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In this article, we study the problem of computing Random Forest-distances in the presence of missing data.

We present a general framework which avoids pre-imputation and uses in an agnostic way the information

contained in the input points. We centre our investigation on RatioRF, an RF-based distance recently intro-

duced in the context of clustering and shown to outperform most known RF-based distance measures. We

also show that the same framework can be applied to several other state-of-the-art RF-based measures and

provide their extensions to the missing data case. We provide significant empirical evidence of the effective-

ness of the proposed framework, showing extensive experiments with RatioRF on 15 datasets. Finally, we

also positively compare our method with many alternative literature distances, which can be computed with

missing values.
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1 INTRODUCTION

Random Forests (RFs) [9, 12] are ensembles of decision trees [27] which are successfully applied
in Pattern Recognition and Machine Learning as models for regression, classification, and more re-
cently, for clustering. RFs can also be employed to derive a (dis)similarity1 measure, which can then
be used in different types of applications. This is the case of several approaches in distance-based

RF-clustering [5, 7, 9, 34, 38, 44], where the RF distance is used as input for a standard distance-based
clustering method, such as Hierarchical clustering or Spectral clustering. Different definitions of
such RF-based similarity measures have been proposed, ranging from the simplest and most em-
ployed one defined by Breiman [9, 34] up to more recent and complex similarities [5, 7, 38, 44].
In general, an RF-based similarity is computed in two phases: (i) a learning phase, where several

1In this article, we talk in an interchangeable way about similarity and dissimilarity/distance, the specific meaning will be

clear from the context.
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decision trees are trained on random subsets of the input points; (ii) a testing phase, where the sim-
ilarity, for a given pair of objects x ,y, is first computed for each tree, by exploiting the test results
when x ,y traverse each tree T , and then aggregated at forest level by averaging over all trees.

An important issue when using RF-based approaches is how to deal with missing data [24],
i.e., data where some variables do not have a value—a very common situations in many scenarios,
like in the biomedical field [37]. Typical solutions to this problem are [41]: (i) to ignore objects
with missing values, or, (ii) to attempt to complete the missing data with imputation methods
[21, 24]. Both these approaches have drawbacks. Deleting or ignoring the data with missing values
has the clear disadvantage of inducing a substantial decrease in the size of the dataset available,
and passing from the original dataset to the reduced one may introduce bias. The introduction
of spurious bias is also a problem with basic imputation methods, which replace a missing value
with a new one, as well as with more elaborate ones, like k-NN [39] or multivariate imputation
by chained equations [11], that depend on tuning parameters or the specification of a parametric
model. In general, the common feeling is that pre-imputation should be avoided whenever it is
possible, since it may introduce biases, especially if the underlying missing mechanism is unknown
[4, 17, 19, 37].

The question is then: “Is it possible to perform a specific data analysis task on data with missing
values without resorting to (and avoiding the pitfalls of) imputation”? This article attempts to an-
swer such a question in the case of RF similarity, by studying approaches that make its computation
robust to the presence of missing values by neither relying on imputing–and possibly biasing–the
missing values nor completely ignoring them. This research is in line with some other analogous
attempts at defining similarity measures that can deal with missing values without resorting to
imputation, like the Bhattacharyya-based distance of [1], the Euclidean-like distances considered
in [31, 32], the Feature Weighted Penalty based Dissimilarity (FWPD) introduced in [13, 14], or the
Mahalanobis-based distance of [35] which is however specifically focused on time series.

The first issue that arises when computing an RF-similarity with missing values is what to do
when a point x needs to be processed in a node of the tree where a feature/attribute is tested for
which x ’s value is missing. For this, in principle one can rely on the approaches proposed in the con-
text of standard classification decision trees (see, e.g., [10, 15, 25, 26, 28]). There are basically two op-
tions: to have x stop being processed when reaching a nodeu that tests one of x ’s missing values; or
to follow on both children of u —we refer to these two basic alternative strategies as Nan-stop and
Nan-both, respectively. However, the choice of the appropriate approach also depends on the fact
that the result of processing a point in the single trees needs to be then aggregated at forest level.

One of our key observations, leading to the first and main methodological contribution, is that
in general an RF-similarity can be formulated as the computation of a function over a family of
sets. More precisely, each point gets associated a set of tests’ results for each tree. Two points are
then compared based on some specific function of the families of tests associated to them. If there
are no missing values, the set associated with a point x for a tree T is the set of tests’ results on
the root to leaf path followed by x in T . This perspective is immediately evident for the RatioRF
distance [7], an RF similarity measure which was recently introduced in the context of clustering,
and whose original set based definition inspired our ideas. However, and we will show this in
the article, many other RF-distances can be expressed from a set-based perspective. Given this set
based perspective, it is very straightforward to derive an immediate extension of any RF-distance
computation to the missing value scenario: when Nan-stop is employed, the set for a point x on
the treeT contains only the tests encountered from the root to the node where x stops inT . When
Nan-both is employed, the set contains the tests on the possibly several root-to-leaf paths followed
by x in T .
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Computing Random Forest-Distances in the Presence of Missing Data 180:3

The second contribution starts from the following observation: as a result of employing Nan-
stop and Nan-both strategies, we have that trees are not any more equivalent in the amount of
information that they provide for each given point. A point x in a tree containing tests on x ’s
missing values might be associated to a very small number of tests (when Nan-stop is used and x
stops being processed soon) or to very many tests (when Nan-both is used and x follows several
root-to-leaf paths). In this article, we also investigate the possibility to replace the standard way of
averaging distances computed at tree level by a more proper weighted average, where the weight
assigned to each tree leverages the difference in the amount of tests’ results the tree provides for
the points (taken as a measure of the information content provided by the trees). The rationale at
the basis of this variant is that it allows to differentiate the contribution of individual trees to the
final similarity computation, hence it may be better suited to the missing values scenarios.

In this article, we will instantiate such ideas, presenting all the details together with an empir-
ical evaluation, for the RatioRF mentioned described above, which was shown to outperform all
other RF-based similarities [5, 9, 34, 38, 44] in the clustering scenario. Subsequently, we present a
set-based reformulation of many other RF-distances, which permits to easily derive the definition
of their robust-to-missing-data version—we also present the definition of such variants in the ar-
ticle. The experimental evaluation is based on 15 datasets, and is aimed at assessing the difference
between the similarity measure computed on the complete dataset and the similarity measure com-
puted by the proposed framework on the same dataset after injecting increasing percentages of
missing values. In other words, we assessed a sort of absolute robustness of our proposed frame-
work to the presence of missing values, independently of any task (e.g., classification, clustering)
the distance might then be used for. Obtained results were promising, showing that the similarity
measure computed by our approach (on the dataset with injected missing values) does not sig-
nificantly change with respect to the similarity computed on the original complete dataset, also
in the presence of a high rate of missing values. Moreover, results show that our approach com-
pares very favourably to many alternative state-of-the-art distances which can be computed with
missing data.

Summarizing, the main contributions of this article are the following:

— We present a general framework for dealing with missing data in the RF-based similarity
computation, which starts from a set-based (re-)formulation of RF-distances;

— We instantiate such framework for the RatioRF case, empirically validating it with 15 differ-
ent datasets;

— We show how the framework can be applied to other RF-based similarities, providing a set-
based formulation of such distances together with their extension to the missing data case.

Two final notes: (i) we stress that our goal is to build RF-similarities which are robust to missing
data, and not to employ RFs to perform missing data imputation, as done in many other RF-based
approaches to missing data such as [10, 18, 36]—some of them are also based on RF-distances,
which are however computed on complete data and used to perform imputation. (ii) a preliminary
version of the ideas presented in this article has been investigated in [29], where we studied some
simple variants of RatioRF in the context of distance based RF-clustering in the presence of missing
data. Here we extend such work and take a more structural approach, by (i) proposing a framework
which can be applied to many RF-based similarity measures, and (ii) considering and focusing on
the assessment of the similarity measure itself rather than its efficacy in a particular setting like
clustering.

The rest of the article is organized as follows: in Section 2, we review the standard approaches
to compute RF distances, fixing the notation, and introducing the basic concepts. The proposed
approach is presented in Section 3, and evaluated in Section 4. Section 5 concludes the article.
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Table 1. Table of Symbols

Symbol Meaning

T a tree
r (T ) the root of the tree T
U set of objects
�(x) the leaf the object x ∈ U is reaching in the tree T
L(T ) the set of leaves of tree T
θν a test in a node ν

θν (x) ∈ {yes,no} answer of the object x ∈ U to the test θν in the node ν
νY (νN ) the child of ν connected to ν via the edge associated with Y (N )
PT (x) set of tests/answers in the path x is taking in the tree T
PMP

T
(x) set of tests/answers in the paths x is taking in the tree T , when the Nan-both policy is used

lca(�(x), �(y)) the least common ancestor of �(x) and �(y)
depth(ν ) the depth of node ν in the tree T under consideration

2 COMPUTING DISTANCES WITH RFS

We start by defining some notation and recall the definition of several RF-based distance measures.
A summary of the notation is reported in Table 1.

Let U be a set of objects/points and A (for attributes) a set of binary tests T defined over the
whole set U . We assume that for each object x ∈ U and each test θ ∈ T there is a unique value
θ (x) ∈ {yes,no}. A decision tree on the ground set of objects/points U and the test set A is a
binary treeT where: (i) each internal node ν is associated to a binary test θν ∈ A; (ii) the two edges
connecting the node to its children are associated with the two possible results—denoted Y for
yes and N for no—of performing test θν on an object from U . Furthermore, νY (resp. νN ) denotes
the child of ν connected to ν via the edge associated with Y (resp. N ); r (T ) denotes the root of T .
Let ν be a node of T at level h + 1 and θ1,b1,θ2,b2, . . . ,θh ,bh be the sequence of nodes (tests) and
edges (results), encountered on the unique path from r (T ) to ν . Then, it is possible to associate to
ν the set of objects Sν = {x ∈ U | θi (x) = bi , i = 1, . . . ,h}. In words, a node ν is representative
of (or it contains) all the objects that, when tested according to the adaptive strategy represented
by the decision tree T , follow the path from the root to ν . For each object x there is a single leaf
containing it denoted as by �(x). Let PT (x) be the set of pairs (test , result) associated to x by the
strategy/tree T

PT (x) = {(θ ,bθ
x ) | θ is a test on the path from the root r (T ) to the leaf �(x) and bθ

x = θ (x)}. (1)

Let θ be a test and b ∈ {Y ,N }. We say that x agrees with (θ ,b) if θ (x) = b. Similarly, objects x and
y agree on test θ if θ (x) = θ (y).

The decision tree T can be employed as a tool for selecting a set of features Φ relevant for
assessing the similarity between pairs of objects from the universe U . In particular, in [7] the
authors define

Φ = {(θν ,b) | ν is a node of T , b ∈ {Y ,N }}
as the set of possible outcomes of the tests used by the decision tree. For an object x its feature
set X = PT (x) is defined as a set of test results on the path from r (T ) to the leaf �(x) associated to
x by the decision tree. These are the features from Φ that are most relevant for x , in the sense of
being sufficient to identify x . Following the perspective of [7], the underlying principle of RF-based
similarity is that tree T allows to compare objects x ,y as represented by the set of features PT (x),
and PT (y), respectively.

We now summarize the definition of some state-of-the-art representative measures in the field
of RF-based similarities. The main idea, in all these distances, is that the similarity between two
objects x and y can be measured by looking at the way they answer to the tests in the tree T , i.e.,

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 180. Publication date: June 2024.



Computing Random Forest-Distances in the Presence of Missing Data 180:5

by exploiting PT (x) and PT (y). The set of measures we chose to include in this analysis is meant to
cover the different approaches (leaf based, path based, probability mass based, etc.) used to derive
similarity measures from RFs. For each measure μ we present here the computation of μ(x ,y) on
a single tree T of the forest, which we denote by μT (x ,y). As discussed in the introduction, the
final value μ(x ,y) is in all cases obtained as the arithmetic average over the trees of the forest, i.e.,
μ(x ,y) =

∑
T μT (x ,y).

Shi distance. Let ShiT (x ,y) denote the distance proposed in [9, 34]—which was the first RF-based
similarity measure—defining the similarity 1 if the paths PT (x) and PT (y) are identical (i.e., if the
two objects end in the same leaf of the tree), and 0 otherwise. We have

ShiT (x ,y) =
{

1 if�(x) = �(y)
0 if�(x) � �(y)

(2)

Zhu distance. Let ZhuT (x ,y) denote the distance proposed in [44]. In this case, the idea is that
the larger the overlap between the two paths PT (x) and PT (y), the larger their similarity between
x and y. We have2

ZhuT (x ,y) =
depth(lca(�(x), �(y))

max{depth(�(x)), depth(�(y))} , (3)

where lca(�(x), �(y)) is the least common ancestor of �(x) and �(y).

Ting distance. Let TingT (x ,y) denote the distance proposed in [38], which exploits the concept
of probability mass of the nodes in the sub-path in common between PT (x) and PT (y). We have

TingT (x ,y) =
|Slca(�(x ), �(y)) |

n
, (4)

where Slca(�(x ), �(y)) is the set of points that when tested with decision treeT reach the least common
ancestor of �(x) and �(y), and n = |U | denotes the number of points in the dataset.

RatioRF. Let RatioRFT (x ,y) denote the distance proposed in [7] following an axiomatic definition
of similarity measures given by Tversky [40]. We have

RatioRFT (x ,y) =
|PT (x) ∩· PT (y)|

|PT (x) ∩· PT (y)| + |PT (x) −· PT (y)| + |PT (y) −· PT (x)|
, (5)

where (i) PT (x)∩· PT (y) is the set of tests on which x andy agree, among the features in PT (x)∪PT (y),
and (ii) PT (x) −· PT (y) (or, equivalently, PT (y) −· PT (x)) is the set of tests that are relevant for x (y)
and on which y (x ) disagrees, e.g.

PT (x) −· PT (y) = {(θ ,b) | (θ ,b) ∈ X and θ (y) � b}. (6)

3 DEALING WITH MISSING VALUES

The above similarity measures are formalized assuming that: (i) all tests are defined on every object;
(ii) there is a single root to leaf path associated to each object x , yielding the set PT (x) on which
the measures are computed. The presence of data with missing values in a dataset means that for
some object x and test θ the value θ (x) is not defined, a situation that is indicated by θ (x) = NAN .
We now detail the mechanisms in the learning and training phases which permit to deal with such
situations.

2Note that the max at the denominator is only meant to normalize the measure in the interval [0, 1].
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3.1 Learning Phase: Training Trees with Missing Data

In the learning phase, we aim at building the decision trees of the forest based on a random training
subset of the input objects. We select the test θ to associate with the root of the decision tree in
order to split the training objects into two subsets according to the way they behave on such test.
The two subsets are then used as training sets for recursively building the two subtrees rooted at
the children of the node associated to test θ . In the presence of missing data, we need to decide how
an object x used in such a procedure for building the tree is moved down (to the right or the left
subtree) when processed at a node associated to a test θ for which x ’s value is missing/not known,
i.e., θ (x) = NAN . Here we considered two options, which are in line with our goal of avoiding
pre-imputation and exploit all objects of the dataset. The first approach, referred to as NanBoth,
is to have x passed to the training set of both subtrees. This scheme seems to be really suitable
for our view; actually, we are trying to select tests that separate objects in the training test: since,
unless we implicitly impute some value to x , the test θ does not provide information to separate x
from the other objects, we delay this to the subtrees. The second option we consider is not to pass
x to any of the training sets for the subtrees (NanStop). Also this alternative policy seems to be
very suitable for our framework, since it keeps each split in the tree T to be decided only on the
basis of the subset of the training set that reaches that split because of actual (non-missing) values.

As a final consideration, it is important to observe that the learning phase is aimed at creating
a tree as an adaptive sequence of splits that separate the objects from one another. Clearly, when
using the NanBoth approach, any missing value will induce an increase of the number of tests, as
the object x will need to be separated both in the right and the left subtree. Conversely, with the
NanStop approach, a tree built over a set of objects with many missing values may have very few
splits, since after a split θ is chosen, all the objects x s.t. θ (x) = NAN will be ignored and no split
will be needed to separate them from the others.

3.2 Computing the Distance with Missing Data

When computing the RF-distance, we have a pair of objects x ,y traverse each decision tree T
built in the learning phase, in order to select the sets/paths PT (x), PT (y) on which the similarity
is computed. There are two issues that need to be addressed if we want to extend the similarity
measures defined in (2)–(5) to deal with missing values, and in particular with the situation when
an object x reaches a node ν such that θν (x) = NAN : (i) Should the pair (θν ,NAN ) be part of the
set of features X = PT (x) describing x? (ii) What is the next node/test to consider for x between
νY and νN , i.e., how should we complete the partial root-to-leaf path for x beyond ν? How should
we decide, considering that the test result θν (x) does not say which of the edges Y or N to
follow?

Regarding (i), it appears to be most reasonable not to consider such a node as part of the set X ,
as this would imply unfounded dissimilarity of x with any other objects y for which the test θν is
defined. By unfounded we mean that we do not know whether the missing value of x on test θν

agrees or not with θν (y), hence it would not be fair to assume it is different. Dually, it can also be
the case that θν (y) = NAN , it would be unfounded to say that x and y have the same value for
test θ .

Regarding (ii), we use again the NanBoth approach and proceed by extending the path in both di-
rections. This means that x will be tested on bothvY andvN and from each of them it will continue
to a single child node, or to both children nodes, if the test is again on a missing value of x . Please
note that in the learning phase both choices NanBoth and NanStop do not affect the construction
of the remaining part of the tree. On the other hand, in the computation of the distance, the use
of NanStop might result in a significant difference in the number of tests performed on a point.
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Therefore, a tree would end up giving too little information on a point even if it contains several
test that can help assessing the distance of x from y. Clearly, as a result of employing NanBoth,
instead of the single path PT (x), the object x gets associated to a subtree of T that starts at the
root of T , equivalently, a collection of root-to-leaf paths parting from one another at some node
associated to a test where x is not defined.

In order to make explicit the relationship and the difference with respect to the analogous struc-
ture PT (x) defined for data without missing values in (1), let us denote by PMP

T
(x) this tree or set

of features (pairs of test and result) selected by the application of the NanBoth approach.
It is important to note that, for each x , we have that PMP

T
(x) is a subtree ofT that stems from the

root of T . The RF similarities of the previous section, which are defined on single paths PT (x) and
PT (y), need to be extended to the subtrees case in order to work in the above defined missing data
framework. We investigate here a possible strategy to achieve this: if the RF-distance is reformu-
lated so that it is the result of set-based operations on the set of tests in PT (x) and PT (y), then the
extension to the missing case is straightforward, since we can consider also PMP

T
(x) and PMP

T
(y)

as sets. We will show the detailed instantiation of this principle in the RatioRF case in Section 3.3;
in Section 3.4 we also provide the set-based reformulation of some other RF-similarities, thus sug-
gesting that the proposed framework represents a general strategy to easily include mechanisms
of missingness management in classic RF-similarities.

3.3 MissRatioRF—an Extension of RatioRF for Missing Values

In order to apply the proposed framework to the RatioRF measure, we have to formulate it as a
result of operations on sets. Let ΦT (XY ) = PT (x) ∪ PT (y) denote the set of features restricted to
those employed by the tree to describe x and y. Then let XT (resp. YT ) be the element of ΦT (XY )
on which x (resp. y) agrees. Then, the RatioRF distance defined in Equation (5) can be rewritten as
follows:

RatioRFT (x ,y) =
|XT ∩ YT |
|XT ∪ YT |

(7)

i.e., the Jaccard distance computed on the restricted set of features, that the tree selected for x and
y.

RatioRFT (x ,y) is defined in terms of union and intersection of sets of tests from PT (x), PT (y).
It is then natural to consider a generalization of RatioRFT (x ,y) where the role of PT (x), PT (y) is
taken by their generalizations PMP

T
(x), PMP

T
(y). More, precisely, in the presence of missing value

we take as the set of feature extracted byT for comparing x andy the tests in the subtree ΦT (XY ) =
PMP

T
(x) ∪ PMP

T
(y). Let XMP

T
(resp. YMP

T
) be the element of PMP

T
(x) ∪ PMP

T
(y) on which x (resp. y)

agrees. Then, we can compute the similarity of x and y with respect to a given decision treeT like
in (7) by substituting XT ,YT , in the computation of RatioRFT (x ,y), with XMP

T
,YMP

T
. The resulting

distance, denoted by MissRatioRFT is defined as follows:

MissRatioRFT (x ,y) =
|XMP

T
∩ YMP

T
|

|XMP
T

∪ YMP
T

|
(8)

From trees to forest. As usual in RF approaches, the final RF-similarity is obtained by aggre-
gating tree-level information. We propose here two ways to perform such aggregation, leading
to two variants of the MissRatioRF measure: the first represents the classical way of defining an
RF-similarity, i.e., by averaging the tree-level measures on different trees, whereas the second is
specifically designed for the missing data case. More formally, given a trained RF whose trees
are T1, . . . ,Tm , and a pair of points x ,y ∈ U , let MissRatioRFt(x ,y) be the similarity computed
according to (8) from the decision tree Tt .
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180:8 M. Bicego and F. Cicalese

Then, we define the first variant of RF similarity measure MissRatioRF1(x ,y) by averaging over
all decision trees, i.e.,

MissRatioRF1(x ,y) =
1

m

m∑
t=1

MissRatioRFt(x ,y)

=
1

m

m∑
t=1

|XMP
Tt

∩ YMP
Tt

|
|XMP

Tt
∪ YMP

Tt
|

(9)

The second version starts from the following observation: with the scheme defined in (9) each
tree contributes with the same weight (1/m) to the final RF-similarity measure. However, the pres-
ence of missing values can make distinct trees provide a very different amount of information
content. This is a consequence of two main aspects: (i) the use of the NanBoth training approach,
by requiring that an object x must be separated by other objects on several paths, possibly induces
many more eligible tests; (ii) the use of the NanBoth in the testing phase, which clearly increases
the eligible tests considered for x . It is then natural to consider the weighted average of the similar-
ity computed by the single trees weighted with respect to the ratio of the information content of
the tree with respect to the information content of the whole forest. More formally, we can define
the information content IC(T ,x ,y) of the tree t with respect to the comparison of two objects x ,y
as the number of bits provided by the tests from the tree T that contribute to the computation of
the similarity between x and y, i.e.

IC(T ,x ,y) = |XMP
T ∪ YMP

T | = |PMP
T (x) ∪ PMP

T (y)|. (10)

Therefore, the total information content of the forestT1, . . . ,Tm with respect to the comparison of
two objects x ,y is given by

IC(x ,y) =
m∑

t=1

|XMP
Tt

∪ YMP
Tt

|. (11)

If we then take the weighted average (w.r.t. IC) of the tree-level MissRatioRF similarities, we have
our second variant:

MissRatioRF2(x ,y) =
m∑

t=1

IC(Tt ,x ,y)
IC(x ,y)

|XMP
Tt

∩ YMP
Tt

|
|XMP

Tt
∪ YMP

Tt
|

=

m∑
t=1

|XMP
Tt

∪ YMP
Tt

|(∑m
t=1 |XMP

Tt
∪ YMP

Tt
|
) ·

|XMP
Tt

∩ YMP
Tt

|
|XMP

Tt
∪ YMP

Tt
|

=

∑m
t=1 |XMP

Tt
∩ YMP

Tt
|∑m

t=1 |XMP
Tt

∪ YMP
Tt

|
, (12)

where the third line follows from the second by noticing that the enumerator of the first fraction
is equal to the denominator of the second fraction, and the denominator of the first fraction is the
same for all terms of the outer summation, hence we can factor it out.

Let us say that a test is eligible for x and y if it appears on some root to leaf path followed by
x or y in some tree of the forest. Then, the last expression in (12) says that MissRatioRF2(x ,y) is
equal to the ratio between the number of eligible tests for x and y (in the whole forest) on which
they agree, and the total number of eligible tests for x and y.
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3.4 Missing-Data Extensions of Other RF-Similarities

The MissRatioRF distance introduced in the previous section exploits the set based formulation of
the RatioRF distance to derive a missing data variant. Our claim is that the approach is general
enough to apply whenever an RF-based similarity measure μT (x ,y) can be expressed in terms of
intersections and union of the sets of tests in the paths PT (x), PT (y) of the underlying decision
tree T . Actually, in such cases, we can proceed as in the case of RatioRF to obtain the missing-
value variant Missμ(x ,y) by simply replacing PT (x), PT (y) with PMP

T
(x), PMP

T
(x), which can be

computed with the NanBoth approach in the testing phase. In this section, we provide the missing
data formulation for all the measures presented in Section 2: these measures were not presented,
in their original version, in a set-based formulation; in this section we show how they can be
reformulated in such perspective, leading to their missing data extension.

In the following, we are going to use PT (x) to denote also the subtree (path) of T associated to
its sequence of tests. Moreover, for a subtree T ′ of T , we denote the set of its leaves by L(T ′).

Shi distance for missing values. By noticing that when PT (x) is a path, �(x) = L(PT (x)) we can
rewrite (2) as

ShiT (x ,y) = |L(PT (x)) ∩ L(PT (y))|/|L(PT (x)) ∪ L(PT (y))|, (13)

which leads to the following generalization to the case of missing values

MissShiT (x ,y) =
|L(PMP

T
(x)) ∩ L(PMP

T
(y))|

|L(PMP
T

(x)) ∪ L(PMP
T

(y))|
. (14)

Zhu distance for missing values. We start by observing that depth(lca(�(x), �(y)) =

|PT (x) ∩ PT (y)|, and depth(�(x)) = |PT (x)|. Moreover, considering that the denominator
max{|PT (x)|, |PT (y)|} in Equation (3) simply represents a normalization factor, and that the simi-
larity is mainly defined by the numerator, if as a normalization factor we use |PT (x) ∪ PT (y)| we
can rewrite (3) as

ZhuT (x ,y) = |PT (x) ∩ PT (y)|/|PT (x) ∪ PT (y)|, (15)

which leads to the following generalization to the case of missing values

MissZhuT (x ,y) =
|PMP

T
(x) ∩ PMP

T
(y)|

|PMP
T

(x) ∪ PMP
T

(y)|
. (16)

Ting distance for missing values. Using lca(�(x), �(y)) = PT (x)∩PT (y), and noticing that in the
absence of missing values, in T we have one leaf per object, i.e., n =

∑
�∈L(T ) |S� |, we can rewrite

(4) as

TingT (x ,y) =
∑

�∈PT (x )∩PT (y) |S� |∑
�∈L(T ) |S� |

, (17)

which leads to the following generalization to the case of missing values

MissTingT (x ,y) =
∑

�∈L(P M P

T
(x )∩P M P

T
(y)) |S� |∑

�∈L(T ) |S� |
, (18)

where we recall that Sv is the set of points that when tested with the decision tree will arrive at
the node v .

As a concluding remark, we observe that, given the set-based formulation, the weighted aver-
age proposed for the RatioRF scheme might be also employed for all the other RF-based distance
measures considered in this section.
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Table 2. Datasets

Problem #Obj #Feat #DifVal

Small size

Iris 150 4 78
BreastTissue 106 9 925
Lung 32 54 4
Ecoli 336 7 92
Fertility 100 9 36
Seeds 210 7 1202
Cryotherapy 90 6 77
StoneFlakes 70 8 324
WBC 683 9 10
Moderate size

Energy 1500 24 11847
Volcano 1078 65 70070
Flickr 1000 87 47158
Gas 1641 128 209127
UAV-1 1100 54 43859
UAV-2 1100 18 12887

In the table, “#Obj” represents the number of objects,

“#Feat” the number of features, and “#DifVal” the

number of different values in the whole dataset.

4 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of the proposed approach applied to the
RatioRF framework. In particular, we present the empirical details, we evaluate the main difference
between the different variants of the proposed scheme, and we conclude with a comparison with
alternative distances which avoid pre-imputation of data.

4.1 Experimental Details

The method, in all its variants, has been evaluated on 15 different datasets, briefly summarized in
Table 2. We considered two main classes: small datasets and datasets of moderate size. The former
class is representative for all those problems which involve few objects, as the classical medical
domains which involve few patients, in which the missing data problem is highly impacting. The
second class of problems is meant at investigating how the method scales when larger datasets
are considered. Please note that, since the final output is the complete pairwise distance, scaling to
very large datasets can be too computationally demanding, therefore we focussed on problems of
moderate size. All the datasets of small size are taken from the standard UCI ML repository,3 using
them as provided (except Lung, for which we removed two features which already contain missing
values, and StoneFlakes and WBC, for which we removed subjects which already contain missing
values). The remaining are taken from real world larger size challenging problems. In particular,
(i) Energy is a part of the ElectricityLoadDiagrams20112014 Data Set of the UCI ML repository, in
which we used hourly profiles for the first 30 days of the first 50 subjects; (ii) Volcano is related to
the analysis of volcano seismic events [23], using data provided by J.M. Londoño-Bonilla and the
Observatorio Vulcanológico y Sismológico de Manizales, Colombia —we thank him for the data—,

3https://archive.ics.uci.edu/ml/index.php
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and preprocessed as described in [23]; (iii) Flickr is part of the dataset “Favourite Images”, a dataset
used to study personal aesthetics, which can be downloaded from the author’s website,4 where we
considered only the first five users; (iv) Gas is part of the dataset Gas Sensor Array Drift Data
Set of the UCI ML repository, which contains only objects from the class 3; (v) UAV-1 and UAV-2
are parts of the Unmanned Aerial Vehicle (UAV) Intrusion Detection Datasets, available from the
authors’ website,5 including the first 1100 signals of Dataset 1 and 4.

For all the experiments, we evaluated the proposed approach with a specific pipeline, particu-
larly designed for the case at hand. Instead of focusing on validating the obtained RF-distance in
a given application domain (like, for example, clustering), here we evaluate how different is the
RF-distance computed on the incomplete data with respect to the RF-distance computed on the
original data. In this way, we assess in a better way the impact of the missing data on the distance
computation, independently of the task the distance is used for. The proposed pipeline works as
follows. First, for the given dataset, we simulated missingness by artificially removing some values
using the MCAR (Missing Completely At Random) protocol [30], which removes data completely
at random, without considering relations among features. The only constraint we used was not
to remove all the values of a given object, i.e., all objects should have at least one value. Then we
applied the proposed MissRatioRF measure. Finally, we computed the original RatioRF similarity
on the complete dataset and we compared MissRatioRF with it. In order to have a “baseline value”,
we also derived a second copy of the RatioRF similarity matrix on the complete dataset, comparing
it with the reference RatioRF distance. This is meant to give an idea of the variability derived from
the intrinsic randomness in the RFs method.

To quantitatively compare two similarity matrices, we can employ different strategies [33], based
on statistical tests (e.g., the classic Mantel test [22]) or others ideas. Here we used the topological
approach proposed in [45], which compares two similarity matrices by measuring the distance
between the adjacency matrices of the two graphs derived from them. These graphs are derived
here with the K-NN approach, i.e., the vertices are the objects and each object is adjacent to all
and only its K nearest neighbours, as given by the similarity matrix. In our experiments we set
K =

√
n, where n is the number of objects of the problems. The measure, which we call “TopDist”

(Topological Distance), ranges between 0 and 1, the higher this value the more different the two
similarity matrices.

In our experiments, we evaluated six levels of data missingness: 0.05, 0.1, 0.2, and so on up to 0.5.
For each level and each dataset, we repeated the whole procedure 30 times. For what concerns the
proposed approach, after a preliminary empirical evaluation (not shown here), we decided to use
the following parametrization: 100 trees, building each of them with a random selection of 50% of
the objects of the dataset. For datasets with more than 400 objects, we followed the suggestions
in [7], and employed only a fixed amount of objects to learn each tree (in our experiments we set
this number to 128). This would permit to reduce the computational burden introduced by large
datasets, still keeping reasonable performances, as shown in [7]. We evaluated the two learning
strategies described in previous section, namely NanStop and NanBoth. In the former case, each
tree of the forest is grown until the maximum depth, whereas in the second each tree is grown
only until the depth of log(n). We investigated the two versions of the distance MissRatioRF1 and
MissRatioRF2, as given in Equations (9)–(12). For what concerns the original RatioRF distance, we
used the same parametrization as that used with our approach: 100 trees, building each of them
with a random selection of 50% of the objects of the dataset (or 128 for datasets with more than
400 objects). We employed Extremely Randomized Trees [16], which can be trained without any

4http://www.cristinasegalin.com/research/projects/phd/soft_biometrics/Dataset_IEEEForensics.zip
5http://mason.gmu.edu/~lzhao9/materials/data/UAV/
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supervision: these methods have been shown to be surprisingly good not only for classification
[16], but also in other unsupervised contexts such as anomaly detection [20], clustering [8], and,
crucially, RF-distance computation [6].

4.2 Part 1: Analysis of MissRatioRF

In this section, we report some results aimed at evaluating some aspects of the proposed approach.
One of the most interesting ones is the difference between the two variants MissRatioRF1 and
MissRatioRF2, which represent two different strategies to aggregate the tree-level similarities. We
report in Figure 1 the comparison between the two variants for all possible datasets. In each plot,
we report the topological distance Topdist between the two MissRatioRF variants and the original
distance on the complete data, for an increasing level of missingness. Each curve represents the
average over the 30 different repetitions and the two learning strategies NanStop and NanBoth. The
horizontal line at the bottom of the plot represents the topological distance between the reference
RatioRF and the second copy of RatioRF. The first observation is that the topological distance, for all
variants, is very low. Considering that the topological distance ranges between 0 and 1, we can say
that, in general, our MissRatioRF is very close to the RatioRF distance computed on the complete
data, also for drastic levels of missingness (0.5, i.e., when half of the values are missing). Please note
that the topological distance between two copies of the RatioRF measure (on the complete data)
is larger than zero: This represents the minimum displacement which is intrinsic in the RatioRF
measure, due to the randomness in the process.

Concerning the difference between the two variants, we can observe that for low levels of miss-
ingness the two distances are more or less equivalent. When considering larger values of missing-
ness, two different behaviours appear: On the datasets of small scale, there is not a predominance
of one of the two variants, with 5 datasets on which MissRatioRF2 is better than MissRatioRF1, and
4 on which the opposite behaviour holds. On the contrary, on datasets of larger scale MissRatioRF2

is always better than the counterpart. This seems to be reasonable: on these sets each tree is built
with a small fraction of the objects (128), and this fact probably induces more diverse trees with re-
spect to the case of small datasets, in which each tree is built with 50% of the dataset. MissRatioRF2

is able to explicitly consider and quantify the diversity between the trees: considering that this di-
versity is drastically amplified by the mechanisms of missingness management we employed, it
seems reasonable to note a more remarkable improvement with large levels of missingness.

To get a quantitative analysis of the difference, we performed a paired t-test between the per-
formances of the two variants along the different repetitions, using as significance level 0.05. As a
summary, we can say that in 74 cases over 90 (15 datasets times 6 missingness levels) there is a sta-
tistically significant difference: this is particularly true for large levels of missingness (i.e., 14 over
15 for level 0.5, 13 over 15 for level 0.4), and for datasets of moderate size (35 over 36, considering
all levels of missingness).

For what concerns the two different learning strategies, we follow the same procedure described
above, by comparing them considering the average over the two variants of the distance. We did
not report the results of the comparison dataset per dataset, but we show in Figure 2 two aggre-
gated results: the average over datasets of small size (Figure 2(a)) and the average over datasets of
moderate size (Figure 2(b)), to analyse the difference between these two scenarios. From the plots
we can observe that, for small size problems, the two learning strategies are rather equivalent,
whereas, when considering larger size datasets, we can observe a clear trend: with a small level
of missingness, then NanStop seems to be more adequate. On the other side, when the level of
missingness is increasing, then NanBoth becomes the favourite choice. This is somehow expected:
NanStop stops the propagation of objects for which we have a missing value for the given rule.
With a large level of missingness, it is highly probable to stop many objects at the early depths
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Fig. 1. Comparison between the two variants MissRatioRF1 and MissRatioRF2 on all datasets.

of the tree, resulting in worse descriptions. On the contrary, the NanBoth scheme propagates the
objects with missing values along the two different branches, thus resulting in more descriptive
trees for large levels of missingness. Also in this case, we performed a statistical paired t-test to
assess the statistical significance of the curves, following the strategy described above. As a sum-
mary, we can see that the differences are statistically significant in 77 cases over 90, again with the
majority for higher levels of missingness (15 over 15 for both levels 0.4 and 0.5) and for datasets
of moderate size (36 over 36). If we perform the paired t-test by aggregating all the results for the
datasets of small size and all the results for the datasets of moderate size (corresponding to the
plots (a) and (b) in Figure 2), then the statistical significance is always present.
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Fig. 2. Comparison between the two learning strategies NanBoth and NanStop. Averages over (a) datasets

of small size; (b) datasets of moderate size.

4.3 Part 2: Comparison with Other Literature Distances

In this part, we compare the proposed approach with other distances which can be computed with
missing values. In all cases, we have two variants of the distance: the original, which is computed
on the complete set, and the robust-to-missing-data variant. In particular, we follow the same
protocol as before, starting from a dataset with missing values, computing the robust-to-missing-
data distance, comparing it in terms of topological distance with the reference measure computed
on the complete data. Please note that, for having a fair comparison, the starting datasets with
missing values were kept identical to those used with our method. We analysed the following
measures:

— HEOM, HVDM, HEOM-Redef, HVDM-Redef: extensions of Euclidean distance able to
deal with missing data—see [31, 32]. Even if these distances can also work with heteroge-
neous data, here we used their version for continuous numeric data. The reference distance,
for the complete case, is the Euclidean distance.

— Mean ED: another extension of the Euclidean Distance, proposed in [2, 3] (also considered
in [31, 32]). Also in this case, the reference measure is the Euclidean Distance.

— Bhattacharyya: an extension of the Mahalanobis distance for data with missing entries,
based on the Bhattacharyya distance [1]. In this case, the reference distance is the Maha-
lanobis distance.

— FWPD-Clas, FWPD-Clus, FWPD-Best: three variants of the FWPD measure [13, 14]. In
particular, here we select the parameter α in three different ways: (i) for FWPD-Clas we
set α = 0.1, which represents the best value when the distance is used for classification,
according to [14]; (ii) for FWPD-Clus we set α = 0.25, the best value when the distance is
used for clustering [13]; (iii) finally, for FWPD-Best we select, in every experiment, the best
value of α (i.e., the one leading to the lowest topological distance).

Summarizing results are reported in Figure 3. In particular, we displayed in part (a) the results
averaged on all the datasets of small size and the different 30 repetitions, and in part (b) the results
are averaged over the datasets of moderate scale. In all cases, for MissRatioRF we select the best
version.

By looking at the plots, we can observe that MissRatioRF is largely better than alternatives,
especially for (i) large levels of missingness and (ii) datasets of moderate size. Please note that the
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Fig. 3. Comparison with other distances: averages over different groups of datasets: (a) small size, (b) mod-

erate size.

comparison is fair: the starting datasets were identical, and the TopDist measure used to compare
the two versions of a given distance is, by construction, independent of the scale of the distance.
Actually, the distance is used to derive an unweighted KNN graph (which only depends on the
ranking, not on the scale of the input distance); then the TopDist measure is obtained by comparing
the graph obtained with the original distance and that obtained on the robust-to-missing-data
version.

Also for this set of results we made a set of statistical tests, comparing with a t-test MissRatioRF
with competitors (significance level 0.05). After performing a Bonferroni correction for multiple
tests, we have found that MissRatioRF is better than all alternatives, with a statistical significance
and for all the levels of missingness, for all the large datasets. For the small datasets, the statis-
tical significances are present in all cases when MissRatioRF is compared with HEOM, HVDM,
HEOM-Redef, and HVDM-Redef, in 48 cases over 54 (9 datasets times 6 levels of missingness)
when compared with MeanED, in 47 over 54 when compared with Bhattacharyya, FWPD-Clas,
and FWPD-Clus, and on 49 over 54 when compared with FWPD-Best. This confirms that the pro-
posed approach represents a valid alternative to classic as well as advanced distances robust to
missing data.

4.4 An Analysis on Extremely High Levels of Missingness

We conclude our experimental section by presenting an analysis to understand the behaviour of the
proposed scheme when an extremely high level of missingness is present. In particular we repeated
the experiments reported in Section 4.2 for a level of missingness ranging from 0.6 to 0.9 (step
0.1). We performed the analysis only on those datasets for which the highest level of missingness
could be computed, i.e., datasets for which at least one feature per object can be guaranteed: Lung,
Energy, Volcano, Flickr, Gas, UAV-1, and UAV-2. Please note that we could compute all the 30
repetitions only for the NanStop configuration, whereas for the NanBoth configuration, we only
compute one run. Actually, the NanBoth training, for such high levels of missingness, is very
computationally demanding, at least in our implementation, since NanBoth propagates to both
children all objects which are not able to provide an answer to the test (which, for a high missing
level, represent the majority). Results are displayed in Figure 4, reporting the averages over the
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Fig. 4. Extreme levels of missingness: averages datasets Lung, Energy, Volcano, Flickr, Gas, UAV-1, and UAV-2:

(a) configuration NanStop, (b) configuration NanBoth (due to high computational requirements, displayed

results are for one run only).

different datasets. For the sake of readability, we also reported the same average for levels 0.05–0.5,
in order to have an idea of the trend. It is evident how the proposed distance scales well, even in
so large levels of missingness. The curves also appear to confirm the observation made before that
the MissRatioRF2 variant is better suited when trees are more diverse in the amount of information
provided. Such diversity is expected to increase with higher values of missingness—explaining the
diverging behaviour of the curves in the high middle range—up to a point where, for extremely
high values of missing values, all the trees collapse to a set of very few tests so that the weighted
average of MissRatioRF2 does not make a difference anymore.

5 CONCLUSIONS

In this article, we presented a general framework for dealing with missing data in the RF-based
similarity computation, which neither removes the data with missing values nor applies any pre-
imputation step. We instantiated such framework in the case of RatioRF similarity measure, pro-
viding significant empirical evidence of its effectiveness with extensive experiments on 15 datasets.
We show that the same framework can be applied to several other state-of-the-art RF-based simi-
larities, providing their extensions to the missing data case.

As future directions, the immediate option would be to empirically evaluate also the other
missing-data distances, to quantify the improvement provided by the introduced mechanisms. As
a second direction, we consider it worth investigating more the weighting scheme introduced in
the second variant of MissRatioRF. Our present approach has the advantage of not being task-
dependent, while still trying to weight/balance the importance of the trees on the basis of the dis-
tribution of missing values. However, given a specific task (e.g., classification), a different promis-
ing approach could be to try and learn the weights for precise exploitation of the distance, in a
context-dependent way. In this respect, the framework introduced in this papers opens the possibil-
ity of deriving advanced imputation-free approaches for clustering or classification, for example
by combining them with recent interesting distance-based classification approaches (e.g., [43]):
techniques like K-Nearest Neighbour still have many possibilities for improvements [42], and may
drastically benefit from carefully designed distances robust to missing data.
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