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Abstract. Dataset collection for Sign Language Recognition (SLR) rep-
resents a challenging and crucial step in the development of modern auto-
matic SLR systems. Typical acquisition protocols do not follow specific
strategies, simply trying to gather equally represented classes. In this
paper we provide some empirical evidences that alternative, more clever,
strategies can be really beneficial, leading to a better performance of
classification systems. In particular, we investigate the exploitation of
ideas and tools of Active Class Selection (ACS), a peculiar Active Learn-
ing (AL) context specifically devoted to scenarios in which new data is
labelled at the same time it is generated. In particular, differently from
standard AL where a strategy asks for a specific label from an available
set of unlabelled data, ACS strategies define from which class it is more
convenient to acquire a new sample. In this paper, we show the benefi-
cial effect of these methods in the SLR scenario, where these concepts
have never been investigated. We studied both standard and novel ACS
approaches, with experiments based on a challenging dataset recently
collected for an ECCV challenge. We also preliminary investigate other
possible exploitations of ACS ideas, for example to select which would
be, for the classification system, the most beneficial signer.

Keywords: Active Class Selection · Sign Language Recognition ·
Active Learning

1 Introduction

Automatic Sign Language Recognition (SLR) represents a classic Pattern Recog-
nition problem, which interest has increased in recent years due to the latest
advances in deep learning models with flexible spatial-temporal representation
capacities [18]. SLR can be broadly categorized into Isolated (ISLR) and Contin-
uous (CSLR) sign language recognition. ISLR is the most extensively researched
scenario, and more annotated datasets are available for it due to the relatively
simple, but tedious, annotation protocols of a discrete and predefined set of
signs. On the other hand, CSLR is much more complex, and much fewer anno-
tated datasets exist. This is due to different challenges related to annotation:
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i) co-articulation between signs significantly increases the variability of the sign
realization with respect to isolated signs; ii) the speed is much higher, and iii)
there is an interplay of non-manual components such as torso, head, eyebrows,
eyes, mouth, lips, and even tongue [8].

Still, it is widely acknowledged that proper SLR systems require massive
amounts of data [18]. In typical scenarios, datasets are collected so that all pos-
sible class instances are equally represented, and performed by all the available
experts (the signers); however, in some contexts, this is not a doable strat-
egy, sometimes because of restrictions in the availability of signers, sometimes
because signs are simply gathered from real-world videos [2,22]. The definition
of a proper strategy to acquire data is therefore crucial, and deserves more atten-
tion than that which is typically devoted to it: actually, the standard solution is
to simply try to gather equally represented classes, labelled by all signers. How-
ever, it is highly possible that having a non-homogeneous distribution of classes
is more useful for the classifier, since it is quite normal that some signs have
more intrinsic or per-signer variability, and they are more complicated for the
classification. Moreover, also the number of samples which are assessed by each
signer should be carefully decided: for example, in the distributed Isolated Sign
Language Recognition (ISLR) acquisition system described in [23], the collabo-
ration of deaf individuals is voluntary, so it is crucial to minimize the number
of instances required per sign to prevent signers from becoming disinterested in
contributing their time.

Given all these observations, it seems evident that it would be very bene-
ficial to define a proper dataset construction strategy: and this aspect, never
considered in the SLR scenario, represents the main goal of this paper. In par-
ticular, here we investigate the usefulness of a particular class of Active Learning
strategies [20], called Active Class Selection (ACS – [15]), for the construction
of an SLR dataset. ACS represents a very specific Active Learning paradigm,
introduced for a very peculiar scenario, which goes beyond the classic Active
Learning assumption that getting objects is cheap, whereas getting labels is
not. Actually, in ACS the assumption is that labels are directly obtained when
getting data, since the experiments are designed given the labels. The exam-
ple, reported in [15], is odour classification with an electronic nose. In a typical
setup, the odorant is let to flow over the array of sensors, from which the signal is
recorded. In this scenario, the label is decided in advance (the odorant), and the
recording is acquired together with the label. Therefore, differently from stan-
dard AL, where we have at disposal a set of unlabelled data, and the AL strategy
asks for a specific label, ACS strategies aim at selecting the best “class” from
which we should get a sample, without having unlabelled data. ACS strategies
have not been largely studied, due to their very specific applicability: examples
can be found in the already cited odour classification [15,19], Brain-Computer
Interfaces [17,24,25], geology [14] and robotics [6]. Also, from a theoretical and
methodological point of view, Active Class Selection has not been largely inves-
tigated, with an increasing interest only in recent years, with the work of Kottke
and colleagues [13], and, especially, with the very recent theoretical works of
Bunse and colleagues [4,5].
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In this paper, we investigate for the first time the usefulness of ACS tech-
niques in the SLR context: in particular, we show that ACS strategies can be
very beneficial in this context, and can improve the classic option of simply get-
ting equally numbered classes. We tested different ACS options, also proposing
a novel computationally cheaper version based on Random Forests. We designed
a pipeline to test all strategies, evaluating them with a real-world dataset [22], in
which classification is based on a pipeline defined with Graph Convolutional Net-
works [21], showing that ACS strategies can be very useful in the SLR context.
We also preliminary study the possible exploitation of the ACS ideas and strate-
gies to face another aspect: the selection of the signers. Signers are very different,
can be true deaf people or sign-language interpreters. Differences are large, and
selecting the “best” signer for a given sample can be possibly very important.
Results, in this case, are mixed, and further investigations are needed.

2 Sign Language Recognition

2.1 Dataset Creation for SLR

The acquisition of 3D spatial-temporal information from sign-language gestures
has traditionally involved a multitude of devices such as motion-capturing sys-
tems [12], depth-based sensors [1], ultrasound-based sensors [7], and even wear-
able sensors [26]. Thus, the collection of samples required lab facilities and a
slow and costly process of recording deaf signers one by one [10]. However, recent
research has shown a trend towards the utilization of only RGB inputs, with-
out any supplementary capturing device. With the emergence of Deep Learn-
ing methods, accurate depth estimation can be achieved through learned body
models [11], so data acquisition with cumbersome devices can be avoided. Raw
RGB-based approaches typically employ Convolutional Neural Network (CNN)-
based backbones for spatial feature extraction and Recurrent Neural Network
(RNN) for temporal encoding or a spatio-temporal feature extractor (3DCNN)
commonly used in Human Action Recognition (HAR) tasks. Current research
suggests that spatio-temporal graph convolutional networks (ST-GCN) [27] is
the state-of-the-art approach for this purpose.

The class samples used for this research on ACS are extracted from the
LSE_eSaude_UVIGO dataset used for the 2022 Sign Spotting Challenge at
ECCV’22 [22]. Each sign instance annotated in the sign language dataset con-
tains a variable number of frames. The duration of the co-articulated signs starts
from 120 ms (3 frames) up to 2 sec (50 frames), with a mean duration of 520 ms
(13 frames). We will provide more specific information in the experimental part.

2.2 A DL Pipeline for SLR

The ACS scheme can be seen as a procedure that defines from which class the
next object has to come. In our study, we aim at assessing the potential classi-
fication improvements due to such careful selection of classes: in the following,
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we describe the Deep Learning pipeline which we used as basis for computing
classification accuracy. This pipeline, summarized in Fig. 1, represents the first
part of the inference scheme provided as the baseline of the cited Challenge, and
it is explained in more details in Sect. 3.3 of [22]. The pipeline takes a sliding
temporal window of 400 ms containing the whole sign instance (or a part of
it) and outputs an embedding vector with spatial-temporal information. The
embedding vector is collected at the output of an ST-GCN network and just
before the softmax layer; each annotated sign instance is then represented with
a variable number of embedding vectors (of dimension 60) that span from 400
ms to 2 sec of spatial-temporal sign information. More formally, each sign x in
the dataset X is a collection of 60-dimensional vectors (the number of vectors

Fig. 1. Pipeline to process an RGB sign instance and convert it to a sequence of
embedding spatial-temporal vectors.
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in x depends on the length of the sign x), i.e.

xk = [x1
k, x

2
k, · · · , xl

k], xi
k ∈ �60

We call each vector xj
k as frame, even if it derives from the analysis of a

subsequence of 400 msec of the original video, as explained above. To perform
classification, instead of using the procedure described for the Challenge base-
line [22] (which involves a second computationally demanding ST-GCN), we
investigate a simpler approach based on a Multiple Instance Learning scheme,
a recent learning paradigm [9] which extends classical supervised learning. In
this paradigm, each object is represented by an unordered set of feature vectors,
called instances. This set of instances, called a bag, has a unique label. By con-
sidering the frames inside a sign as the instances, and the sign as a bag, we can
apply this learning paradigm, whose usefulness has been assessed in many dif-
ferent fields, but not (yet) in the sign language recognition scenario. Of course,
we are losing the order in which the different frames appear, but, in many appli-
cations, this restriction still permits us to have excellent performances [16]. In
particular, here we used simple bag-based approaches, methods which summa-
rize each bag with a single feature vector: more in detail we used the Max pool
strategy: in this scheme, the sign x = [x1, x2, · · · , xl] is summarized with a single
vector z, in which each entry z(h) is just the max over all the values of the entry
h of the vectors x1, x2, · · · , xl:

z = [z(1), z(2), · · · z(60)]

where
z(h) = max

d=1,...,l
xd(h)

Given this representation, we used as classifier the Random Forest Classifier [3],
with 100 trees.

3 The Proposed Approach

3.1 Active Class Selection

As described above, the ACS scheme can be seen as a procedure that defines from
which class the next object has to come. Here we adopt the formulation used
in [15], which defined a batch-based iterative procedure to be used to define
a sequence of training sets Xtr

0 ,Xtr
1 , · · · ,Xtr

i , · · · of increasing size N0, N0 +
N,N0 + 2N · · · , in which, given the whole set of possible examples X and a
starting training set Xtr

0 :

– each Xtr
i is a subset of X (Xtr

i ⊂ X), |Xtr
0 | = N0, |Xtr

i | = N0 + iN , where
| · | denotes the cardinality of a set.

– Xtr
i includes Xtr

i−1 (Xtr
i−1 ⊂ Xtr

i ). In other words, each dataset Xtr
i is obtained

by adding to Xtr
i−1 N elements sampled from X \ Xtr

i−1.
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The Active Class Selection (ACS) strategy defines how to get Xtr
i from

Xtr
i−1, i.e. defines how to sample N new objects. In particular, every ACS strategy

defines the proportion of classes at time i, i.e. which classes deserve more objects
and which less. This is typically formalized as a multinomial pi = [pi1, p

i
2, · · · piC ],

where C is the number of classes and
∑

c p
i
c = 1. To define this multinomial pi

we can use all the samples in Xtr
i−1; the new objects are sampled from X \Xtr

i−1

according to pi: in particular, if we have to sample N objects, for each of them
we select a class according to pi, taking one random object from that class.

3.2 The ACS Strategies

In the paper we implemented different strategies, some already presented in [15]
and some others adapted for the specific context.

Baseline-Random: this represents the baseline and the usual way of creating
the dataset, where all classes are equiprobable (i.e. we try to have all classes
with the same number of signs). In this case pi = [1/C, 1/C, · · · 1/C].

Baseline-Natural: in this case, pi reflects the true distribution of the classes of
the problem, which is typically unknown. In our application, however, the signs
are extracted from real life video sequences, thus we can estimate it by checking
the composition of the whole dataset X.

ACS-Inverse: in this case, each pic is defined as inversely proportional to the
accuracy of the classifier on the class c. The idea is that if a class is poorly
classified, then we need more samples for that class. We compute the accuracy
of the classifier described in previous section on each of the classes of the set
Xtr

i−1, using a 5-fold cross validation protocol.

ACS-AccImprovement: this is the Accuracy improvement method proposed
in [15], in which the idea is to give less importance to classes for which there was
not a significant improvement in accuracy in the previous iteration. The idea is
that we do not need objects for classes which did not benefit from additional
samples in the previous iteration.

ACS-Redistricting: this is the Redistricting method proposed in [15], in which
the idea is to ask more sample for classes which are more “unstable”, i.e. for which
there has been a large change in label assignments in the previous iteration.

ACS-RF-impurity. This represents a novel ACS strategy which we propose
here, in order to have a computationally simpler approach with respect to ACS-
Inverse. The main idea is that we can learn the proportions pi by observing the
posterior probabilities of a Random Forest, exploiting the usual out-of-bag mech-
anism. In this way we are not required to perform the whole classification task (as
in the ACS-Inverse), but we can extract pi from a single trained RF. In particular:

– we train a single RF on the whole dataset;
– each object in the out-of-bag sample (i.e. the objects not used for training

a tree) is let fall down each tree and classified by assigning it to the class
most probable in the leaf where it arrives. The probability of each class, at
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leaf level, is determined during training, and is basically proportional to the
number of training objects of each class falling in such leaf. The posterior of
the object x, with respect to class k, is denoted as Prob(k|x).

– the object of class c would contribute to the uncertainty of class c with the
factor

U(x) = 1 −
∑

k �=c

Prob(k|x) (1)

– the total uncertainty of class c is obtained by averaging U(x) over the objects
of class c;

– pi is proportional to uncertainty: the more uncertain a class, the larger the
number of objects which are required.

4 Experimental Evaluation

In our experiments, we used part of the dataset LSE_eSaude_UVIGO from
the 2022 Sign Spotting Challenge at ECCV’22 [22]. This dataset has 100 signs
located within 10 h of Spanish sign language videos. The challenge had two dif-
ferent Tracks, and we focus here on the Track1. The number of instances per sign
is largely not uniform, so we selected a subset of signs with at least 30 samples.
We create two different versions, each one including 28 different classes: in the
first (ACSDataset1), for each class we extract 30 random samples, resulting in
840 samples. This represents a dataset with equally represented classes. In the
second, (ACSDataset2), for each class we kept all samples, resulting in a total
of 1639 samples. The smallest class (“EPOCA”) contains 30 samples, the largest
(“ENFERMO”) 176.

To assess the usefulness of the ACS methods we used the protocol proposed
in [15], which, starting from a given dataset X, simulates an ACS scenario. In
particular, we split the dataset X in two random parts: Xtr, used for training
and Xval, used for validation. The goal is to compute the classification accuracy
on Xval of the classifier described in the previous section, trained using training
sets of increasing size Xtr

0 ,Xtr
1 , · · · ,Xtr

i , · · · defined in Sect. 3. By plotting the
accuracy obtained for the different training sets, we have the ACS curve. More
precisely, in our experiments we perform a random 50%-50% splitting of the
dataset X – the random split is so that the class proportions in X are maintained
in Xtr and Xval. The initial set Xtr

0 contains 100 elements uniformly sampled
from Xtr, whereas at every iteration we added 50 samples. For each of them,
i) we select a class, according to the pi given by the ACS strategy, and ii) we
take one random object from that class. If in the dataset the selected class does
not have any further object, we select another random class from those classes
which still have objects (this is the same scheme adopted in [15] and subsequent
papers). Due to this, the last part of the ACS curve is the less representative. In
order to avoid random fluctuations, the whole procedure is repeated 100 times,
and results are averaged.
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Fig. 2. Active Class Selection results on the two datasets: (a) comparison between
different ACS strategies; (b) comparison between the RF-impurity ACS strategy and
conventional approaches.

4.1 Results

The results are shown in Fig. 2. In particular, we performed two analyses: in
the former, reported in part (a) of the figure, we compare the 4 different ACS
strategies, for the two datasets. From the plot it seems evident that the ACS-
Inverse and the ACS-RF-impurity represent the best option, for both datasets1.
It is important to note that ACS-RF-impurity represents a computationally
cheaper version, with respect to the ACS-Inverse one, reaching a comparable
level of accuracies. In order to get an idea of this equivalence, we performed
a statistical analysis: in particular, for each training set size, we made a t-test
on the 100 repetitions of the two methods, checking if the two populations are
different in a statistically significant way (threshold 0.05): for all sizes of training
set the two methods are equivalent, with one exception: training set size equal to
450 for Dataset 2. This confirms that the lighter ACS-RF-impurity represents a
viable alternative to the ACS-Inverse scheme. In the second part of the plot (part
(b)), we compare our proposed ACS strategy (ACS-RF-impurity) with the two
conventional alternatives of “Baseline-Random” and “Baseline-Natural”. Also in
this case we performed a statistical analysis: after a Bonferroni correction for
multiple tests, we observed that ACS-RF-impurity is better than the Baseline-
Random option with a statistical significance for all training set sizes, except
1 We are still trying to understand the strange behaviour of the ACS-AccImprovement

strategy, which at the very beginning decreases the performances.
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size 150, and than the Baseline-Natural option with a statistical significance for
all training set sizes except size 400. For dataset 2, ACS-RF-impurity is better
than the Baseline-Random option with a statistical significance for all training
set sizes except the first and the last 3, and better than the Baseline-Natural
option with a statistical significance for all training set sizes after the first three.
Please note that due to the protocol, the most significant part is the central one,
since at the end there is no choice, and at the very beginning they are all the
same. From these results it seems evident that a proper strategy for constructing
the dataset, as that suggested by ACS strategies, can be very beneficial for the
SLR scenario.

5 A Preliminary Investigation on Active Signer Selection

In the previous section, we provided some evidences that properly selecting the
class of novel samples can be beneficial for the classification system. Here we pro-
vide some preliminary experiments on a related aspect: can we expect improve-
ments by properly selecting the signer? Actually, signing styles show a large
inter-signer variation, even larger than speaking styles – e.g. Tables 5 and 6
of [22] show this effect on the F1-score of Track1 for all the classification sys-
tems compared. To investigate this aspect we devise a set of strategies, which
we call Active Signer Selection (ASS) strategies, which are very similar to ACS
ones, but do not select a class, but a signer. Even if we can also think to perform
selection of the signer and the class, here we investigate a simpler option: once
the signer is selected the class is then selected random from signs of that signer.
The strategies we investigated are:

Baseline-RandomSigner, Baseline-NaturalSigner: the baselines, in which
we select the signer randomly (Baseline-RandomSigner) or according to the nat-
ural proportions of signers (Baseline-NaturalSigner).

ASS-Inverse: inspired from the ACS-Inverse strategy, we give a higher prob-
ability to be extracted to the signer who is performing worst. To compute the
performance, we select in Xtr

i−1 all the signs scored by a given signer, computing
how good is the classifier on such dataset. We also implemented another version,
which we called ASS-Inverse(AllSigners), in which we created a single clas-
sifier, dividing then the errors signer by signer. This seems to be more adequate
when Xtr

i−1 is small.

ASS-RF-Impurity: similar to ACS-RF-Impurtity, but now Random Forest
uncertainties are computed and aggregated signer by signer. Also in this case we
tested another version, called ASS-RF-Impurity(AllSigners), which imple-
ments the same modification discussed for ASS-Inverse(AllSigners).
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5.1 ASS Results

To test the strategies, we extracted again signs from the dataset LSE_eSaude_
UVIGO from the 2022 Sign Spotting Challenge at ECCV’22 [22]. In particular,
to get reasonable results, we extracted two datasets with two and three signers,
respectively, who covered a reasonable number of signs for each class: ASS-
Dataset1, with three signers, 10 classes, and at least 9 samples per signer for
each class (652 signs in total), and ASSDataset2, with two signers, 16 classes,
and at least 8 samples per signer for each class (652 signs in total). The protocol
is identical to that employed for ACS experiments: results are shown in Fig. 3,
following the same formatting of Fig. 2: in part (a) we reported the compari-
son between the different ASS methods, for the two datasets. It seems that the
four strategies are almost equivalent: this is confirmed by the statistical tests,
from which it holds that, on dataset 1, the different variants are all equivalent
according to a t-test followed by a Bonferroni correction; the same holds for
dataset 2, except for ASS-RF-Impurity(Allsigners) which is better than alterna-
tives in the central range. In part (b) we reported the comparison between ASS-
RF-Impurity(Allsigners) and the standard baselines Baseline-RandomSigner and
Baseline-NaturalSigner. In this case the advantage is less evident, with the ASS
strategy not permitting to improve conventional strategies: the only statistically
significant improvement is in the central part of the plot (250 and 200 objects
in the training set for dataset 1 and 2, respectively). Probably, a strategy based
on class information is not enough, and we should derive methods which more
explicitly exploit signer information – this being the object of current research.

Fig. 3. Active Signer Selection results on the two datasets: (a) comparison between
the different ACS strategies; (b) comparison between the best ASS strategy and con-
ventional methods.
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6 Conclusions

In this paper we investigated the usefulness, in the Sign Language Recognition
scenario, of ideas and tools of Active Class Selection for the construction of a
dataset. We investigated both standard and novel ACS approaches, with exper-
iments on a recent, challenging dataset. Results are promising, showing that a
proper dataset construction strategy can be very beneficial for the accuracy of
automatic SLR systems. Moreover, we also preliminary investigate other possible
exploitations of ACS ideas in this scenario, for example to select which would
be, for the classification system, the most beneficial signer.
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