
A novel Kernel Extension for the Nearest Feature
Line Classifier
Hidden for double-blind review

Abstract—The Nearest Feature Line (NFL) rule represents
a widely applied variant of the Nearest Neighbor rule whose
usefulness has been shown in many different contexts. Even the
NFL rule has been extended along different directions, only one of
them is based on kernels: in this paper we make one step forward
along this direction, proposing a novel kernel extension of the
NFL rule, called Kernel Rectified NFL classifier. Our approach is
based on tools and concepts coming from the Rectified Nearest
Feature Line Segment (RNFLS) classifier, another extension of
the NFL rule which is aimed at solving known problems of the
original one, such as extrapolation and interpolation inaccuracies.
In the paper we present the method, together with an empirical
evaluation based on 15 different datasets, which show that
kernelization is indeed a promising direction for extending the
NFL family of classifiers.

Index Terms—Nearest Feature Line, Rectified Nearest Feature
Line Segment, Kernels

I. INTRODUCTION

The well-known nearest neighbor (1-NN) classifier [1] as-
signs an unseen object to the class of the less dissimilar object
found within a set of prototype examples and according to a
given distance measure. Many enhancements of 1-NN have
been proposed in the literature; among them, the most popular
variants consist on either reductions or enlargements of the set
of prototypes [2], while others are based on using problem-
specific dissimilarity measures [3] or weights [4], [5]. A sem-
inal extension of 1-NN that has attracted attention during the
last decades is the so-called Nearest Feature Line (NFL) rule
[6] which, in turn, inspired the proposition of a whole family
of methods originally termed by Chien and Wu [7] as the
Nearest Feature Classifiers. NFL, in brief, consists in building
a line connecting each pair of prototype points belonging to
the same class, such that the class label assignment for a test
object is now based on the label of the nearest line instead
of deciding it according to the class of the nearest prototype
point. NFL performs well in high-dimensional spaces, but
suffers from intrinsic weaknesses in low-dimensional ones.
Many extensions and solutions have been proposed to cope
with the NFL weaknesses, which exploit different ideas like
the selection of feature lines [8]–[11], the transformation of the
original data or the consideration of alternative representation
spaces [12], [13] as well as the design of better point-to-line
distance measures [14]–[16].

However —to the best of our knowledge— there is only
one extension of NFL, proposed in [17], which exploits kernel
tools [18]; this is somehow surprising, since many different
studies in the Pattern Recognition and Machine Learning com-
munity proposed and showed the usefulness of kernelized ex-

tensions of existing methods, not just by using the well-known
support vector machines to solve classification problems, but
also in related tasks such as feature extraction, dimensionality
reduction and clustering. Among the two latter, the proposal
of Kernel Principal Component Analysis [19], [20] and Kernel
Kmeans [21], [22] stand out as reference kernel techniques
in their respective areas. The idea behind the many different
works on kernelized approaches consists in re-writing the
procedure in terms of dot products, such that the so-called
kernel trick can be applied to implicitly project points in a high
dimensional space, without changing the procedure, where a
number of advantageous behaviors are obtained. In spite of
the advent of deep learning —and, particularly Convolutional
Neural Networks [23]— as the current dominant trend, kernel
methods continue to be effective solutions in both supervised
and unsupervised learning.

In this paper we make a step forward along this direction,
by proposing a novel kernel extension of the NFL classifier.
We start from the observation that the kernelized version
proposed in [17] is related to the original NFL scheme, and
does not exploit all the advances of NFL that have been
presented in more recent years. To cope with this limitation,
here we propose the Kernel Rectified NFL classifier, an ad-
vanced kernelized NFL classifier based on ideas and concepts
coming from the Rectified Nearest Feature Line Segment
(RNFLS) classifier [9], [24]. This version was proposed as
a solution for two diagnosed problems of NFL: extrapolation
and interpolation inaccuracies. The former inaccuracy is due
to the fact that feature lines extend indefinitely beyond their
endpoints in both directions: this represents a serious problem
in low-dimensional spaces, but it is of limited harm in high-
dimensional ones, as observed by [9]. The latter inaccuracy is
due to the potential invasion of the interpolating segment of the
feature lines –typically for multimodal classes– to the territory
of other classes, thus more related to the complexity of the
problem. If we consider the kernelization perspective, we
can say that extrapolation may represent a less crucial issue,
since kernelization permits to work in high (possibly infinite)
dimensional spaces; on the contrary, the risk of interpolation
inaccuracy is still there, since classes can still be multimodal.
For these reasons, our extension exploits only the rectification
process, which is aimed at reducing the interpolation problem
by removing lines which “cross” the territory of other classes.

Our formulation of the Kernel Rectified NFL classifier starts
from the NFL version that is purely based on dissimilarities
[13], and proposes a kernelized variant of both the classifier
and the rectification process. Experimental evaluations, con-

ducted on 15 different datasets, are promising, showing that
our Kernel Rectified NFL approach very often outperforms
the alternatives Moreover, our results provide a clear evidence
that kernelization is very beneficial for these types of methods,
including the original 1-NN and NFL classifiers, encouraging
us to go ahead along this line of research.

The remaining part of the paper is organized as follows.
The background concepts on the NFL rule, its rectified version
and about kernels methods are provided in Sec. II. A detailed
explanation of our proposal is presented in Sec. III. Experi-
mental results are shown and discussed in Sec. IV. Finally, our
concluding remarks and recommendations are given in Sec. V.

II. BACKGROUND

A. The Nearest Feature Line (NFL) and the Rectified Nearest
Feature Line Segment (RNFLS)

The Nearest Feature Line (NFL) classifier was originally
proposed in [6] as an extension of the well known Nearest
Neighbor rule, which, given a set of n labeled prototype
examples {(x1, y1), . . . , (xn, yn)} and a test point x to be
classified, assigns x with the class label yi′ , such that

i′ = arg min
i=1,...,n

d(x,xi) , arg min
i=1,...,n

||x− xi||. (1)

NFL can be simply understood as the very same rule from
Eq. (1) but using now a larger collection of prototypes built
from the original set {(xi, yi)}, such as lines.

More precisely, let ` k(xi,xj) a line in the feature space,
having a class label y k and connecting two feature points
xi,xj provided that yi = yj and i 6= j. Therefore, y k = yi =
yj . Moreover, let n` be the number of feature lines that can
be built under these constraints. Then, the NFL rule assigns
x with the class label y k′ , such that

k′ = arg min
k=1,...,n`

d
(
x, ` k(xi,xj)

)
, (2)

where

d
(
x, ` k(xi,xj)

)
, ||x− [(1− µ)xi + µxj] || (3)

and
µ =

(x− xi) · (xj − xi)

||xi − xj ||2
. (4)

Instead of a single x consider three different test points
—xa, xb and xc— whose projections onto ` k(xi,xj) lie
on the left-extrapolating part, the interpolating part and the
right-extrapolating part of the line, respectively. A graphical
illustration of the NFL mechanism for those three different
situations is shown in Fig. 1.

NFL works very well in high-dimensional spaces; however,
feature lines tend to cross each other in lower-dimensional
ones and, consequently, NFL may not perform well in such
dimensions. One extension which is aimed at improving NFL
is the the Rectified Nearest Feature Line Segment (RNFLS)
procedure. This method was originally proposed in [9] as a so-
lution for two diagnosed problems of NFL: extrapolation and

d(xb, ℓ k)

xi

xj

xb

xa

d(xa, ℓ k)

xc

d(xc, ℓ k)

Fig. 1. An illustration of the NFL decision rule for three different test cases.

interpolation inaccuracies. The former problem arises because
feature lines extend indefinitely beyond their endpoints in both
directions, and is solved by a process called segmentation. The
second problem is due to potential invasion of the interpolating
segment of the feature lines –typically for multimodal classes–
to the territory of other classes, and is solved by a process
called rectification.

More in details, segmentation consists in not considering the
whole (uncut) feature line ` k(xi,xj) but, instead, a so-called

feature line segment ` k(xi,xj); see Fig. 2. In practice, the
distance from a test point to a feature line segment is obtained
as follows:

d
(
x, ` k(xi,xj)

)
=

d
(
x, ` k(xi,xj)

)
, if 0 < µ < 1;

d(x,xi), if µ < 0;

d(x,xj), if µ > 1.
(5)

d(xb, ℓk)

xi

xj

xb

xa

d(xa, ℓk)

xc

d(xc, ℓk)

Fig. 2. Illustration of the segmentation process in RNFLS.

Rectification is a selection of those feature line segments
that do not cross the territory of other class, according to
the following criterion evaluated for each prototype xm,
m = 1, . . . , n having an associated territory with radius
rm = min∀i,yi 6=ym d(xi,xm):

` k(xi,xj) is preserved if d(xm, ` k(xi,xj)) > rm,∀m

and ym 6= y k; otherwise, ` k(xi,xj) is excluded. (6)

Let ns be the number of selected feature line segments after
rectification. Since only some of the feature lines segments are
selected by this process, then ns ≤ n`.

B. Kernel Methods

The effectiveness of kernel methods to solve complicated
problems lies on their ability to map the data to a higher
dimensional space, where non-linear problems can be cast
into linear ones. The mapping can be implicitly done via
the so-called kernel trick [25, Chap. 12]. Let xa, xb be two
feature vectors in Rp and Φ(·) a mapping function from Rp
to Rq , where q > p. The dot product between the mapped
points can be implicitly computed via a specific function,
called Kernel: K(xa,xb) = 〈Φ(xa),Φ(xb)〉. In words, the
trick consists in the ability of computing the dot product
between the mapped feature vectors in terms of the evaluation
of a function (the kernel) whose arguments are the vectors
in their original dimension. The most commonly used kernels
are the polynomial kernel and the radial basis function (rbf)
kernel. The latter is particularly attractive because, with it, the
resulting high dimensional feature space can be even infinite-
dimensional.

III. THE PROPOSED METHOD: KER-RNFL

In this section the proposed approach is presented. In
particular we propose a novel kernelized NFL classifier, which
exploits kernelization of the basic NFL classifier to which we
add the Rectification process of the RNFLS classifier, leading
to the Kernel Rectified NFL classifier: abbreviated as Ker-
RNFL. Please note that we add only the rectification process,
and not the segmentation step. Actually, as explained in Sec. I,
segmentation aims at solving the problem of extrapolation, but
as observed by [9], this represents a serious problem only in
low-dimensional spaces. Since kernelization would permit to
work in a higher dimensional space, we reduced our attention
to the Rectification process, which is aimed at facing problems
more related to the true complexity of the problem (classes
overlap).

In order to derive a kernelized version of an algorithm, the
classical approach is to rewrite such procedure only in terms of
dot products [25]: by replacing dot products with kernels we
can have the procedure working in a high dimensional space,
where the task may be simpler. Our kernelization strategy is
slightly different, and is based on two steps.

• Step 1. In the first step we observe that the NFL and the
Rectification procedures can be written only in terms of
pairwise distances between objects. Actually, both steps
need to compute the distance between an object and a line
(the rectification also needs to compute the radius, which
is already defined in terms of distances). The object-line
distance can be written only in terms of pairwise distances
between objects by exploiting the formulation proposed
in [13], where a version of NFL was proposed able to
work in cases when only pairwise dissimilarities between
objects are available but not the point coordinates in a
feature space. For that, the Heron’s formula is used along

with the typical way to find the height of a triangle, as
follows:

d(x, ` k(xi, xj))

=
2
√
s(s− d(xj , x))(s− d(xi, xj))(s− d(xi, x))

d(xi, xj)
,

(7)

where s = (d(xj , x) + d(xi, xj) + d(xi, x)) /2. This
formulation was introduced so that it can work only
with dissimilarities, which might be derived directly from
the objects themselves, without the need of having their
associated coordinates in a vector space.

• Step 2. Given the version with only pairwise distances, a
kernelized version can be obtained by exploiting the re-
lation between the (squared) Euclidean distance between
two vectors xi and xj and the dot product [25]:

||xi − xj ||2= xi · xi + xj · xj − 2(xi · xj). (8)

If we want to compute the kernelized version, we have
to replace all pairwise distances d(xi,xj) in our formulation
with its kernelized version dK(xi,xj) , i.e.

dK(xi,xj) = K(xi,xi) +K(xj ,xj)− 2K(xi,xj). (9)

Depending on the chosen kernel, we can arrive to different
versions. For example, if we use the rbf kernel function [25]:

K(xi,xj) = e−||xi−xj ||2/σ

then it is easy to see that the distance in (7) can be written as:

dK(x, ` k(xi, xj)) =

√
sKA(xj ,x)A(xi,xj)A(xi,x)

1−K(xi,xj)
,

(10)
where

A(xj ,x) = 1−K(xi,xj)−K(xi,x) +K(x,xj)

A(xi,xj) = 1−K(x,xj)−K(x,xi) +K(xi,xj)

A(xi,x) = 1−K(x,xj)−K(xi,xj) +K(x,xi)

and

sK = 3−K(xi,xj)−K(xi,x)−K(x,xj)

In the same way, the kernelized radius rKm for the rectification
process can be computed as:

rKm = min
∀i,yi 6=ym

(1−K(xi,xm)) = max
∀i,yi 6=ym

K(xi,xm) (11)

Summarizing, given these definitions, the proposed Kernel
Rectified NFL works as follows:
• perform the rectification process, i.e. keep only those

kernel lines `
K

k (xi,xj) for which

dK(xm, `
K

k (xi,xj)) > rKm ,∀m and ym 6= y
K

k (12)

where dK(·, ·) and rKm are computed using Eqs. (10) and
(11), respectively.

• assigns a testing point x with the class label y k′ , such
that

k′ = arg min
k=1,...,n`

dK
(
x, ` k(xi,xj)

)
, (13)

where again dK(·, ·) is computed using Eq. (10).
A final note: even if having the same goal, the kernelization

of NFL presented in [17] followed a different perspective, not
exploiting the distance-based formulation of NFL. Moreover,
in our derivation, we exploit it and extend the kernelization to
the RNFLS variant, which was completely missing from the
literature. As it will be demonstrated in the subsequent section,
taking advantage of both kernelization and rectification, allows
to simultaneously inherit the benefits of both processes.

IV. EXPERIMENTAL RESULTS

A heterogeneous collection of datasets (see Table I) was
used for the experiments in order to evaluate, under diverse
circumstances, the performance of the proposed method with
respect to some related methods. In particular we grouped our
evaluated methods in two families:
• Original versions: here we considered all non-kernel

versions. In particular we analysed the standard Nearest
Neighbor rule (‘NN’ in the tables), the original Nearest
Feature Line (“NFL”), and its extension: the Rectified
Nearest Feature Segment Line (“RNFLS”);

• Kernelized versions: here we considered the kernelized
Nearest Neighbor rule (“Ker-NN”), as proposed in [26],
which represents a kernelized version of the NN rule, the
Kernel NFL (“Ker-NFL”), as proposed in [17], and the
proposed approach (“Ker-RNFL”).

Please note that with this comparison we can also evaluate how
beneficial is the kernelization procedure for the different rules.
Most of the datasets are publicly available at the UCI Machine
Learning Repository, except for the Ruiz200TriaxalOnly that
comes from a Colombian Seismological Observatory, and
deals with the classification of volcano-seismic signals – for
more info please see [27], and the Flickr dataset, which
represents the first two classes of the Flickr dataset available
at [28].

TABLE I
DATASETS CONSIDERED IN THE EMPIRICAL EVALUATION OF KER-RNFL

Dataset Obj Dims Classes
Iris 150 4 3
Lung 32 54 3
Glass 214 9 4
BreastTissue 106 9 6
Wine 178 13 3
Heart 297 13 2
Fertility 100 9 2
Parkinsons 195 22 2
Sonar 208 60 2
ColonCancer 62 2000 2
Ruiz200TriaxalOnlyZ 200 26 2
Flickr 600 82 2
Energy 1500 24 50
Ionosphere 351 34 2
WBC 683 9 2

In all the experiments, the Euclidean distance was used
as the by-default nearness criterion. Classification errors with
Averaged Holdout Cross Validation (for 30 repetitions of the
experiments) were computed. For each repetition, the data
was normalized with respect to the variance of the training
partitions; that is, by using z-score standardization. In the
case of the kernelized methods, several parameterizations for
both polynomial and rbf kernels were explored; namely using
polynomial kernels with degrees in {2, 3, 4, 5, 6, 7, 8, 9,
10} and rbf kernels with σ parameter in {0.01, 0.02, 0.05,
0.075, 0.1, 0.2, 0.5, 0.75, 1, 2, 5, 7.5, 10, 20, 50, 75, 100},
respectively.

Due to the high computational complexity of the NFL
family of classifiers (the number of lines grows quadratically
with respect to the number of points), we also investigate the
behaviour of such methods when using only a random fraction
of all lines. In particular we evaluated the results for 50%, 70%
and 100% (the whole set of lines). For the kernel methods, we
only select the best kernel for every cross-validation run in
every problem. Results are reported in the left part of Tables
II, III and IV. The best results per dataset are highlighted in
light gray in the three tables. In addition, in the right part
of the tables, the result of paired t-tests (confidence level of
0.05) comparing the original versions of the methods against
their kernelized counterparts are also shown. The result in the
column indicates which of the two variants (Kernelized or
Original) is better with a statistically significant difference.

The first general observation is that, in all the tables except
for one dataset in Table II, Ker-NFL and Ker-RNFL are the
best performing classifiers. In addition, it is interesting to
highlight that, as the fraction of lines used increases, the
number of times when Ker-RNFL is better than Ker-NFL
slightly increase as well. Notice that, in Table II, both Ker-NFL
and Ker-RNFL are the best performing classifiers in 7 out of
15 occasions. Then, when the fraction of lines increases from
50% to 70%, the proportion is 9 times vs. 6 times in favor of
Ker-RNFL; see Table III. Finally, when considering the whole
set of lines (Table IV) the proportion is 10 times vs. 5 times
also in favor of the proposed method.

When comparing in more detail the classification errors
of Ker-RNFL vs. those of Ker-NFL, it is worth to highlight
that, for the seven cases where Ker-RNFL consistently outper-
formed Ker-NFL independently of the fractions of lines used,
the largest differences in favor of the proposed method corre-
spond to the Heart, Ruiz200TriaxalOnlyZ and Flick datasets.
The common characteristic shared by these datasets seem to be
a relatively large number of objects per class (i.e. a relatively
large Obj/Classes ratio) in a moderate-to-large dimensionality
of the original representational space. For such three datasets,
the Obj/Classes ratios are 148.5, 100 and 300, respectively, in
original dimensionalities of 13, 26 and 82 dimensions. This
characteristic was also observed for Ionosphere; however, for
this dataset, Ker-RNFL was better than Ker-NFL only when
using the whole fraction of lines. In spite of that, the difference
between the performances of Ker-RNFL and Ker-NFL for that
dataset is not that much.

TABLE II
AVERAGED CLASSIFICATION ERRORS. FRACTION OF LINES USED: 0.5

Original versions Kernelized versions t-tests

Dataset NN NFL RNFLS Ker-NN Ker-NFL Ker-RNFL NN vs
KerNN

NFL vs
Ker-NFL

RNFLS vs
Ker-RNFL

Iris 0.0591 0.1031 0.0427 0.0493 0.0409 0.0276 Kernel Kernel Kernel
Lung 0.5356 0.5111 0.5222 0.4867 0.4422 0.4356 Kernel Kernel Kernel
Glass 0.2978 0.3522 0.2701 0.2855 0.2717 0.2717 Kernel Kernel Equal
BreastTissue 0.3474 0.3814 0.3571 0.3333 0.3071 0.3462 Kernel Kernel Equal
Wine 0.0519 0.0447 0.0318 0.0443 0.0258 0.0227 Kernel Kernel Kernel
Heart 0.2338 0.2176 0.1696 0.2297 0.2083 0.1572 Kernel Kernel Kernel
Fertility 0.1807 0.142 0.1187 0.112 0.11 0.1127 Kernel Kernel Equal
Parkinsons 0.0931 0.0921 0.1158 0.0763 0.067 0.0787 Kernel Kernel Kernel
Sonar 0.1602 0.1547 0.166 0.1602 0.1337 0.1469 Equal Kernel Kernel
ColonCancer 0.2753 0.271 0.3043 0.2516 0.2097 0.2323 Kernel Kernel Kernel
Ruiz200TriaxalOnlyZ 0.3553 0.3703 0.3237 0.3223 0.302 0.2833 Kernel Kernel Kernel
Flickr 0.3606 0.3308 0.2798 0.3269 0.3102 0.2743 Kernel Kernel Kernel
Energy 0.0577 0.055 0.0618 0.0577 0.0499 0.05 Equal Kernel Kernel
Ionosphere 0.156 0.1693 0.1093 0.0709 0.0684 0.0699 Kernel Kernel Kernel
WBC 0.0429 0.0495 0.0262 0.0395 0.0311 0.0252 Kernel Kernel Equal

TABLE III
AVERAGED CLASSIFICATION ERRORS. FRACTION OF LINES USED: 0.7

Original versions Kernelized versions t-tests

Dataset NN NFL RNFLS Ker-NN Ker-NFL Ker-RNFL NN vs
KerNN

NFL vs
Ker-NFL

RNFLS vs
Ker-RNFL

Iris 0.0631 0.1018 0.0409 0.0502 0.0351 0.0236 Kernel Kernel Kernel
Lung 0.5467 0.5 0.4822 0.5111 0.4356 0.46 Kernel Kernel Equal
Glass 0.2975 0.3487 0.2638 0.2874 0.2673 0.2591 Kernel Kernel Equal
BreastTissue 0.334 0.4045 0.3564 0.316 0.3013 0.3385 Kernel Kernel Equal
Wine 0.0492 0.0432 0.0261 0.0432 0.0239 0.0205 Kernel Kernel Kernel
Heart 0.2419 0.225 0.168 0.2331 0.2088 0.1491 Kernel Kernel Kernel
Fertility 0.1787 0.154 0.12 0.116 0.12 0.1133 Kernel Kernel Kernel
Parkinsons 0.0749 0.0935 0.0997 0.067 0.0546 0.0632 Kernel Kernel Kernel
Sonar 0.1731 0.1498 0.1602 0.1728 0.1311 0.1466 Equal Kernel Kernel
ColonCancer 0.2828 0.2624 0.3 0.257 0.1957 0.2237 Kernel Kernel Kernel
Ruiz200TriaxalOnlyZ 0.369 0.379 0.317 0.3383 0.321 0.2693 Kernel Kernel Kernel
Flickr 0.365 0.3368 0.2824 0.3263 0.311 0.2786 Kernel Kernel Equal
Energy 0.0587 0.0543 0.0619 0.0586 0.0502 0.051 Equal Kernel Kernel
Ionosphere 0.1562 0.1621 0.101 0.0695 0.0659 0.0682 Kernel Kernel Kernel
WBC 0.0438 0.0514 0.0271 0.0388 0.0305 0.0254 Kernel Kernel Equal

TABLE IV
AVERAGED CLASSIFICATION ERRORS. FRACTION OF LINES USED: 1

Original versions Kernelized versions t-tests

Dataset NN NFL RNFLS Ker-NN Ker-NFL Ker-RNFL NN vs
KerNN

NFL vs
Ker-NFL

RNFLS vs
Ker-RNFL

Iris 0.0596 0.1071 0.0378 0.0502 0.0378 0.0213 Kernel Kernel Kernel
Lung 0.5222 0.4756 0.4778 0.5044 0.4378 0.4244 Kernel Kernel Kernel
Glass 0.295 0.3443 0.2689 0.2865 0.2711 0.2538 Kernel Kernel Kernel
BreastTissue 0.3372 0.4179 0.3263 0.3244 0.3019 0.3237 Kernel Kernel Equal
Wine 0.0481 0.0489 0.0208 0.0443 0.0216 0.0178 Kernel Kernel Equal
Heart 0.2333 0.2214 0.1784 0.2259 0.2041 0.157 Kernel Kernel Kernel
Fertility 0.1693 0.1507 0.1187 0.1113 0.112 0.1093 Kernel Kernel Kernel
Parkinsons 0.0749 0.0921 0.0997 0.0632 0.056 0.0643 Kernel Kernel Kernel
Sonar 0.1722 0.1576 0.1625 0.1702 0.1392 0.1479 Equal Kernel Kernel
ColonCancer 0.3 0.2731 0.2903 0.2591 0.2086 0.243 Kernel Kernel Kernel
Ruiz200TriaxalOnlyZ 0.3583 0.3777 0.3283 0.329 0.313 0.281 Kernel Kernel Kernel
Flickr 0.3586 0.3382 0.2816 0.3261 0.3081 0.2766 Kernel Kernel Kernel
Energy 0.056 0.0527 0.0556 0.056 0.0477 0.0481 Equal Kernel Kernel
Ionosphere 0.1455 0.1537 0.0907 0.0636 0.0623 0.0619 Kernel Kernel Kernel
WBC 0.0453 0.048 0.0271 0.0375 0.0299 0.0237 Kernel Kernel Kernel

As another observation, it can be seen that in almost all
cases the kernelized version of a given rule outperforms
its original counterpart: this represents a promising result,
encouraging us to go ahead along the direction of kernelizing
the different extensions of the NFL classifier.

V. CONCLUSION

A novel kernel extension of the NFL rule, called Ker-
RNFL classifier was proposed in this paper. The approach
successfully inherit not just the good representational capa-
bilities of NFL but also the corrections of its weaknesses
via the so-called rectification process and the well-known
properties provided by kernel methods. The proposal, as well
as the kernelized versions of the baseline approaches, were
empirically evaluated on 15 different datasets. Results of Ker-
RNFL vs. Ker-NFL show that the first approach tend to be
better than the second one as the fraction of considered lines
increases. The benefit of the proposed approach is specially
noteworthy for datasets with a relatively large ratio of number
of objects to number of classes, in moderate-to-large original
dimensionalities. Such a behavior suggests that the combined
contributions of the kernel trick and the rectified feature lines
are profitable when point clouds per class, in the original
space, exhibit a moderate tradeoff between compactness and
sparseness.

Finally, the overall good results that were observed for
the finely-tuned (best a posteriori solution) versions of the
kernelized methods confirm the well-known fact that selecting
appropriate kernel parameters is crucial in kernel methods.
However, the aim of this paper was only showing the potential
of the Ker-RNFL method, leaving as future work the problem
of a proper kernel parameter selection.

ACKNOWLEDGMENT

Hidden for double-blind review.

REFERENCES

[1] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[2] M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. Pekalska, and R. P. W.
Duin, “Experimental study on prototype optimisation algorithms for
prototype-based classification in vector spaces,” Pattern Recognition,
vol. 39, no. 10, pp. 1827–1838, 2006.

[3] E. Pe↪kalska and R. P. W. Duin, “Dissimilarity measures,” in The
Dissimilarity Representation for Pattern Recognition: Foundations and
Applications, ser. Machine Perception and Artificial Intelligence. Sin-
gapore: World Scientific, 2005, vol. 64, ch. 5, pp. 215–254.

[4] S. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE
Trans. on Systems, Man, and Cybernetics, vol. SMC-6, no. 4, pp. 325–
327, 1976.

[5] M. Bicego and M. Loog, “Weighted k-nearest neighbor revisited,” in
23rd International Conference on Pattern Recognition (ICPR). IEEE,
2016, pp. 1642–1647.

[6] S. Z. Li and J. Lu, “Face recognition using the nearest feature line
method,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp.
439–443, 1999.

[7] J.-T. Chien and C.-C. Wu, “Discriminant waveletfaces and nearest
feature classifiers for face recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1644–1649, 2002.

[8] Q.-B. Gao and Z.-Z. Wang, “Center-based nearest neighbor classifier,”
Pattern Recognition, vol. 40, no. 1, pp. 346 – 349, 2007.

[9] H. Du and Y. Q. Chen, “Rectified nearest feature line segment for pattern
classification,” Pattern Recognition, vol. 40, no. 5, pp. 1486 – 1497,
2007.

[10] D.-Q. Han, C.-Z. Han, and Y. Yang, “A novel classifier based on shortest
feature line segment,” Pattern Recognition Letters, vol. 32, no. 3, pp.
485 – 493, 2011.

[11] K. Kamaei and H. Altınçay, “Editing the nearest feature line classifier,”
Intelligent Data Analysis, vol. 19, no. 3, pp. 563–580, 2015.

[12] H. Altınçay and Z. Erenel, “Avoiding the interpolation inaccuracy in
nearest feature line classifier by spectral feature analysis,” Pattern
Recognition Letters, vol. 34, no. 12, pp. 1372–1380, 2013.

[13] M. Orozco-Alzate, R. P. W. Duin, and C. G. Castellanos-Domı́nguez,
“A generalization of dissimilarity representations using feature lines and
feature planes,” Pattern Recognition Letters, vol. 30, no. 3, pp. 242–254,
feb 2009.

[14] W. Li, Q. Ruan, and J. Wan, “Graph-preserving shortest feature line
segment for dimensionality reduction,” Neurocomputing, vol. 110, pp.
80–91, jun 2013.

[15] Q. Feng, J.-S. Pan, and T.-S. Pan, “Feature curve metric for image
classification,” in Modern Advances in Applied Intelligence, M. Ali, J.-S.
Pan, S.-M. Chen, and M.-F. Horng, Eds. Cham: Springer International
Publishing, 2014, pp. 263–272.

[16] J.-S. Pan, Q. Feng, L. Yan, and J.-F. Yang, “Neighborhood feature line
segment for image classification,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 25, no. 3, pp. 387–398, 2015.

[17] Y. He, “Face recognition using kernel nearest feature classifiers,” in 2006
International Conference on Computational Intelligence and Security,
vol. 1, nov 2006, pp. 678–683.

[18] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, ser. Adaptive
Computation and Machine Learning. Cambridge, MA, USA: MIT
Press, dec 2002.

[19] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural Computation, vol. 10,
no. 5, pp. 1299–1319, 1998.

[20] ——, “Kernel principal component analysis,” in Advances in Kernel
Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999,
pp. 327–352.

[21] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE
Transactions on Neural Networks, vol. 13, no. 3, pp. 780–784, 2002.

[22] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel K-Means: Spectral
Clustering and Normalized Cuts,” in Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2004, p. 551556.

[23] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 33, no. 12, pp.
6999–7019, 2022.

[24] M. Orozco-Alzate and M. Bicego, “A cheaper Rectified-Nearest-Feature-
Line-Segment classifier based on safe points,” in Proc. of the 25th Int.
Conf. on Pattern Recognition (ICPR 2020). IEEE Computer Society,
jan 2021, pp. 2787–2794.

[25] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[26] K. Yu, L. Ji, and X. Zhang, “Kernel nearest-neighbor algorithm,” Neural
Processing Letters, vol. 15, no. 2, pp. 147–156, 2002.

[27] M. Orozco-Alzate, P. Castro-Cabrera, M. Bicego, and J. Londoño-
Bonilla, “The DTW-based representation space for seismic pattern
classification,” Computers & Geosciences, vol. 85, pp. 86–95, 2015.

[28] C. Segalin, “A new soft biometric trait: Favorite images.” [Online].
Available: http://www.cristinasegalin.com

