. 6.3. Models of the first two objects.

6.3.1 Rotation

First of all, let us consider the effect of rotation on the signature of an object.
We recall that the curvature is rotationally invariant at each boundary point, and
that the curvature signal is computed starting from the rightmost point lying on
the horizontal line passing through the object centroid; therefore, the rotation
of an object involves in general a change in the starting point. From these two
considerations we can infer that the object rotation causes only a shift in the
curvature signal.
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To test the invariance of our method, each object was rotated 10 times by
an angle randomly chosen from 0 to 27. The resulting classification accuracy was
100%, i.e., the HMM was able to exactly recognize rotated objects'.

6.3.2 Occlusion

Object occlusion is rendered by considering a fragment of the object boundary,
starting from a point randomly chosen. It should be noted that the random choice
of the initial point is important for assessing the invariance of the strategy to the
specific part occluded.

Given an open contour, i.e., a fragment of the original one, the curvature is
calculated as explained in Section 6.2 . Because of the local curvature properties,
the resulting string is a substring of the original one. As pointed out in the follow-
ing, an HMM trained on a sequence O was able to effectively recognize a substring
of O. The trial was performed by occluding each object 10 times, starting from a
randomly chosen initial point: occlusion varied from 5% to 50% (only an half of
the whole object was visible), and results are given in Table 6.1(a). The obtained

Table 6.1. Classification accuracies obtained in: (a) occlusion experiments, for different
occlusion levels; (b) noise experiments, for different noise levels.

Occlusion |Classification

Level Accuracy a? [Accuracy
5% 100% 0.05( 100.00%
10% 100% 0.15/100.00 %
15% 100% 0.25(100.00 %
20% 100% 0.35( 100.00%
25% 100% 0.45| 97.50%

30% 100% 0.55| 91.25%

35% 100% 0.65| 83.75%

40% 97.5% 0.75| 80.00%

45% 96.25% 0.85| 71.25%

50% 95%

(a) (b)

accuracies were considerably high: also when 35% of each object was occluded, our
technique was able to correctly classify all the fragments. These results are partic-
ularly valuable, considering that occlusion is one of the most severe problems of
many object recognition methods.

6.3.3 Noise

We tried to investigate the robustness of our approach in noisy situations. To this
end, two synthetic noising schemes are proposed. First, a Gaussian noise, with zero

! From this fact, one might deduce that HMMs are able to recognize shifted signals, i.e.,
that they are shift-invariant, but this property is not proved for all HMMs.
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mean and variance o2 ranging from 1 to 5, is added to the (X,Y’) coordinates of
an object. Shapes are not much affected by this kind of noise, and the resulting
accuracy is 100%, thanks to the Gaussian filter applied before calculating the
curvature: this filter is able to remove completely the effects of this kind of noise.
An example of object affected by noise with variance 02 = 2 is shown in Fig.
6.4(a). The second type of noising scheme is adopted to degrade the object shapes
more heavily. It is obtained by adding Gaussian noise to the differential signal,
which results from computing, for each boundary point, the difference between
the coordinates of each point and those of the following one. Subsequently, a
zero-mean Gaussian noise is added to this difference-code; finally, the coordinates’
values are re-computed from the pre-stored initial point. Examples of degradation
of the first object are presented in Fig. 6.4(b) and (c) for two values of the variance
02, and show that the degradation is significant and larger than that derived by
the first type of noise.

(a) (b) (c)

Fig. 6.4. Noising of the the first object, by varying the noising scheme: (a) first proposed
scheme, with variance o> = 2; (b-c) second proposed scheme, with variance (b) o> = 0.65
and (c) 0% = 0.85.

The test set was obtained by adding noise to each object ten times, obtaining
globally 80 noisy objects; the resulting accuracy values are presented in Table
6.1(b), taking the noise level (variance) as the varying parameter. As one can
notice, the results are quite good, showing that HMMs can reduce the intrinsic
curvature sensitivity to noise.

6.3.4 Combined transformations

After assessing the robustness of the proposed method to single-object degrada-
tions, experiments were carried out to evaluate the algorithm performances with
respect to combined transformations, i.e., 1) rotation and occlusion, and 2) ro-
tation, occlusion, and added noise. Occluded and rotated objects were obtained
by rotating the objects by a random angle (between 0 and 27) and considering
fragments of their contours. From the results presented in Table 6.2(a), it can
be noticed that the accuracies are very good also in this case, even though lower
than those obtained for unrotated objects, as expected. A more difficult situation
occurred when objects were first rotated by a random angle, then occluded, and
finally degraded by the second type of noise described in Section 6.3.3. Results are
given in Table 6.2(b). Also in this case, the accuracy values are satisfactory but
rapidly degrading with increasing noise level.
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Table 6.2. Classification accuracies for combined transformations: (a) occluded and
rotated objects, for different occlusion levels; (b) occluded, rotated and noisy objects, for
different occlusion and noise levels.

Occlusion |Classification
Level accuracy
5% 100%
10% 100%
15% 100%
20% 100%
25% 98.75%
30% 98.75%
35% 95%
40% 94%
45% 85%
50% 87.5%
@
Occlusion Accuracy

Level [62=0.1[c?2=0.3]c?=0.5
10% 100.00% | 97.50% | 87.50%
20% 98.75% | 93.75% | 80.00%
30% 98.75% | 90.00% | 80.00%
40% 93.75% | 87.50% | 77.50%
50% 86.25% | 83.75% | 75.00%

(b)

6.3.5 Shearing

Finally, the robustness of our approach to shearing transformations was assessed.
This experiment was characterized by a higher degree of complexity than those of
the previous tests, in that it consisted in an actual strong deformation of objects.
The shearing transformation was obtained by considering the shape as a plane in
a 3D space, and varying its tilt and slant angles. The tilt 7 of a planar surface is
defined as the angle formed by surface normal projected in the image plane and the
reference z axis, while the slant ¢ is the angle between the surface normal and the
line of the sight [198]. The resulting transformed surface was then orthonormally
projected on the original (X,Y) plane to get the usual fronto-parallel view.

The first test was carried out by rotating each object by fixed growing tilt and
slant angles, in steps of 10 degrees, and then applying the method. The related
results are presented in Table 6.3, for different tilt and slant values. Accuracies are
presented as percentage values, in order to standardize the layout of all results in
the paper. In this case, nevertheless, there are only 8 test items, for fixed tilt and
slant angles; therefore, each classification error decreases the accuracy value by a
step of 12.5%.

From these results, we can notice that sensitivity of our approach to tilt and
slant changes is very different. In fact, the variation of slant angle results in a
severe distortion of the object appearance, while the variation of tilt angle could
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Table 6.3. Classification accuracies obtained in shearing experiments, for different tilt
and slant values.

slant ¢
0° 10° 20° 30° 40° 50° 60° 70° 80°
tilt 7 0° |100% 100% 100% 100% 100% 100% 62.5% 37.5% 25.0%
10° |100% 100% 100% 100% 100% 100% 50.0% 37.5% 25.0%
20° |100% 100% 100% 100% 100% 100% 50.0% 37.5% 37.5%
30° |100% 100% 100% 100% 100% 87.5% 50.0% 50.0% 37.5%
40° |100% 100% 100% 100% 100% 75.0% 62.5% 50.0% 37.5%
50° |100% 100% 100% 100% 100% 75.0% 62.5% 37.5% 37.5%
60° |100% 100% 100% 100% 100% 75.0% 50.0% 37.5% 37.5%
70° 1100% 100% 100% 100% 100% 62.5% 50.0% 50.0% 37.5%
80° |100% 100% 100% 100% 100% 62.5% 50.0% 50.0% 25.0%
90° [100% 100% 100% 100% 100% 50.0% 50.0% 37.5% 12.5%
100°|100% 100% 100% 100% 87.5% 50.0% 50.0% 37.5% 25%
110°|100% 100% 100% 87.5% 87.5% 50.0% 50.0% 37.5% 25%
120°100% 100% 100% 87.5% 87.5% 50.0% 37.5% 37.5% 25%
130°|100% 100% 100% 87.5% 87.5% 62.5% 37.5% 37.5% 25%
140°|100% 100% 100% 100% 87.5% 75.0% 50.0% 37.5% 25%
150°100% 100% 100% 100% 87.5% 75.0% 50.0% 37.5% 25%
160°|100% 100% 100% 100% 100% 100% 50.0% 37.5% 25%
170°|100% 100% 100% 100% 100% 100% 62.5% 37.5% 25%

be roughly considered as a kind of rotation of the slant derived transformation.
Our approach is very robust to shape rotations, so the performance level is mostly
driven by slant variations. Results proposed in Table 6.3 demonstrates that our
approach is truly robust against shearing: only for large slant values, corresponding
to severe distortions of the objects, the classification accuracies decrease, but,
however, still remaining more than two or three times the random classification
level.

The second experiment was performed by adding synthetic noise to the sheared
shapes, using the second type of noise described in Section 6.3.3. The applied noise
level was 2 = 0.35, a medium noise level, and each object was randomly affected
by noise 10 times. The averaged results are given in Table 6.4, showing that the
accuracies are very satisfactory also in this case.

In general, the HMMs proved to be very powerful in classifying shapes and a
large class of deformations, especially occlusions, which constitute one of the most
severe problems in object recognition. Such results are particularly interesting if
one recalls that the HMMs have been trained using only one shape model, which
did not capture all (also strong) deformations applied to the testing objects.

6.3.6 Results on the second data set

To increase the statistical significance of the results, the method was also tested
on another set of shapes, utilized in [197]. This set was composed of 6 classes,
each containing 12 object instances (see Fig. 6.5). Unlike the previous data set,
this model database is characterized by several deformed object instances for each
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Table 6.4. Classification accuracies for noisy and sheared objects, at different tilt and
slant angles.

slant ¢
0° 10°  20° 30° 40° 50° 60° 70° 80°
tilt 7 0° |98.8% 95.0% 100% 97.5% 97.5% 95.0% 65.0% 32.5% 27.5%
10° [95.0% 98.8% 100% 100% 100% 93.8% 52.5% 37.5% 30.0%
20° |1100% 100% 100% 100% 96.3% 96.3% 51.3% 37.5% 37.5%
30° [100% 100% 98.8% 100% 98.8% 88.8% 51.3% 48.8% 37.5%
40° (97.5% 98.8% 100% 100% 100% 77.5% 52.5% 50.0% 37.5%
50° |98.8% 98.8% 98.8% 100% 100% 75.0% 48.8% 37.5% 33.8%
60° (97.5% 100% 98.8% 98.8% 98.8% 71.3% 46.3% 37.5% 31.3%
70° 198.8% 98.8% 98.8% 98.8% 92.5% 70.0% 48.8% 40.0% 22.5%
80° (96.3% 100% 98.8% 98.8% 82.5% 56.3% 43.8% 40.0% 17.5%
90° (98.8% 98.8% 97.5% 97.5% 75.0% 53.8% 37.5% 38.8% 22.5%
100°(96.3% 98.8% 97.5% 92.5% 71.3% 48.8% 33.8% 40.0% 22.5%
110°(97.5% 96.3% 100% 91.3% 78.8% 43.8% 35.0% 37.5% 23.8%
120°(100% 98.8% 100% 87.5% 80.0% 50.0% 36.3% 37.5% 26.3%
130°|98.8% 98.8% 97.5% 92.5% 82.5% 63.8% 38.8% 37.5% 25.0%
140°(100% 97.5% 98.8% 93.8% 83.8% 67.5% 50.0% 33.8% 25.0%
150°(98.8% 96.3% 97.5% 96.3% 88.8% 72.5% 50.0% 35.0% 25.0%
160°|98.8% 98.8% 100% 100% 97.5% 86.3% 52.5% 32.5% 25.0%
170°1100% 97.5% 100% 100% 98.8% 90.0% 65.0% 36.3% 25.0%
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Fig. 6.5. The second object set used for testing.

class. In this case, instead of training one HMM for each shape class, one HMM was
trained for each instance: this resulted in 72 HMMs. Accuracy was computed by
using the Leave One Out error scheme [210] and assigning an unclassified object to
the class of the object whose model showed the maximum likelihood. The results
were equal to 100%, confirming that the proposed approach was still robust and
accurate, also for this set. Moreover, we evaluated the performances in the presence
of occlusions, using the same procedure as described in Section 6.3.2; the results
are presented in Table 6.5. Also these results are very satisfactory, even though not
so good as for the Kundu database. Nevertheless, this model database contains
instances of the same class that are the same object only semantically, but the
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Table 6.5. Classification accuracies, in the presence of occlusions for the second object
set employed for testing, at different occlusion levels.

Occlusion |Classification
Level accuracy
10% 99.03%
20% 97.36%
30% 94.02%
40% 88.05%
50% 82.22%

related shapes are very different (e.g., the key class); yet the method’s performances
did not degrade too much.

6.4 Significance of the classification scheme

In Section 4.2, two measures for assessing the reliability of the ML classification
scheme adopted were introduced. As explained in Section 4.1, standard Maximum
Likelihood scheme assigns an unknown item to the class whose model shows the
highest likelihood. The idea below the proposed measures is that the difference
between the likelihood of the first and the second choice of the scheme could give
a measure of how sure is the system of its choice: in the case of correct classification,
this could be interpreted as a measure of the robustness of the system. In the case
of misclassified pattern, instead, the difference between the choice of the algorithm
and the correct choice gives a measure of how wrong is the system decision.

In the 2D shape classification problem, both measures have been computed, in
the presence of occlusions and in the presence of noise, separately. For the occlusion
experiments, the two measures are plotted, using the same scale, in Fig. 6.6. In
Fig. 6.6(a), the RCC factor decreases for increasing occlusion levels, still keeping a
good margin. In Fig. 6.6(b), only REC values for occlusion levels higher than 35%
are plotted, as no errors are made for lower occlusion levels. From these values,
it can be observed that the misclassification reliability in the case of error is very
low, and lower than the margin estimated in the case of correct classification (Fig.
6.6(a)).

The same behavior can be noticed looking at the reliability analysis for the
experiments in presence of noise (Fig. 6.6(c) and (d)): the margin between the two
factors in the two cases is narrowed, but it is still possible to discriminate between
correct and wrong classification.

Two conclusions can be drawn from this analysis. First, the large values in the
left column of Fig. 6.6, corresponding to the analysis of the correctly classified
patterns, confirm that our approach is robust, but, as expected, robustness de-
creases with increasing task difficulty. Second, it seems relatively simple to obtain
a rejection rule by merely thresholding the likelihood difference between the first
two choices of the algorithm: if a classification is not sufficiently reliable, it can be
rejected.
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Fig. 6.6. Analysis of the reliabilities of the classification rule in occlusion experiments
(a and b), at different occlusion levels, and in noisy experiments (¢ and d), at different
noise levels. All plots are on the same scale. Left) RCC factors . Right) REC factors.

6.5 Conclusions

In this chapter, an HMM-based approach to the classification of planar shapes
has been proposed. Given a model database, one HMM has been trained for each
object model represented by curvature coefficients, paying particular attention
to the HMM initialization and model selection issues during the learning process.
Experimental tests on two different data sets have shown that the proposed system
is able to recognize objects that are modified instances of the original shapes after
rotation, occlusion, shearing and degradation by noise. Based on the evaluation
performed on standard databases, the system has proved particularly robust to all
these kinds of deformations and noise, despite the intrinsic curvature sensitivity.
This demonstrates that the modelling method (i.e. Hidden Markov models), the
curvature representation adopted for shapes, and the particular training phase
performed, succeed in making the proposed approach very robust to several shape
degradations and noise. An analysis of the classification scheme has also been
proposed, in order to evaluate and quantify the “reliability” of the recognition
process, proving that good reliability levels have been obtained.
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All these features, together with the good performances achieved, make the
proposed method a powerful and general computational approach to shape classi-
fication.
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Face recognition

7.1 Introduction

Face recognition is undoubtedly an interesting research area, whose importance has
increased in recent years, due to its applicability as a biometric system in com-
mercial and security applications. These systems could be used to prevent unau-
thorized access or fraudulent use of ATMs, cellular phones, smart cards, desktop
PCs, workstations, and computer networks. The appealing characteristic of a face
recognition system is that, differently from fingerprint or iris biometric systems, it
is not an invasive control tool.

A large literature is available on this topic (for a review see [46]): the first
approaches, in the 70’s, were based on geometric features [120]. One of the best
known face recognition method is the so-called Eigenface method [200,214,156,18,
229], which uses the Principal Component Analysis [113] to project faces into a low-
dimensional space, where every face can be expressed as a linear combination of the
eigenfaces. This method is not robust against variations of the face orientation and
one solution was given by the view-based eigenspace method introduced in [176].
Another important approach is the Elastic Matching [229,132,209,128], introduced
to obtain invariance against expression changes. The idea is to build a lattice on
image faces (rigid matching stage), and to calculate at each point of the lattice a
bank of Gabor filters. In case of variations of expression, this lattice can warp to
adapt itself to the face (elastic matching stage).

Many other methods have been proposed in the last decade, using different
techniques, as Neural Networks [51,147,135], Support Vector Machines [88,100] or
Hidden Markov Models [194,1,125,160,70], each characterized by different features,
like computational requirements, robustness to light changes or to different poses,
and others.

To the best of our knowledge, the best results obtained on standard database,
as ORL (Olivetti Research Ltd.) database, were proposed in [70] and [125]. These
methods are based on DCT (Discrete Cosine Transform) and HMMs, achieving
an almost perfect classification. In [70] a pseudo 2D HMM [3] was used for clas-
sifying faces, encoded with the DCT coefficients of a set of partially overlapped
sub-images. One of the most interesting feature of this method is its direct appli-
cability to JPEG (Joint Photographic Experts Group) images, without any need
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of decompressing them. This method reaches a perfect classification rate on the
ORL database. The other technique, proposed in [125], makes use of standard
one-dimensional HMMs trained on sequences of DCT coefficients extracted from
the image. Since this method is used to test most of the methods proposed in the
previous chapters of this thesis, it is extensively described in Section 7.2.

A reasonable question could arise with the advent of the new standard JPEG,
the so called JPEG2000 [104], which makes use of wavelet coding [55,223]: is it
possible to extend this strategy in order to accomplish with this new standard?
To this aim, a comparison between DCT coding and Wavelet coding is presented
in Section 7.4, showing that HMM is really effective in recognizing faces also us-
ing wavelet coefficients: we obtain a perfect classification accuracy on the ORL
database.

The rest of the chapter is organized as follows: in Section 7.2 the approach
proposed in [125] is detailed, while Section 7.3 contains a brief introduction to the
wavelet approach for image compression. In Section 7.4 the comparison between
DCT and Wavelet approach is discussed, while in Section 7.5, conclusions are
finally drawn.

7.2 The DCT approach

In this section the method proposed in [125] is detailed. In that approach, the
classification of faces was addressed by using HMMs: one model is trained for
each class, using standard Baum Welch algorithm; the subsequent classification is
performed using standard Maximum Likelihood classification rule. Here, differently
than in [125], where the model selection issue was disregarded, the model size was
carefully estimated, using the technique proposed in Section 3.6.

The strategy used to obtain the data sequence from a face image consists of two
steps. In the first step, a sequence of sub-images of fixed dimension is obtained by
sliding over the face image a square fixed size window, in a raster scan fashion, with
a predefined overlap (the procedure for scanning the image is visualized in Fig.
7.1). The second step consists in applying the 2D DCT to each gathered sub image.
The obtained coeflicients are scanned in a zig-zag fashion, analogous to the method
used for the JPEG coding. Only few of these coeflicients are retained, determining
the dimensionality of the observation. By applying this step to all the sub-images
of the sequence, we finally obtain the sequence observation. Its dimensionality will
be D x T, where D is the number of the DCT coefficients retained, and T is the
number of sub-images gathered in the sample scanning operation.

7.3 The Wavelet coding

The wavelet transform [55] has emerged in the last years as a cutting edge tech-
nology, within the field of image compression. Wavelet-based coding provides sub-
stantial improvements in picture quality at higher compression rates, with respect
to standard DCT transform. Over the past few years, a variety of powerful and
sophisticated wavelet-based schemes for image compression have been developed
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Fig. 7.1. Sampling scheme to generate the sequence of sub-images.

and implemented [191]. Because of these many advantages, the compression tech-
nologies used in the upcoming JPEG-2000 standard [104] are all based on the
wavelet transform.

Wavelets could be defined as a mathematical tool for hierarchically decompos-
ing functions. The wavelet transform is aimed at describing a function in terms of
a coarse overall shape, together with details that range from broad to narrow. For-
mally, wavelets are functions defined over a finite interval and having a zero-value
average. Their basic idea is to represent any arbitrary function f(t) as a superpo-
sition of a set of such wavelets or basis functions. These basis functions or baby
wavelets are obtained from a single prototype wavelet called the mother wavelet,
by dilations or contractions (scaling) and translations (shifts). For a simple and
excellent introduction to wavelets, see [43].

Here we propose to modify the sequence extraction approach presented in the
previous section, by substituting the DCT coding with the wavelet coding. In this
case we used the Haar wavelets [157,223], representing the simplest wavelet basis.
We employed the non standard decomposition, that alternates between row and
column processing, allowing a more efficient coefficients computation. The pro-
posed algorithm computes the coefficients representing the image with a normal-
ized two-dimensional Haar basis, sorting these coefficients in order of decreasing
magnitude; then the first M coefficients are retained, performing a lossy image
compression. For a more complete treatment of wavelet image compression, see
the De Vore’s paper [223]. As in the DCT case, the number of retained coeffi-
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cients determines the dimensionality of the observation vector, while its length is
determined by the number of sub images gathered.

7.4 Comparison between DCT and Wavelet coding

In this section, wavelet and DCT approaches are compared, in order to assess
the HMM suitability in wavelet coefficients modelling. The experiments have been
conducted on the ORL database!, which consists of 40 subjects with 10 faces
each. 10 examples of subjects from the ORL database are presented in Fig. 7.2,
with different 10 images: it is worth noting that this database is characterized by
illumination, pose and expression changes between images of the same subject.

Fig. 7.2. 10 example subjects from the ORL face database.

! Downloaded from http://www.uk.research.att.com/facedatabase.html.
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One HMM is built for each subject, using 5 images, while the remaining 5 are
used for testing. Training is performed using standard Baum Welch technique,
stopping the procedure after likelihood convergence. The adopted classification
scheme is the usual one, i.e. the Maximum Likelihood (ML) scheme. Experiments
are repeated 20 times, in order to increase the statistical significance of the results:
this permits to obtain results independent from the training process. Sub image
size is fixed during all experiments to 16x16, while the number of the retained
coefficients (4, 8 and 12) and the overlapping ratio (50% and 75%) vary. Results
are proposed in Table 7.1(a) and (b). From these tables it is evident that Wavelet

Table 7.1. Comparison of accuracies obtained in the ORL database by DCT and Wavelet
approaches, for different number of retained coefficients and for different overlap ratios:
(a) overlap ratio = 50% and (b) overlap ratio = 75%.

Num. coeff.|DCT accuracy Wavelet accuracy

4 98.6% 97.4%
8 99.4% 100%
12 100% 100%

(a)

Num. coeff.|DCT accuracy Wavelet accuracy

4 97.9% 95.4%
8 99.2% 99.5%
12 99.6% 98.8%

(b)

and DCT approaches perform equally well on this database: the Wavelet trans-
form seems to be less effective when using few coefficients. With regards to the
performances obtained with the DCT coefficients, it is worthwhile to note that
the use of the model selection permits to reach a perfect classification (100%), not
obtained in [125] (99.5%).

It is important to note that this approach is very effective in resolving the
face recognition problem, outperforming, on the ORL database, all other methods
proposed in the literature: this could be observed in Table 7.2, which presents a
comparison between published results obtained by the most important face recog-
nition algorithms on the ORL database. The five best performances are displayed
in bold fonts in the table: the first three are all based on Hidden Markov Models,
the fourth on a n-tuple classifier and the fifth on Support Vector Machines.

It is important to note that the ORL database is a somewhat ideal dataset,
with limited variations of the environmental parameters (lightness, face scale and
expressions). Nevertheless it is widely employed in the face recognition context,
and several results on it are present in the literature: hence it represents a standard
database.
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Table 7.2. Comparative results on ORL database. “Wavelet + HMM?” represents the
proposed method. The five best results are displayed in bold font.

Method Error |Ref. |Year
Top-down HMM + gray tone features 13% 195] (1994
Eigenface 9.5% 214] (1994
Pseudo 2D HMM + gray tone features 5.5% 194] (1994
Elastic matching 20.0% | [229] |1997
PDNN 4.0% 147] {1997
Continuous n-tuple classifier 2.7% | [149] |1997
Top-down HMM + DCT coef. 16% 160] 1998
Point-matching and correlation 16% 133] |1998
Ergodic HMM + DCT coef. 0.5% 125] 1998
Pseudo 2D HMM + DCT coef. 0% 70] {1999
SVM + PCA coef. 3% 88] |2001
Indipendent Component Analysis 15% 228] 12002
Gabor filters + rank correlation 8.5% 8] 2002
SVM + Multilevel B-splines 2.75%| [100] |2002
Wavelet + HMM 0% 2002

7.5 Conclusions

In this chapter the use of Hidden Markov Models for face recognition was investi-
gated. The method proposed in [125], used through the thesis to test algorithms,
was detailed. A novel method was proposed, based on the wavelet coding; this
method, compared to the DCT approach, proposed equivalent results, assessing
the HMM suitability for dealing with the new JPEG2000 image compression stan-
dard. Obtained results outperform all results presented in the literature on the
ORL database, reaching a perfect classification accuracy.
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Spatio-temporal segmentation of video sequences

8.1 Introduction

Image segmentation is an important and challenging problem in image analysis,
aimed at discovering and characterizing the different semantic objects of an image.
When considering time, such description must evolve, resulting in a more difficult
and computationally expensive task, typically called spatio-temporal segmenta-
tion. This is usually defined as the partition of the images sequence into spatial
regions of motion homogeneity. Several approaches have been proposed in this
field, as motion-based segmentation [44], spatial segmentation and motion track-
ing [59], moving objects extraction [89], and region growing using spatio-temporal
similarity [47,58]. Quantitative evaluation methods have also been suggested [32].

Generally, spatio-temporal segmentation has been successfully applied in sev-
eral heterogeneous applications. The most important are surely two: the first one is
the video surveillance, where the spatio-temporal segmentation is used to discrim-
inate the background from the foreground. The second one is the video indexing
and retrieval, where the spatio-temporal segmentation (in this context also called
video-segmentation) provides a compact visual representation, eliminating the re-
dundancy in contiguous frames.

Most of the proposed methods present a limitative characteristic: in the case
of video-surveillance, the basic model is typically pixel-wise, without any use of
region-level information; in the video retrieval context, associations are performed
frame-by-frame, without considering the whole single pixel evolution process.

Here we propose a new method for spatio-temporal segmentation, that con-
siders pixel information, and is aimed at partitioning the images sequence (gath-
ered from a static camera) into static regions of homogeneous color and similar
temporal evolution. In this case, the resulting segmentation is a spatial segmenta-
tion, obtained by using all available information: chromatic (different regions have
different gray level values), spatial (each region is connected in the space) and
temporal (each region varies color homogeneously in time). By the way of this,
spatial knowledge, typically used to obtain a spatial segmentation, is augmented
with temporal information, allowing a more detailed and informative partitioning.
Even if this definition may appear in some way different from conventional one, this
kind of segmentation could be considered a spatio-temporal segmentation of video
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sequences as well, as the obtained regions are characterized by spatio-temporal
homogeneity. Roughly speaking, we obtain a spatial segmentation of the back-
ground by using spatial, chromatic and temporal information. A similar definition
was proposed also in the JSEG algorithm [58], where a spatial segmentation was
obtained at each time step, using spatial and temporal information: in this case, a
first segmentation is obtained from the first frame, and is iteratively updated with
subsequent frames.

The basic idea under the proposed approach is the following: first, to con-
sider the chromatic evolution of each pixel (or of a small area): these constitute a
set of one-dimensional independent sequences. Subsequently, these sequences are
grouped or clustered into similar regions by associating together sequences that
are near in space and exhibit similar chromatic evolution.

Sequences are modelled using Hidden Markov Models, which are used for com-
puting the similarity between sequences, with a method similar to those pro-
posed in Chapter 5. Here, a new sequence distance is introduced, able to capture
chromatic-temporal differences between sequences. This measure is able to remove
non stationary components of the scene evolution, represented not only by noise,
but also by foreground. Once given a similarity measure between sequences, a
simple and standard region-growing approach is used to obtain the desired seg-
mentation. At the end of the process, a meaningful segmented image is obtained,
representing the time evolution of the static part of the scene. It is worthwhile to
note that our method does not require to remove the moving objects to analyze
the image sequence, since this task is naturally accomplished by the clustering
technique together with the proposed similarity measure.

Examples of segmentation are proposed in the experimental session, using both
synthetic and real sequences. It will be shown that our method is able to discover
homogeneus spatio-temporal components of the sequences, resulting in a quite
correct segmentation. In a real case, our method has been also compared with
JSEG [58], presenting qualitative better results.

Several applications could take advantage from this compact representation of
a video sequence, as video retrieval and video surveillance. In the former context,
the compact representation of the sequence, obtained by the segmentation process,
allows to reduce the video retrieval problem (that has to deal with the whole
video sequence) to a simpler image retrieval system. For the latter applications,
it will be shown in Section 8.4 that a spatial segmentation of the background
can sensibly improve the background modelling, allowing an integration between
region and pixel information in standard Time-Adaptive, Per Pixel, Mixture of
Gaussians (TAPPMOG) [203,93] techniques. This integration permits to recover
from situations where sudden and not global changes of illumination occur.

8.2 The proposed approach

The background of a video sequence can be defined as the part of the sequence
that remains spatially static in time, i.e., we assume intuitively that the semantic
objects of the scene do not move their position in the sequence: otherwise, we define
as foreground objects the spatially moving objects . With this assumption, we know
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that, fixed a pixel location P;, the only temporal variation is due to the evolution of
the gray-level, denoted as I(P;);. The proposed chromatic-temporal segmentation
of the sequence aims at grouping near pixels P; in regions Ry, where the gray-level
intensity I(Ry): is 1) homogeneous in the region and 2) varies homogeneously
during time.

A measure able to capture the chromatic-temporal similarity between adjacent
pixels is then needed. Given a pair of neighboring pixels P; and P, and the corre-
sponding gray-level temporal evolution I(P;); and I(P;);, we need a model able to
capture three characteristics: 1) the most stable gray-level components measured
in the whole sequence; 2) the chromatic-temporal variation of that components; 3)
the sequentiality in which the components vary. In such a case, an adequate model
is the Hidden Markov Model with continuous Gaussian emission probability. Us-
ing this model all requirements are in fact accomplished: the most important gray
level components are modelled by the means p; of the Gaussian of the states, the
variability of those components is encoded in the covariance matrices X;, and the
sequentiality is encoded into the transition matrix A.

Once given all models \;, each one modelling the temporal evolution of a pixel
P; (or of a small neighborhood of pixels), it is necessary to define a similarity
measure, in order to decide when a pair of neighboring pixels must be labelled
as belonging to the same region. The similarity measure needs to exhibit some
precise characteristics: two sequences have to be considered similar if they share
a comparable main chromatic and temporal character, independently from the
values assumed by the less important components. A possible solution is to use
the measures proposed in Chapter 5, here briefly summarized!:

D(i,j) = 1/2(Lij + Lji) (8.1)

where L;; = P(Oj|A;), O; = I(P;); and A; is the HMM trained on sequence
O; = I(P;);- Another possibility is

D= L
(i,5) 2{ I, T Ln

The problem with these measures is that the Gaussian of each state contributes
in the same way to the computation of the probability, because of the forward
backward procedure. For our target, nevertheless, it is necessary that the Gaussian
of each state contributes differently to the probability computation, depending to
the “importance” of the corresponding state. The idea is therefore to “flatten” the
Gaussians of those states that are not really important by increasing their variance
such that their contribution to the computation of the probability is reduced. In
order to obtain a quantitative measure of the “importance” of the state, we used a
concept typical in the Markov theory, the so-called stationary probability po.- This
probability represents the probability of being in a precise state after an infinite
number of transitions: in other words, p, represents the “average” occupation of
each state, after the Markov Chain has achieved the stationary state. We assume
that the “importance” of each state is measured by this stationary probability,

! Note that typically they are not a proper metric, as not satisfying all the distance’s
properties.
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computed as the left eigenvector of the transition matrix A associated with the
unit eigenvalue (for further details on these concepts see Section 3.6).
The operation of “flattening” is traduced in the transformation of each model
A in a new model X', where all components remain unchanged, except the variance
o; of the Gaussian N (p;j,0;) of each state S;, that becomes
! gj

%= pOO(j)

(8.3)

The new distance, called Dgg(i,j) (Enhanced Stationary), is then computed using
the eq.(8.2) on these modified HMMs ;. The increase of the variance o}, corre-
sponding to the flattening of the Gaussian N (uj,af), has two beneficial effects:
1) the possibility of matching between Gaussians of important states of different
models is increased; 2) Gaussians of non-important states are very flattened, re-
ducing their contribution to the probability computation. It is worthwhile to note
that such a metric is able to remove moving objects from the video sequence, as
they are considered as not-stationary components of the background model.

Assumed this kind of similarity measure between sequences, the segmentation
process can be developed as an ordinary segmentation process of static images.
We adopt a simple region growing algorithm: starting the process from some seed-
points, we use a threshold S to estimate when two adjacent sequences I(P;) and
I(P;) are similar using the distance Dgg(i, j). Obviously the value of this threshold
could affect the performance of the algorithm: in the experimental session proposed
in this thesis, this threshold has been determined by the use of heuristics.

We will see in the experimental session that the modification of the metric
(8.2), with the integration of the chromatic-temporal information of the video-
sequence, permits a visible improvement of the segmentation process in synthetic
experiments and in real sequences.

8.3 Experimental session

The proposed approach was tested using both synthetic and real cases. In the
former case, the synthetic sequence contains blocks flickering with the same palette
but with different frequency, to which a 0.001 variance Gaussian noise has been
added. Some frames of the sequence are shown in Fig. 8.1 (the central region is
fixed).

In Fig. 8.2(a) the obtained segmentation is presented, showing that all 9 regions
are correctly identified by our algorithm. In order to explicitly assess the advantage
owned by the use of temporal information of our algorithm, we present also results
derived from a simpler non temporal segmentation, obtained by segmenting the
averaged image. In this case, after obtaining the mean image by averaging the
gray level values of all the frames of the sequence, we applied a region growing
algorithm, similar to that used in our algorithm. Results are shown in Fig. 8.2(b):
it is evident that this method is not able to capture temporal diversity between the
pixels of the regions, resulting in only five regions. To assess the robustness of our
approach to noisy sequences we add two kinds of synthetic noise to the sequence:
a Salt & Pepper noise, of intensity 0.05 and 0.25, and a white Gaussian noise, of



8.3 Experimental session

sadinddy

frame 1 frame 10 frame 20 frame 30
frame 40 frame 50 frame 60 frame 70
frame 80 frame 90 frame 100

Fig. 8.1. Some frames of the synthetic sequence used for testing our algorithm.

(a) (b)

Fig. 8.2. Segmented sequence obtained by (a) the proposed approach (b) a region grow-
ing method onto the averaged image.

variance 0.01. An example of such a noisy frame and the corresponding sequence
segmentation are presented in Fig. 8.3, for all noise situations. It is clear that
our approach is quite robust to recover from that noise; actually, even if the frame
sequence is quite corrupted, the different semantic regions are identified quite well.

The proposed approach is also tested on some real cases, with indoor and
outdoor surveillance sequences. The first two, obtained from [204], regard the
monitoring of an indoor environments with one moving object. The sequences are
formed by 160 and 106 frames respectively, acquired at 20 frame/sec. Some of the
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Noisy sequence

Segmentation

(a) (b)

Fig. 8.3. Synthetic experiment with noise: in the left column a frame from noisy sequence,
in the right column the resulting segmentation, for different noise type and level: (a) Salt
& Pepper 0.05, (b) Salt & Pepper 0.25, and (c) Gaussian with 0.01 variance.

frames of the two sequences are presented in Fig. 8.4 and Fig. 8.6, showing a sudden
not uniformly distributed change of the illumination. The non uniform change of

frame 51 frame 60 frame 83 frame 84

frame 85 frame 90 frame 100 frame 110

Fig. 8.4. Frames of the indoor sequence 1.

the luminosity could drastically affect the comprehension of the sequence, and only
a method using spatio-temporal information, like the one proposed here, is able
to correctly identify the semantic separated regions of the scene. To maintain a
reasonable computational effort, we partitioned the field of view in a grid with
circular Gaussian filters of 5 x 5 pixels: at each time step each filter provides
one single weighted value. The results of the segmentations, obtained after the
HMM training using these values, are reported in Fig. 8.5 and Fig. 8.7, showing



8.3 Experimental session 131

the goodness of the segmentations. The proposed approach is tested on another

Fig. 8.5. Segmentation of the indoor sequence 1 with the proposed approach.

frame 1 frame 30 frame 56
frame 57 frame 60 frame 80

Fig. 8.6. Frames of the indoor sequence 2.

sequence, consisting in two moving objects in an outdoor scene. Few frames of the
sequence are presented in Fig. 8.8. The resulting segmentation is proposed in Fig.
8.9(a): the segmentation is clear, expressive, and quite accurate. It is worthwhile to
note that this segmentation is obtained by processing the whole sequence, without
any need to remove the moving objects, which are in fact naturally removed by
the procedure used to compute the distance. These results were compared to that
obtained by the JSEG algorithm? [58], and is presented in Fig. 8.9(b). The result

2 Result obtained with the no more available demo at the JSEG web site
http://vision.ece.ucsb.edu/segmentation/JSEG/index.html.
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Fig. 8.7. Segmentation of the indoor sequence 2 with the proposed approach.

frame 20 frame 40 frame 60 frame 80

Fig. 8.8. Few frames from the outdoor sequence.

(b)

Fig. 8.9. Segmentation of the outdoor sequence:(a) proposed approach, (b) Jseg method
[60]

of the proposed approach seems to be more accurate, in particular with regards
to the ground in front of the scooters and the segmentation of the windows of the
two lateral buildings.
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8.4 Application to background modelling

In this section a direct application of this spatio-temporal segmentation is pre-
sented. In particular, it will be shown that such a compact representation of the
background could drastically improve the robustness of standard background mod-
elling methods with respect to sudden changes, as, for example, no-global illumi-
nation variations.

8.4.1 The background modelling problem

A videosurveillance system typically contemplates the monitoring of a site for long
periods, using a static camera: the goal is to detect and classify moving objects
(foreground) from the static scene (background). A fundamental issue to be solved
is therefore the modelling of the background. Methods employing Time-Adaptive,
Per-Pixel, Mixture Of Gaussian (TAPPMOG) have recently become a popular
choice for modelling the background [203,93]. By way of these methods, the time
evolution of each pixel is considered as a spatial independent process, modelled
using a mixture of Gaussians. Each mixture is updated as new observations ar-
rive, while the importance of older observations decays. A subset of Gaussians
are considered as background at each time step and for each pixel, and current
observations that do not match this distribution are labelled as foreground. The
attractive properties of TAPPMOG method are various: first of all, it is able to
slowly adapt itself to persistent scene appearance modifications, like the relocation
of a background object; secondly, it is quite effective in modelling relatively simple
but largely repetitive scene appearance changes associated with dynamic objects,
like moving foliage; thirdly, it is suitable for real-time implementation.

Nonetheless, this technique presents some drawbacks. For example, the assign-
ment of a pixel to the background or to the foreground is based on a threshold
on the Gaussian mixture, that has to be fixed a priori. Another problem is that
the said technique considers each pixel as an independent process without any use
of spatial information or, more generally, higher-level information. This problem
has been recently addressed by Harville in [93], where positive and negative feed-
backs from higher level models have been used to guide low level pixel processes.
Moreover, the choice of the learning rate, that determines the “speed” of the self
adaption of the TAPPMOG method to variations of the background, is critical.
A high learning rate allows to adapt rapidly to illumination changes, but does
not permit the detection of slowly moving objects, or accentuates the foreground
aperture phenomena (i.e., when an uniformly colored object moves, internal pix-
els could not be detected as foreground [212]). On the other hand, a low learning
rate permits only slow adaptation, hence in case of a sudden change of the back-
ground the model finds numerous false foreground points for several frames until
adaptation is completed.

The sensitivity to sudden changes of the illumination of the scene is another
delicate issue. This is one of the most severe problems to be solved by a background
modelling system, especially if changes are local and not uniformly distributed
over the scene. Actually, a variation on the illumination of the whole scene could
be detected and recovered with a standard histogram normalization technique,
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whereas local variations could not be detected with such a global analysis. This
situation can be very frequent in indoor situations, for example when the door of
a lit room is opened in a monitored dark corridor. A substantial contribution in
this sense was provided by Stenger et al. in [204], where a topology free Hidden
Markov Model was used in order to model illumination changes of the scene. Even if
results are promising, this method does not work on-line, and illumination changes
have to be pre-classified off-line. Another interesting approach was proposed by
Ohta in [164], where the possible changes in illumination are coded explicitly in
a mathematical model. Nevertheless, the effectiveness of the method depends on
the number of background prototypes estimated, failing in case of unexpected
illumination changes.

A novel approach is here proposed, which is able to deal with sudden variations
of illumination in the scene, also restricted to partial areas of it. We start from a
generic TAPPMOG method like that proposed by Stauffer and Grimson [203]. The
basic idea of our approach is that this process can be improved if we consider also a
sort of region-based modelling, i.e., considering the spatial information as provided
by a background segmentation. In this case, the segmentation is obtained using
the spatio-temporal method previously proposed, able to provide a really effective
segmentation. With high probability, a change in illumination, both global and
restricted to a particular area, results in a variation of the gray-level values of
most of the pixels of the regions in that zone. In other words, if all pixels of
a region significantly vary simultaneously, a typical system will tend to identify
them as foreground, but, if the region is large enough, this situation can very likely
be due to an illumination change rather than actual foreground.

Our approach uses spatial information resulting from the spatio-temporal seg-
mentation of the background as prior in order to modulate the response of a
TAPPMOG system. In particular, a variation of the learning parameter of the
system is devised in order to efficiently cope with sudden changes in the back-
ground appearance.

Subsequently, this approach is naturally integrated in a probabilistic Bayesian
framework, the particle filtering [102,61] paradigm for tracking. This Monte Carlo
technique [61], that has recently received growing attention, is based on sequen-
tial importance sampling/resampling. It provides a sound statistical framework for
propagating sample-based approximations of posterior distributions, with almost
no restriction on the ingredients of the model. We will show how a TAPPMOG
model can be naturally inserted in this framework, eliminating the mixture thresh-
old problem discussed above. We will also show, on real sequences available in the
literature [204], that the use of spatial information is able to correctly manage
sudden changes of illumination, even if restricted to local scene areas.

8.4.2 The TAPPMOG background modelling

In this subsection, a standard time adaptive per-pixel mixture of Gaussians back-
ground modelling scheme is presented, following [203]. By the way of this approach,
a mixture of Gaussians is associated to each pixel, modelling the evolution of its
gray level during time. The probability to observe the value zq(ﬁ,), i.e. the intensity
gray level of the pixel (u,v) of the image at time ¢, is given by:
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t t t
PE) =3 W N (A1 00 ) (8.4)
=1
t t - .
where wg zw, pg 1)“) and a( )v are the mixing coefficients, the mean and the stan-

dard deviation of the j- th Gaussian of the mixture of the pixel (u,v) at time ¢,
respectively. The background modelling algorithm proceeds as follows. Suppose
that, at each time instant, the Gaussians in a mixture are ranked in descending
order by the value of w/c. Every new pixel value is checked against the existing K
Gaussian functions until a match is found, where a success match is defined as a
pixel value within 2.5¢ of any mode of the distribution. If none of the K Gaussian
functions matches the pixel value, the least probable function is replaced with a
new one, whose mean is equal to the current value, high variance, and low mixing
coefficient. If jp;; is the Gaussian component matched, a pixel z( ) is labelled as

foreground if
tht

Z wlf, > (8.5)

where T is a threshold (to be defined a priori) that indicates the minimum portion
of the data that should be accounted for by the background.

Each mixture evolves during time, as new evidence arrives. The adaption is
driven by the following rules. For the mixing coefficients:
t t—1 .

wi, = (1= a)ufl,) +aMB,0<j <K (8.6)

where M,(ﬁ,) is 1 for the matched Gaussian and 0 for the others, and « is the

learning rate. Low « values imply a slow adaption, and vice versa. Parameters

and ¢ remain the same for unmatched Gaussians, but, for the matched Gaussian
function jps, we have (omitting indexes for clarity):

p® =1 = p)pt=0 + pz® (8.7)
o2 — (1 — p)o> (¢-1)
T
(50 = )" (s u®) (8.8)

where p = aN (z®|u®, oc®).

8.4.3 The particle filtering tracker

A comprehensive description of this approach is out of the scope of this work, so
it is not presented here: only the general ideas are introduced, mainly to setup the
notation. Interested readers may refer to [102,61,103].

The particle filtering is a Bayesian approach: let Z* be the image of the sequence
at time ¢, and X! be the model of the moving objects (foreground) in the scene
at time t. This approach assumes that all information obtainable from the image
Z* about the model X' is encoded in the posterior distribution P(X?|Z?). This
probability is approximated using a set of samples {s'é o) pé z)}= where each sample
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represents an instance of the model X? with a probability p’E 0 (also called weight).
The algorithm, in its general formulation, follows a set of rules for propagating
this set of samples over time. Basically, at each time instant ¢, the following steps
are performed:

e Sampling from prior (the posterior of step t — 1). L samples are chosen from
{s’ég)l} with probability {p@l}, obtaining {5261}: the higher the weight p’éz)l
at time ¢-1, the larger the probability of s’zz)l to “survive”.

e Prediction. Samples {sé z)} for time ¢ are then obtained by applying a dynamic
step to {§€Z)1}, predicting the new configurations. This prediction is based on
previous values and on some a priori knowledge about the possible movements
of the objects; typically, this dynamics also contains a stochastic component.
This step is highly application-dependent.

o Weighting. Samples obtained by previous step are then weighted using the
evidence P(Z!|X?) (also called likelihood) from the image Z*; at each sample
s&) is then assigned the weight pfl), computed as p@) = P(ZY Xt = s@)).

At each time step t, the estimated model X? could be obtained with a Maximum A
posteriori Probability (MAP) approach, i.e. by choosing the most probable sample.

In our approach, we used, as elementary image entity, the response of a circular
Gaussian filter of mean 0 and variance 1, instead of the pixel. These filters are
spaced in the image every 5 pixels, and are partially overlapped. The set of the
responses of each filter at time ¢ yields the “image” Z! = {z,(f)}.

The definition of the sample s’é 0 follows the idea of multiple blob tracker pro-
posed in [103]: sz) is a configuration (mi,xﬁ’l,mzw...,xzmz), where m!, is the
number of objects, and {:cﬁ’z} are the positions of the objects in the scene. Each
object is simply described with a vertically oriented ellipse, centered on xﬁ’p, de-
noted as & (;Uzp). The dynamics (second step of the algorithm) operates on the
samples by predicting not only the objects’ positions, but also the number of ob-
jects. In this way, the system is also able to track more than one object, managing

also entities which are entering in or exiting from the scene. Finally, the likeli-
hood of a configuration s&) is computed starting from the background response

L(zg)) = P(zT(f) € F@), that represents the probability that the filter n is fore-
ground at time t. The likelihood is zero for the configurations in which not all
ellipses are covered by a sufficient foreground. By way of this, all configurations
that predict an object in a position where no objects are actually present will be
automatically discarded. For the others, the likelihood is computed as:

P(Z(X* = sfy) =

1

I 2 o) - o (59
P neg(el,) ng&(x} )

where k is a normalization constant. In other words, a positive contribution to the
likelihood of the sample ste derives from filters “covered” by the objects of sfg),
whereas the others filters contribute negatively. By way of this, the configurations
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that correctly predict both the positions and the number of objects in the scene
have higher likelihood than configurations that correctly predict the positions of
a minor number of objects only.

8.4.4 The integrated region- and pixel-based approach

In this section, the proposed approach is detailed: first, we describe how a
TAPPMOG-based system is extended in order to naturally incorporate spatial
information and to be encapsulated in the particle filtering framework; secondly,
we explain the strategy that uses region-based information to modulate the pixel-
based response, in order to obtain the background response L needed by the track-
ing algorithm.

The starting point is a spatial segmentation of the background scene, obtained
with the method proposed in the previous section. The spatio-temporal segmenta-
tion is determined by using only the first fragment of the sequence: it is important
to note that the method does not need any preprocessing step, as it is able to
remove automatically any possible moving object.

The segmented image is defined as R = {R;}, 1 < i < M, and R; =
{R}..R |.R"|} where |R;| is the size of region R; and R} is the n-th filter of the
region R;. We denote as 24"
at time ¢. )

The unmodulated pixel-level background response L(zﬁf’t)) is naturally ob-
tained by computing

the observation of the n-th filter of the i-th region

Jhit

L(#i") = P (41 € FG) = Zw“ " (8.10)

representing the probability that z,(f’t) is foreground, which is assigned by the

TAPPMOG model, i.e. before high-level modulation. The weights w(z Y are mixing
coefficients related to the j-th Gaussian of the mixture correspondmg to the n-
th filter of the i-th region, at time ¢. It is worth noting that by means of this
the threshold T, present in the Eq. (8.5), is not required anymore. The tracking
algorithm uses all information embedded in Eq. (8.10), without any loss derived
from the thresholding approximation.

Subsequently, the spatial information derived from segmentation is used to
modulate the low-level response, varying the learning parameter « in order to allow
the system to rapidly evolve in case of sudden change of the background. The idea
is to “accelerate”, when needed, the process of adaptiveness of the low level model.
With a sudden change in illumination, for example, most part of the pixels of the
interested region changes suddenly, thus obtaining a wrong high probability to be
foreground. Monitoring these sudden changes, we can adapt learning parameters
in order to recover from these situations. To do that, we define for each region R;

(t

the approzimate filling coefficient ; ), that represents the probability, assigned by

the low level model, that a region R; is foreground:

|R;| (i,t)
®) Done1 Lzn™)
v =&m=1 VB 7 (8.11)
| R
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We define also the modulated filling coefficient fAyzgt) in the same manner, using only
f/(zﬁf’t)) instead of L(zg’t)). IA/(z,(f’t)) represents the final estimate, after modula-
tion, of the probability of being foreground of the n-th filter of the region R;. The
computation of this quantity is described later in this section.

Instead of having a fixed learning parameter a, at each time step t we de-
fine a set of time-varying learning parameters agt), one for each region R;. These
coefficients are computed with the following formula:

W =40 (8.12)

where « is the TAPPMOG learning parameter of formulas (8.6) and (8.7): this
was fixed to 0.7, value that permits to detect also relatively slowly moving objects.

The quantity ‘%@ — %H)‘

agt) = max (a,

represents a measure of how much part of the

region R; is changed from step ¢t — 1 to step t. If this quantity is low, the low-level
model does not need ay rectifications or adjustments. On the contrary, when this
quantity is high, a large part of the region R; has changed rapidly, and, if the
regions are sufficiently larger than the foreground, this rapid change can likely
be due to an illumination variation. If this is the case, the background model
must adapt very fast to this new situation, hence the learning parameter should
be increased. Moreover, this upsurge of the speed of adaptiveness is not a priori
fixed, but depends on the rapidity and the globality of the background change.
The increasing of the adaptiveness speed means that, in the update of the pa-
rameters, most of the importance is given to the last observation (the one of the
illumination change), forcing it to become rapidly one of the background Gaus-
sians. This is correct if the whole region is background, but, if foreground is present
during the change, this update is indeed wrong. In this case, the algorithm sets as
background what is actually foreground, losing the foreground in the scene. This is

solved by using the value (%) instead of zgf’t) in the updating parameter equations

(Eq. (8.6) and (8.7)). This value is the weighted average of the observations P
of the filters of the region R;, each weighted by its probability to be background

at time step t — 1, i.e.,

il
260 = L3 (1 = B(it1)) 600 (8.13)

where k is a normalization constant. By way of this, the system is able to detect
the foreground also after the re-parameterization of the background model. The
use of this averaged region-based value to update the model, instead of using pixel-
based (or filter-based) value, is actually reasonable in that the segmentation used
as prior knowledge determines regions of gray-level similarity. Consequently, the
substitution of each value in the region with the averaged region value, results in
a approximation, indeed sufficient to recover from illumination change situations.
This region-based approximation is then refined in a couple of frames by the usual
time-adaptation of the TAPPMOG pixel-based process.

If the learning parameter agt) has changed, the mixture parameters of the whole
region are adjusted accordingly. From the update, we obtain new mixture param-

eters’ estimates, w§‘,f’, Ag-f;f), A](-f;f), and we re-compute the likelihood L, allowing
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an immediate correction and recovery from illumination changes. The final modu-
lated background response L, used by the tracker (Eq. (8.9)), is finally computed
as:

A L(z(i’t)) if i) = a
L(fi9) = { e (i)

8.14
jmjw;, otherwise (8.14)

8.4.5 Results

This approach was tested on the same two indoor sequences presented in Sec-
tion 8.3: their main characteristic is a sudden non uniform illumination change,
occurring in the middle of the sequence.

Some frames of the first sequence are presented in Fig. 8.4, showing the illu-
mination change, occurring at frames 83-84. The initial spatial segmentation used
in this experiment is shown in Fig. 8.5 of the previous section. In Fig. 8.10(a), a
comparison between standard TAPPMOG method (as in [203]) and the proposed
approach is presented (white pixels represent the foreground). We can notice that,
in correspondence of the sudden change of illumination (frames 83-84), the TAPP-
MOG method identifies almost all pixels in the scene as foreground. This is obvious,
as the per pixel process recognizes only the pixel gray level variation. With our
approach, the use of the spatial high-level information permits the detection of the
globality of the change, recovering in real time the correct background. We can
also notice that when the foreground object actually comes in again in the scene
at frame 100, our approach succeeds in distinguishing it, whereas the TAPPMOG
method succeeds in discriminating it after a certain latency, only at frame 112.
More precisely, the TAPPMOG approach needs 28 frames to adapt to the change
of illumination, whereas in the proposed approach the recover is immediate. This
is confirmed by results obtained applying tracking procedure, proposed in Fig.
8.10(b). We could notice that, before the illumination change, the object (iden-
tified by the ellipse) is correctly tracked by both methods. After the change, the
background response given by the TAPPMOG model is not-informative, and the
tracker identifies several false foreground objects. With our approach, the response
of the background model is instead correct, and the object is correctly tracked.

The same conclusions could be drawn for the second sequence analysis: some
frames of the examined sequences are presented in Fig. 8.6, while the segmenta-
tion used by the approach is shown in Fig. 8.7, both in the previous section. Also
in this case there is a sudden illumination change in the middle of the sequence,
that drastically affects the sequence understanding. In Fig. 8.11(a) and (b) results
obtained with the standard TAPPMOG background modelling and the proposed
approach are presented, together with the corresponding tracking results. Also in
this case one can notice the improvement obtained by the use of the proposed
approach, that allows the tracking system not to loose the object after the illumi-
nation change. In the standard approach, on the contrary, several false objects are
detected.
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Pixel BG Pixel-Region Frame Pixel Tracking Pixel-Region
BG Tracking

(2)2 (b)1 (b)2

Fig. 8.10. Response of the background model on sequence 1, with the corresponding
tracking: (a) Background modelling: (al) standard TAPPMOG model; (a2) the proposed
approach; (b) the corresponding tracking.
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Pixel BG Pixel-Region Frame Pixel Tracking Pixel-Region
BG Tracking

Fig. 8.11. Response of the background model on sequence 1, with the corresponding
tracking: (a) Background modelling: (al) standard TAPPMOG model; (a2) the proposed
approach; (b) the corresponding tracking.

8.5 Conclusions

In this chapter a novel method for spatio-temporal segmentation is proposed, able
to discover regions of spatial, chromatic and temporal homogeneity. This method
is based on the clustering of a forest of Hidden Markov Models, each one mod-
elling the temporal evolution of each scene location. A novel similarity measure
between HMMs has been introduced, able to characterize stationary components
of the sequence, assigning less importance to not determinant components, as
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moving objects. The proposed approach has been tested with synthetic and real
sequences, showing promising performances. Moreover it has been shown that such
a segmentation could be effectively integrated in a background modelling context.
The idea is to use this kind of higher level region-based information for modulat-
ing the pixel-based information given by a standard TAPPMOG approach. This
modulation results in a variation of the adaptiveness speed of the background mod-
elling system driven by region-based reasoning. Experimental results have shown
that this approach seems able to effectively recover from sudden changes in the
illumination of the scene.
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Conclusions

This thesis could be collocated in the statistical Pattern Recognition context, and it
concerns the analysis and the investigation of the Hidden Markov Model approach.
This approach represents a widely employed statistical tool for probabilistic mod-
elling of sequential data, which has assumed a great importance in the last decade.
In this thesis, Hidden Markov Models have been addressed in a twofold way: from
a methodological perspective, by investigating and analyzing some open issues re-
lated to the methodology itself, and from an application perspective, by applying
this approach to some Computer Vision and Pattern Recognition problems.

Several contributions have been proposed in this thesis, with respect to both
methodological issues and applications. In the former case, the main contributes
lie in the contexts of model selection, classification and clustering with HMM.
Regarding the model selection issue, a formal proof of the equivalence between
continuous Gaussian HMMs has been proposed, able to reduce, in the continuous
case, the space in which the best model has to be searched for. Three original
methods have been also proposed, each characterized by different features, but all
capable of determining the more appropriate model structure from the training
data. The first one is linked to the initialization issue, and results in a very fast
technique. The second one makes use of a syntactic equivalence relation, the prob-
abilistic bisimulation [10], and is aimed at reducing an oversized model to a more
compact representation. The more interesting is the third one, able to directly ad-
dress both the model selection and the initialization issue. The key idea is to use
a decreasing learning strategy, starting each training session from an informative
situation derived from the previous training phase. More specifically, the proposed
procedure consists of starting the model training using a large number of states,
run the estimation algorithm, and, after convergence, evaluate a pre-chosen model
selection criterion for that model. Then, the “least probable” state is pruned, and
this configuration is taken as initial situation from which to start again the train-
ing procedure. In this way, each training session is started from a “nearly good”
estimate, reducing the impact of the initialization problem. Moreover, the “good”
initialization drastically reduces the number of iterations required by the learning
algorithm, resulting in a less computational demanding procedure.

In the classification context, some considerations on the reliability of the
standard classification scheme have been presented. An alternative classification
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scheme has been then introduced, inspired by the similarity-based classification
paradigm. This scheme is able to use all the information available from the eval-
uation process, building a new representation space, which has been shown to be
really discriminant: the classification in that space results in a sensible improve-
ment of the classification accuracy, obviously relatively to the data set investigated.
Further investigations will regard the choice of the prototypes used for build the
feature space, representing a crucial aspect that determines the dimensionality of
that space.

Finally, with respect to the clustering problem, some contributions have been
proposed in the context of the standard method, aimed at obtaining a more effec-
tive clustering. Experimental evaluations on a EEG clustering problem have shown
promising results. Subsequently an alternative scheme has been presented, founded
on the similarity-based representation introduced in the classification context. The
method is able to notably enhance the clustering results on both synthetic and real
experiments. The problem of clustering sequential data is a challenging problem
in Pattern Recognition, due to its intrinsic higher difficulty if compared with su-
pervised classification. This context has also grown in practical importance in last
years, due to its applicability in emergent application domains, as bioinformatics
(modelling of DNA strings) or data mining.

All of the proposed methodological approaches have been evaluated by using
synthetic and real experiments, regarding 2D shape classification, face recognition,
DNA modelling, EEG segmentation, and video analysis. With respect to the inves-
tigated problems, the proposed strategies have shown promising results. Obviously,
it is not possible to assess the definitive superiority of the proposed approaches
with respect to the state of the art, since only few problems have been addressed,
and Pattern Recognition is an ill-posed problem. This means that, except for spe-
cial cases, definitive conclusions could never be drawn, even if a lot of experiments
have been carried out [66,96,67]. For some of the applications investigated, the use
of HMM-based approaches has produced a surplus also in the application context.
In particular, in the 2D shape classification problem, a very robust system has
been introduced, that correctly manages object translations, rotations, occlusions,
affine projections and noise. It is interesting to note that each HMM is trained
using only one aspect of the object, without including in the training phase any
object variation, so that the proposed encouraging results are obtained by training
a single shape.

In the face recognition context, a really effective technique has been developed,
able to outperform all other methods present in the literature on the same standard
database. This problem is not a classical “sequence” classification problem, since
the sequence has been forcedly extracted from the face; nevertheless, HMMs are
very useful and effective also in this case.

Finally, for the video sequence analysis, a HMM-based approach has been in-
troduced, able to subdivide the background of a sequence into regions of chro-
matic, temporal and spatial homogeneity. A novel measure of similarity between
sequences has been developed, able to remove non stationary elements from the
sequence. The obtained spatial representation has been profitably integrated in a
background modelling system, that effectively recovers from sudden illumination
changes in the scene.
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At the end of this thesis, some general considerations about the Hidden Markov
Model methodology could be done. In my opinion, this technique is a very ver-
satile and accurate probabilistic tool for sequential data modelling, able to effec-
tively manage noisy situations and missing data. It has been shown that an HMM
trained on a sequence O is able to correctly identify it also in presence of shift-
ing, subsampling, oversampling or fragmenting. Moreover, this technique is useful
not only for sequential data modelling, but also in some not sequential situations.
Some applications, as face recognition, gain several advantages when using Hidden
Markov Models, even if the problem is not “sequential”, and the sequence has to
be forcedly determined from the data. Experimental evaluations have shown that
model selection and initialization are crucial issues, fundamental for obtaining a
correct and effective modelling, and that great advantages could be obtained in
practical applications if these issues are taken into consideration.

On the other hand, I think that HMMs are not very suited for data generation.
It has been experimentally found that data generated by a Hidden Markov Model
seldom resemble to the original data used to train the model. This is likely due to
the not-stationarity of the transition matrix of the employed model, that contains
information about changes between states, but not about the time instant when
these changes occur.

With regards to the future perspectives, I think that the model selection issue
is not a completely solved problem, and some other research has to be developed
in this context. In my opinion, the next methodological issue to be raised is the
integration of this technique with other models, to determine more complex struc-
tures. Some efforts in this direction have been produced by Brand et al. [34], who
propose Coupled Hidden Markov Models, by Fine et al. [76], who introduce Hi-
erarchical Hidden Markov Models, and by Bengio [20], who introduces hybrids
models involving neural networks.

In conclusion, the optimal results obtained by HMM approaches proposed in
this thesis, together with the methodological innovations introduced, confirm the
effectiveness and the wide applicability of the Hidden Markov Model approach to
complex real application problems. Since the goal of the Pattern Recognition is
to resolve problems of great practical relevance, the importance of HMM is this
context is large, and justifies the efforts done in this thesis.
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A

Linear dimensionality reduction techniques

A central problem in Pattern Recognition research area is finding a suitable rep-
resentation of multivariate data. The goal is to reduce the dimensionality of the
original data, in order to prevent or reduce the impact of the curse of dimension-
ality problem [30]. This situation occurs when the dimensionality of the problem
space increases too much: if a limited quantity of data is available, as in practical
applications, the increasing of the dimensionality of the space rapidly leads to a
situations in which the data are very sparse, and the space is almost empty. It
is therefore important to find techniques able to reduce the dimensionality of the
space, maintaining almost all “relevant” information. For computational and con-
ceptual simplicity, this reduction is typically addressed by linear transformations
of the original space, i.e.

y = Ax (A.1)

where x are the original data, y are the reduced data, and A is a matrix to be
determined.

Several methods have been developed to find a suitable linear transformation;
usually, these methods define a principle indicating which transform is optimal,
and determine the matrix A optimizing this criterion. In this section, three linear
reduction techniques are reviewed: the Principal Component Analysis (PCA) [113],
the Independent Component Analysis (ICA) [99], and the Fisher Discriminant
Analysis (FDA) [81]. All these methods are aimed at reducing the dimensionality
of a space while preserving almost all the “relevant information” contained in a
data set. The concept of “relevant information” is different in these techniques. In
PCA, the information to be preserved is the variance of the data, while ICA tries
to find the most statistically independent directions. Both these techniques are
unsupervised methods, that do not take into consideration eventual information
regarding pattern labels. When labels are available, more appropriate techniques
could be used, able to exploit the information derived from this supervised context.
FDA represents a well-known example of such a technique, which looks for a low-
dimensional projection that best preserves the class separability of the data.
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A.1 Principal Component Analysis (PCA)

The Principal Component Analysis, also called, in some contexts, the Karhunen-
Loeve transform, is a linear reduction technique widely used in several application
areas. Its main objective is to reduce the space dimensionality by maintaining the
maximum adherence to the original data, in the mean-square sense: the optimal
directions are those explaining the maximum amount of variance of the data. The
derivation of the PCA transform is briefly presented.

First of all, please note that a vector in a generic d-dimensional space could be
represented as a linear combination of d orthonormal vector u;:

d
X = Z ziu; (A.2)
i=1
2; could be obtained as
Z; = ll;-rX (A3)

that implies a rotation of the coordinate system. Now suppose that, in order to
reduce the dimensionality, only a subset M of the d vectors u; is retained. The
approximated X is then

M d
i=1 i=M+1
The error introduced in the approximation is
d
Xx—%= Y (z—b)u (A.5)

The best approximation is then the one that minimizes the sum of the squares of
the errors on the whole data set. The goal is therefore to find the matrix A that

minimizes
1 N 1 N d
Bu=3Y IIx"=%" =3 ) 3 (s —b)? (4.6)
n=1 n=1i=M+1

It could be shown [30] that the minimum of Ejs with respect to u; occurs when

i.e., when vectors u; represent the eigenvectors (); are the corresponding eigen-
values) of the covariance matrix X of the data. After some algebras, the error Ep
could be written as

d
1
Ev=35 POERY (A.8)
i=M+1

The minimum is then obtained by discarding the eigenvectors corresponding to
the d — M smallest eigenvalues.



A.2 Independent Component Analysis (ICA) 151

In practice, the algorithm proceeds by the following steps: first the data are
centered, i.e. the mean is subtracted from each element; then the covariance ma-
trix of the data is computed, and its eigenvectors and eigenvalues are found. The
eigenvectors corresponding to the M largest eigenvalues are retained; the input
vectors are then projected to the retained eigenvectors, to obtain the coordinates
zj* in the M-dimensional space.

A.2 Independent Component Analysis (ICA)

The Independent Component Analysis is a linear reduction technique whose im-
portance has rapidly increased in recent years; it has typically been used in prob-
lems of blind source separation or feature extraction. As the name implies, the
basic goal is to find a transformation in which the components are statistically
as much independent as possible. In this thesis, the ICA transform has been used
for feature extraction. This use is motivated by results in neuroscience, where it
has been shown that the brain, in the early processing of sensory data, applies a
similar principle of redundancy reduction.

In the literature, at least two different basic definition for linear ICA can be
found [50,118]: one for the Noisy ICA model, and one for the Noise-free ICA model.
In this thesis we use the Noise-free ICA model, which is defined as [99]:

Definition A.1. Independent Component Analysis of a random vector x consists
of estimating the following generative model for the data:

x = As (A.9)

where the latent variables (components) s; in the vector s = (sy,...,8,)7 are as-
sumed independent, and the matrix A is a constant “mixing” matriz.

The independent component analysis is usually performed in two steps: first,
an objective function should be defined, able to quantify the independency of the
components. Secondly, an efficient and effective algorithm to minimize or maximize
this criterion should be derived.

With regards to the first step, several objective criterions have been proposed in
the recent years: in this thesis a Maximum Likelihood approach [177] is used. This
approach, after defining the likelihood of a noise-free ICA model, estimates the
model by maximizing the likelihood. Denoting by W = (w,...w,,,)T the matrix
A~ the log-likelihood takes the form [177]:

L=Y"> log fi(w]/x") + NIn(det(W)) (A.10)

n=1 i=1

where f; are the density functions of the s; (here assumed to be known), and {x"}
is the data set. This approach, under some conditions, is equivalent to the method
based on the maximization of network entropy (Infomax) [19].

With regards to the optimization step, one can use any of the classical methods
for optimizing the objective function, like (stochastic) gradient methods, Newton-
like methods, etc.
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In this thesis, the ICA model was estimated by using the toolbox obtained from
[126], that uses the Maximum Likelihood approach [177] and, in the optimization
step, the method proposed in [161].

A.3 Fisher Discriminant Analysis (FDA)

Principal Component Analysis and Independent Component Analysis are unsu-
pervised techniques, since they produce a linear transformation without any use
of the labels eventually present. If these labels are actually present, a supervised
technique could instead be used. Fisher Discriminant Analysis represents an exam-
ple of such a technique: the goal of this technique is to project data onto a space of
lower dimensionality, trying to maintain the maximum class separability between
items. In FDA, several criteria can be adopted to quantify the concept of “class
separability” [81]. In this thesis we adopt the classical one proposed by Fisher [78]:
given a problem in C classes, each one with Nj elements {x}} (3°, Nx = N), the
criterion to be maximized is defined as

J(A) = tr{(ATSy A" (ASpAT)} (A.11)
where:

e Sy is the within-class covariance, defined as

C Ny, ) )
Sw=>)_ (Z(x; —my,) (x} — mk)T> (A.12)

k=1 \i=1

where
1
my = — X, A.13

is the mean of the cluster k;
e Sp is the between-class covariance, defined as

C
Sp =Y _ Ni(my — m)(my, — m)” (A.14)
k=1
where
1 C

is the mean of the whole data set.

This criterion is properly defined, as it assumes large values when the covariance
between class is large (i.e., the clusters are well separated) and the covariance
within class is low (i.e., the clusters are compact).

It has been shown in [81] that the matrix A that maximizes the criterion
(A.11) is obtained by computing the eigenvectors and the eigenvalues of the matrix
S;VI SB. As in the Principal Component Analysis case, if the goal is to determine a
space of dimensionality M, only the eigenvectors corresponding to the M largest
eigenvalues should be retained, in order to maximize the class separability in the
projected space.
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Sommario

Questa tesi, intitolata “Modelli di Markov o stati nascosti per la Pattern Recog-
nition e la Visione Artificiale: aspetti metodologici e applicativi”, si colloca nel
contesto degli approcci probabilistici alla Pattern Recognition: tali approcci as-
sumono che 'informazione sul problema, le dipendenze tra i vari fattori e i risul-
tati prodotti siano tutti espressi in termini di probabilita. In particolare il presente
lavoro & incentrato sulla tecnica denominata Modello di Markov a stati nascosti
(Hidden Markov Model - HMM), classificatore statistico ampiamente utilizzato
per analisi di sequenze. Questa tecnica puo0 essere intesa come estensione del mod-
ello di Markov dal quale differisce per la non osservabilita dei suoi stati. Tale
modello trova svariate applicazioni, sia nell’ambito della Pattern Recognition che
nell’ambito della Visione Artificiale; negli ultimi anni, in particolare, questa tec-
nica € stata applicata con successo a tutte quelle problematiche che prevedono
un’analisi di dati sequenziali (temporali o non).

Ciononostante, alcune questioni risultano ancora aperte, legate sia alla metodolo-
gia stessa che all’applicazione in nuovi emergenti contesti. Questa tesi nasce sulla
base di queste considerazioni, ponendosi come obiettivo il raggiungimento di un du-
plice scopo: da un lato si vogliono individuare e analizzare i problemi metodologici
ancora irrisolti degli HMM, dall’altro si vogliono investigare nuovi utilizzi di questa
metodologia in problematiche di Pattern Recognition e Visione Artificiale.

Da un punto di vista metodologico, questa tesi propone svariati contributi in
diversi contesti, quali il problema della selezione del modello, il problema della clas-
sificazione e il problema della classificazione non supervisionata (detta anche clus-
tering). Nel primo contesto, 'obiettivo & quello di determinare automaticamente
dai dati la migliore struttura del modello, intesa come numero di stati e connet-
tivita tra di essi. Come prima cosa é stata prodotta una dimostrazione formale di
equivalenza tra modelli Gaussiani continui, che riduce notevolmente lo spazio di
ricerca del miglior modello. Successivamente sono stati introdotti tre metodi, origi-
nali e innovativi, in grado di determinare automaticamente la miglior struttura dai
dati. Per quanto concerne la classificazione con HMM, & stato analizzato lo schema
classico di classificazione, proponendo alcune considerazioni sull’affidabilita di una
decisione presa da tale schema. Successivamente ¢ stato introdotto uno schema, di
riconoscimento alternativo, basato sulla classificazione per similarita: 1'utilizzo di
questo schema ha portato a notevoli miglioramenti nelle prestazioni del sistema,
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sia in casi sintetici che reali. Per quanto riguarda il clustering con HMM, con-
testo scarsamente investigato nella letteratura del’HMM, i contributi introdotti
riguardano principalmente la definizione di misure di distanza tra sequenze, la
definizione di piu efficienti algoritmi di clustering, e I'introduzione di uno schema
alternativo, basato sulla rappresentazione per similaritd introdotta nel contesto
della classificazione. Questo schema, che produce risultati interessanti, permette
di ricondurre un difficoltoso problema di modellazione di sequenze ad un pit col-
laudato problema di modellazione di dati non sequenziali (vettori di features).

Tutte le tecniche proposte sono state attentamente valutate e validate at-
traverso esperimenti con problemi sintetici e reali, quali la classificazione di forme
planari, il riconoscimento di volti, la modellazione di sequenze di DNA, la segmen-
tazione di segnali elettro-encefalografici e ’analisi di sequenze video. Gli ottimi
risultati ottenuti hanno dimostrato la validita delle metodologie proposte.

Da un punto di vista piu strettamente applicativo, I’utilizzo di tecniche basate
su HMM ha prodotto in alcuni ambiti un contributo importante anche nel contesto
dell’applicazione stessa. Pil in particolare, nella classificazione di forme 2D & stato
introdotto un sistema di riconoscimento basato su HMM, in grado di affrontare con
successo perturbazioni delle forme quali la traslazione, la rotazione, I’occlusione,
le proiezioni affini e il rumore. Nel riconoscimento di volti & stato introdotto uno
schema basato su HMM e wavelet; i risultati prodotti risultano essere migliori di
tutti quelli proposti nella letteratura sullo stesso database standard. Infine, & stato
proposto un metodo per ’analisi di sequenze video, basato sul clustering di HMM.
Il metodo proposto si &€ dimostrato essere in grado di suddividere la scena statica
in regioni di omogeneita spaziale, cromatica e temporale.

Gli ottimi risultati ottenuti dagli algoritmi proposti in queste applicazioni di-
mostrano, se ancora necessario, lefficacia e la vasta applicabilitd dei modelli di
Markov a stati nascosti.



