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Abstract. Originally introduced in the context of supervised classifi-
cation, ensembles of Extremely Randomized Trees (ERT) have shown to
provide surprisingly effective models also in unsupervised settings, e.g.,
for anomaly detection (via Isolation Forests) and for distance computa-
tion. In this paper, we focus on this latter application of ERT, namely
in the context of Random Forest (RF) distance computation. We aim
at narrowing the gap between the established empirical evidence of the
good behaviour of ERT and the still limited theoretical understanding
of their (somehow) surprisingly good performance when compared to
more involved methodologies. Our main contribution is the following: we
assume the existence of a proper representation on a given domain, i.e.,
a vectorial representation of the objects which satisfies the Compactness
Hypothesis formulated by Arkadev and Braverman in 1967. Under such
a hypothesis, given the “true” distance between two objects, we show
how to derive a bound on the approximation guaranteed by two main
RF-distances obtained by employing ensembles of ERTs, with respect to
such “true” distance. In other words, we show that there exists a constant
c such that if two objects are ε-close in the true distance, then with high
probability they are (c · ε)-close in the RF-distances computed with ERT
forests.

Keywords: Random Forest-distances · Extremely Randomized Trees ·
Compactness hyphotesis

1 Introduction

Random Forests (RF) [7,10] are ensembles of decision trees [21], successfully
applied in Pattern Recognition and Machine Learning as models for regression
and classification, and more recently, for other tasks such as clustering or outlier
detection [17,18,23]. Another exploitation of Random Forest, less investigated
than previous ones, is for distance computation: starting from the seminal work
of Breiman [7], it has been shown that powerful data-dependent distances can
be extracted from RFs: the main idea is that it is possible to assess the similarity
between two objects by looking at the way they answer to the tests of the different
trees. In the basic version of [7,23], the similarity is proportional to the number
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of times, over the total number of trees of the forest, the two objects reach the
same leaf – thus answering in the same way to all questions in the path. Many
different extensions have been proposed, exploiting different aspects like tests in
the paths [32], probability masses [2,29] or other concepts [6].

Typically, the RF-distance is extracted in two steps: i) a forest is learned from
the available data and ii) the distance is defined given the trained forest. The solu-
tion of the first step typically depends on the task: the forest can be derived in a
supervised way (i.e. using the labels, as in supervised RF-distances of [7,23]), or
in an unsupervised way. In this last case, different context specific solutions can
be adopted (e.g. [23] or [5] for clustering), but a widely applied option is to use
ExtremelyRandomizedTrees (ERT) [16].AnERT is a classic decision tree asCART
[8], i.e. a binary tree in which questions in each node are defined with thresholds
on a single feature. The difference with respect to CART is the way in which the
tree is trained: instead of looking for “optimized” questions, the ERT is built in a
completely random way: at each node, the question is defined by choosing a ran-
dom feature and a random threshold inside the domain of that feature. These trees
have shown to be surprisingly good for classification [16], but also for unsupervised
domains, like anomaly detection [17,18] or clustering [5,20,24].

In the context of RF-distance computation, ERT have been largely and suc-
cessfully employed, for example in [2–5,27,29]. Training forests for RF-distance
computation with ERT is attractive for many different reasons: i) it is an unsu-
pervised, simple and efficient way to derive a forest: distances based on these
forests have shown to outperform many other distances, also in semi-supervised
settings [31]; ii) in the clustering case, authors of [5] have shown that this option
is competitive with alternative more sophisticated strategies on datasets of mod-
erate size, and better than all alternatives on datasets of larger size; iii) in the
classification case, it has been shown in [28] that, when used with Support Vec-
tor Machines, distances computed from ERT are significantly better than RF-
distances computed from supervisedly trained RF [9,11], probably because of a
reduced risk of overtraining.

From a theoretical point of view, only few studies characterize the good perfor-
mances of RF-distances. For example, [9] shows how to derive a properly defined
kernel from the RF-distance: such starting work has been further extended and
integrated in [11,22]. In these studies, the RF-distances were all based on super-
visedly trained Random Forests. More in relation to ERT-based RF-distances,
Ting and colleagues showed in recent papers such as [25,26,28] some theoretical
properties of Isolation Kernels (kernels extracted from Isolation Forests, i.e. ERT-
ensembles): for example it has been theoretically shown that the Isolation Kernel
assigns a higher similarity to two points being in a sparse region than to two points
of the same inter-point distance in a dense region, which is the main motivation
behind the derivation of these data-dependent measures.

In this paper we make one step forward along this direction, proposing a
novel theoretical characterization of RF-distances built from forests of ERT,
aimed at providing evidences of the motivation behind the success of such RF
distances in characterizing the distance between objects. In particular, in the
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paper we theoretically show that under some assumptions, if two objects x and
y have a small “true distance”, then also their RF-distance, built starting from
a RF defined with ERT, is small. We provide such theoretical characterization
for the original RF-distance introduced by Breiman [7,23] and for the recent
RatioRF distance [6]. To show that, we assume that there is a representation
which satisfies the “Compactness Hypothesis” of Arkadev and colleagues [1];
then, we derive a bound on the RF-distance, computed with ERT-forests based
on such representation, with respect to the true distance. We also provide some
simulations to understand the different aspects of the bounds, also suggesting a
procedure to derive the minimum number of trees of the forest needed to get a
given probabilistic guarantee.

The remainder of the paper is organized as follows: in Sect. 2 we provide the
basic notation, whereas we present our main results in Sect. 3. We show some
numerical simulations in Sect. 4, and we discuss our findings and conclude the
paper in Sect. 5.

2 Background

In this section, we introduce the basic concepts needed to understand our main
results. In the more general formulation [8], given a vectorial representation of d
features, a decision tree t is a complete binary tree in which each internal node j is
associated to a test θj = (νj , fj), where νj is a threshold on a feature fj ; the two
edges which link the node to the children represent the two possible results of the
binary test θj = (νj , fj): an object x = [x1, .., xd] takes the left branch if xfj

< νj ,
the right one otherwise. Typically, decision trees are learned starting from a
training set X, used to determine, at each node j, the optimal test θj = (νj , fj).
Extremely Randomized Trees [16] are decision trees characterized by a high
degree of randomness: in their extreme version, there is no optimization, and
the tests θj = (νj , fj) are defined completely at random. More in detail, given
a training set X, the training follows a recursive procedure: in a given node,
i) a feature fj is randomly chosen among the d features, ii) the threshold νj is
uniformly sampled from the domain of the objects of X arrived at that node,
and iii) the objects are propagated to the left or the right node according to the
test. This recursive procedure is repeated until a node contains a single object
or a maximum depth is reached. The ERT-Random Forest is then obtained
following the standard procedure [7]: M different ERT are built starting from
random subsamples of the problem training set. ERTs have been shown to be
successful in different contexts, such as classification [16], distance computation
[2–4,27,29], clustering [5,20,24] and anomaly detection - where ERTs are referred
to as Isolation Trees, leading to Isolation Forests [17,18], one of the most powerful
anomaly detection techniques ever introduced according to [12,15].

2.1 RF-Distances

Breiman was the first to point out that it is possible to derive highly descrip-
tive data-dependent measures of similarity from Random Forests [7]. After his



648 M. Bicego and F. Cicalese

seminal work, many other powerful RF-distances have been presented (see, e.g.,
[2–6,23,27,29,32]) and proven to be very effective in a range of different applica-
tions such as classification, clustering, outlier detections and others. In all these
measures, the main idea is that the relation between two objects x and y can be
quantified by i) making the two objects traverse all trees of the trained Forest,
and ii) comparing the answers they provide.

In this paper, we focus on two distances, briefly summarized in the following.
Given a tree t, and an object x, let us denote as �t(x) the leaf where the object
x falls after traversing the tree t. Let us also denote as Pt(x) the path of x from
the root to its leaf. The first distance, which we call Shi [7,23], represents the
RF distance originally introduced by Breiman [7] and then exploited by Shi and
colleagues for Random Forest Clustering [23]. The distance is firstly defined at
the tree level by postulating the similarity between two objects x and y as 1 if
the paths Pt(x) and Pt(y) are identical (i.e. if the two objects end in the same
leaf of the tree), 0 otherwise. We have:

Shit(x, y) =

{
1 if�t(x) = �t(y)
0 if�t(x) �= �t(y)

(1)

Given the similarity, the distance based on a forest of M trees is then defined
as1:

dShi(x, y) = 1 − 1
M

∑
t

Shit(x, y) (2)

The second distance is the recently introduced RatioRF measure [6], a RF-
distance defined on a set-based interpretation of the Tversky definition of similar-
ity [30]. For simplicity, let us introduce here only the basic mechanism, referring
to [6] the readers interested in the contextualization into the Tversky theory.
Basically, within the RatioRF measure, two objects are compared on the basis
of their answers to all the tests contained in the two paths Pt(x) and Pt(y) –
these being the sole tests needed to characterize x and y. More in detail, let us
call Sxy

t the set containing all tests in the two paths, i.e. Sxy
t = Sx

t ∪ Sy
t , where

Sx
t is the set of tests {θroot, · · · , θ�t(x)} in the path Pt(x). Let us denote as Axy

t

the set of tests in Sxy
t for which x and y provide the same answer. At tree level,

the RatioRF similarity between x and y is defined by:

RRFt(x, y) =
|Axy

t |
|Sxy

t | (3)

where | · | denote the cardinality of a set. Given this similarity, the distance based
on a forest of M trees is then defined as2:

dRRF (x, y) = 1 − 1
M

∑
t

RRFt(x, y) (4)

1 Please note that to ease the computation this formulation is the squared version of
the original formulation of the distance, as given in [23].

2 Also in this case, to simplify the computation, we remove the squared root from the
original definition of the distance given in [6].
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3 Main Result

We want to show that if two objects x and y have a small true distance, then
their RF-distance, built starting from a RF defined with ERT, is also small.
More precisely, if we denote by d∗(x, y) the true distance between x and y and
by dR(x, y) the distance obtained with a Random Forest R built with Extremely
Randomized Trees, e.g., as in (2) and in (4), then our goal is to show that

d∗(x, y) ≤ ε ⇒ Pr
(
dR(x, y) ≥ (1 + δε)ε

) ≤ P (5)

where ε, δ, and P are small numbers, i.e., with high probability the distance
computed via the ERT random forest is a good approximation of the original
distance.

3.1 Step 1: The Representation

We start our derivation by assuming that there exists a proper representation
for our problem. To instantiate the concept of proper representation, we resort
to the “Compactness Hypothesis”, formulated by Arkadev and colleagues in 1967
[1], and then developed by Duin and Pekalska in [13]. Within such hypothesis, a
representation is proper if two objects which are near in the real world are also
near in the representation space. Arkadev and colleagues, together with Duin
and Pekalska, showed that generalization is not possible if this hypothesis is not
fulfilled. Please note that the definition only implies that similar objects have
similar representations, and not that dissimilar objects have dissimilar represen-
tation. If this last is also true, then they refer to true representations, for which
even a simple boundary-based classifier can permit zero-error classification. The
principle is defined in a vague way (simply stating that near objects should have
near representations), and can be formalized in different ways, depending on the
goal: for example, Duin in [14] defined a measure to quantify the compactness
of a given representation in case of nearest neighbour classification.

Here we provide the following formalization: let us assume that we have a
representation based on a set of features F , i.e. every object x of our problem
is encoded with an |F |-dimensional vector rep(x) = [x1, · · · , x|F |] ∈ [0, 1]|F |.
We assume, for the sake of the presentation, that the components of this vec-
tor are normalized to values in [0, 1]. Now, we formalize the property, for the
representation, to be proper, i.e. to satisfy the “Compactness Hypothesis”: if
two objects x and y of our problem have a low distance, their representation
rep(x) = [x1, · · · , x|F |] and rep(y) = [y1, · · · , y|F |] should be close. More pre-
cisely, we work with the following parameterized and more quantitative notion
of a proper representation.

Definition 1. Fix numbers θ, ε ∈ [0, 1]. The representation z �→ rep(z) =
[z1, · · · , z|F |] is (θ, ε)-proper with respect to a (true) distance d∗ if the following
condition holds:

∀x, y s.t. d∗(x, y) ≤ ε ∃F̃ ⊂ F s.t.
{ |F̃ | ≥ (1 − θ)|F |

∀f ∈ F̃ , |xf − yf | ≤ ε.
(6)
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We say that the representation is θ-proper, if it satisfies (6) for all ε > 0. Finally,
we say that the representation is simply proper if it is θ-proper for some θ < 0.1.

3.2 Step 2: The Bounds

We can now show our probabilistic bounds on the approximation guarantee
achievable by a ERT-based RF-distance computed over a proper representation.
We assume that the forest is built based on a (θ, ε)-proper representation, over
a set F of features with values in [0, 1]. We let M denote the number of trees
in the forest, and we assume that each tree has height h. For the sake of the
analysis it is easier to think that in each tree, each leaf is at depth h, although
all the arguments remain valid under the hypothesis that h is an upper bound
on the maximum depth of a leaf.

Theorem 1 (Shi distance). Given two objects x and y, whose true distance
is d∗(x, y) ≤ ε and assuming an (θ, ε)-proper representation rep(z), according
to def. 1, let dR(x, y) be the RF-distance computed with Eq. (2) on the repre-
sentation rep(x), rep(y), starting from a forest of M ERT trees. Then, for all
δ ∈ (0, 1] and δε ≥ 0 such that

(1 + δε)ε ≥ (1 + δ)
[
1 − ((1 − θ)(1 − ε))h

]
(7)

it holds that

Pr
(
dR(x, y) ≥ (1 + δε)ε

)
< exp

⎛
⎝−Mδ2

[
1 − ((1 − θ)(1 − ε))h

]
3

⎞
⎠ (8)

where exp(x) indicates ex. The theorem says that under the condition stated in
Eq. (7), the probability that the RF-distance is far away from the true distance
– according to δε – can be made as small as possible by increasing the number
of the trees M of the forest.

Theorem 2 (RatioRF distance). Given two objects x and y, which true
distance is d∗(x, y) ≤ ε and assuming an (θ, ε)-proper representation rep(z),
according to def. 1, let dR(x, y) be the RF-distance computed with Eq. (4) on the
representation rep(x), rep(y), starting from a forest of M ERT trees. Then, for
all δ ∈ (0, 1] and δε ≥ 0 such that

(1 + δε)ε ≥ (1 + δ) [1 − ((1 − θ)(1 − ε))] (9)

it holds that

Pr(dRR(x, y) ≥ 2(1 + δε)ε) ≤ 2 exp
(−Mhδ2 [1 − (1 − θ)(1 − ε)]

3

)
(10)
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3.3 The Proofs

Both proofs are based on the Chernoff bound (see, e.g., [19]). Among the several
variants of the bound available, we use the following version: let X1,X2, . . . Xn

be independent Poisson trials with Pr[Xi = 1] = pi. Let X be the sum of the Xi,
and let μ be an upper bound on E[X], i.e., E[X] ≤ μ. Then, for any δ ∈ (0, 1]
we have that:

Pr(X > (1 + δ)μ) < exp
(−μδ2

3

)
(11)

Let us derive the proof for Theorem 1.

Proof (Theorem 1). Given x and y, let us define the random variable Xt ∈ {0, 1}
as:

Xt =
{
1 if x and y fall in different leaves in the tree t
0 otherwise (12)

Given this definition, the RF-distance defined in Eq. (2) can be written as:

dR(x, y) =
1
M

M∑
t=1

Xt (13)

Assume that a proper representation is given that uses the set of features
F . The probability that Xt = 0 is the probability that the two objects fall
in the same leaf, i.e. that they follow the same root-to-leaf path in the tree t,
answering in the same way to all the questions along such a path. Let us consider
the root. The probability that, in the root, two objects take the same branch is
1 minus the probability that they are separated, i.e. that the chosen threshold is
exactly between their value on the feature tested in the root. Considering that
the threshold is randomly chosen in the domain, if the feature f used in the
test belongs to F̃ , then |xf − yf | ≤ ε, thus the probability that this happens is
≥ 1 − ε. Considering that there are at least (1 − θ)|F | such features, then the
probability that x and y answer in the same way is ≥ (1 − θ)(1 − ε).

Now, let us consider the second node of the path. The reasoning is exactly
the same, but for the fact that the domain of the feature tested at this node
might be different from [0, 1]. Actually, if the feature used for the split is the
same as the feature used in the root, then the domain is reduced: if τ is the
threshold used in the root, the domain is [0, τ ] or [τ, 1], depending on whether x
and y took the left or the right path. However, if the feature in the second node
of the path is different from the one used in the root, then the probability that
x and y answer in the same way is again ≥ (1 − θ)(1 − ε). For the simplicity in
the treatment let us for now assume that, on every root-to-leaf path, every split
is done on a distinct feature, so that we can consider the threshold is always
randomly chosen over the whole domain [0, 1]. We remark that this is not such
a strong assumption since i) ERT trees used for RF-distances are very short —
typically each tree is built with 128 or 256 objects, and the max depth is set to
log(n), i.e., 7 or 8; ii) the contexts in which ERT-based RF-distances are more
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suitable are those characterized by high dimensional spaces, which implies that
over a short path the probability of randomly choosing twice the same feature is
very small. We will provide some arguments on the relaxation of this assumption
in Sect. 5.

Since the path followed by x, has length at most h, we have that

Pr(Xt = 0) ≥ [(1 − θ)(1 − ε)]h (14)

hence for the expected value E[Xt] we have that:

E[Xt] = 0 · Pr(Xt = 0) + 1 · Pr(Xt = 1) ≤ 1 − [(1 − θ)(1 − ε)]h (15)

First, let us rewrite the probability in the left part of Eq. (8) by using the
definition of the Shi distance provided in Eq. (13):

Pr
(
dR(x, y) ≥ (1 + δε)ε

)
= Pr

(
1

M

M∑
t=1

Xt ≥ (1 + δε)ε

)
= Pr

(
M∑

t=1

Xt ≥ M(1 + δε)ε

)

Let μ = M
[
1 − ((1 − θ)(1 − ε))h

]
. Then, using (15), the Expected value of the

variable X = X1 + X2 + . . . + XM satisfies the inequality

E[X] = E

[
M∑

t=1

Xt

]
=

M∑
t=1

E[Xt] ≤ M
[
1 − ((1 − θ)(1 − ε))h

]
= μ (16)

Now, from (9) it follows that M(1 + δε)ε ≥ (1 + δ)μ and by the Chernoff bound
above (see Eq. (11)), we have

Pr
(
dR(x, y) ≥ (1 + δε)ε

)
= Pr

(
M∑

t=1

Xt ≥ M(1 + δε)ε

)
≤ Pr

(
M∑

t=1

Xt ≥ (1 + δ)μ)

)

< exp

(−μδ2

3

)
= exp

⎛
⎝−Mδ2

[
1 − ((1 − θ)(1 − ε))h

]

3

⎞
⎠ ,

�
Similarly we can provide the proof of the Theorem 2

Proof (Theorem 2). Recall that we assume a Forest R with M ERT trees, built
on the feature set F of a proper representation, where each feature has domain
[0, 1]. Recall also that, given x and y, the RatioRF distance is computed by
considering the set Sxy

t of the tests on the two root-to-leaf paths followed by x
and y in the tree t. We start by defining the random variable Xi

t ∈ {0, 1}, for
each tree t = 1, . . . , M and each test i in the set Sxy

t , i.e., 1 ≤ i ≤ |Sxy
t |:

Xi
t =

{
1 if x and y give a different answer to the test i in the set Sxy

t

0 otherwise (17)
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Given this definition, the RF-distance can be reformulated as:

dRR(x, y) =
1
M

M∑
t=1

|Sxy
t |∑

i=1

Xi
t

|Sxy
t | (18)

Also in this case we can estimate the probability that Xi
t = 0. Under the

assumption—see the discussion above in the part about the Shi distance—that
all thresholds on the same root-to-leaf path are uniformly chosen in [0, 1], i.e.,
the features of the tests on the same root-to-leaf path are distinct, we have that
for each t and i,:

Pr(Xi
t = 0) ≥ (1 − θ)(1 − ε) (19)

hence,
E[Xi

t ] ≤ [1 − (1 − θ)(1 − ε)] (20)

We will now start with a reformulation of (18). Recall, from Sect. 2, that Sx
t

and Sy
t represent the set of tests on the root-to-leaf paths associated to x and

y, respectively. Notice that on each node ν of the common part, Sx
t ∩ Sy

t , of the
these two paths–apart from the node where they separate– we have that Xν

t = 0.
Then, from (18) it follows that

dRR(x, y) ≤ 1
M

M∑
t=1

|Sx
t |∑

i=1

Xi
t +

|Sy
t |∑

i=1

Xi
t

|Sxy
t | (21)

Let us define

dRR
x (y) =

1
M

M∑
t=1

∑|Sx
t |

i=1 Xi
t

|Sx
t | , dRR

y (x) =
1
M

M∑
t=1

∑|Sy
t |

i=1 Xi
t

|Sy
t | . (22)

Then, from (21) and (22) we have dRR(x, y) ≤ dRR
x (y) + dRR

y (x). Hence,

Pr(dRR(x, y) ≥ 2(1 + δε)ε) ≤ Pr(dRR
x (y) ≥ (1 + δε)ε) + Pr(dRR

y (x) ≥ (1 + δε)ε)
(23)

where the inequality follows by noticing that, for every a > 0 the event A =
{dRR(x, y) > 2a} implies at least one of the events: B = {dRR

x (y) > a}, or
C = {dRR

y (x) > a}. I.e., we are using

A ⊆ B ∪ C ⇒ Pr(A) ≤ PR(B ∪ C) ≤ Pr(B) + Pr(C)

Under the assumption made above that both paths of x and y are of fixed
length h, and that this length is the same for all trees, we can simplify the
Eq. (22) as

dRR
x (y) =

M∑
t=1

h∑
i=1

Xi
t

Mh
, dRR

y (x) =

M∑
t=1

h∑
i=1

Xi
t

Mh
(24)
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Using (20), we can define an upper bound μ on the expected value of the
sum in the enumerator of (24) as follows:

μ = Mh(1 − (1 − θ)(1 − ε)) ≥
M∑
i=1

h∑
i=1

E[Xi
t ].

From (9) it follows that Mh(1 + δε)ε ≥ (1 + δ)μ. Hence, by the Chernoff
bound, we have

Pr
(
dRR

x (y) ≥ (1 + δε)ε
)
= Pr

(
M∑

t=1

h∑
i=1

Xi
t ≥ Mh(1 + δε)ε

)

≤ Pr

(
M∑

t=1

h∑
i=1

Xi
t ≥ (1 + δ)μ)

)
< exp

(−μδ2

2 + δ

)
= exp

(−Mhδ2 [1 − (1 − θ)(1 − ε)]

3

)

Analogously, we also obtain

Pr
(
dRR

y (x) ≥ (1 + δε)ε
) ≤ exp

(−Mhδ2 [1 − (1 − θ)(1 − ε)]
3

)
(25)

Therefore, recalling (23) we have the desired result

Pr(dRR(x, y) ≥ 2(1 + δε)ε) ≤ 2 exp
(−Mhδ2 [1 − (1 − θ)(1 − ε)]

3

)
(26)

�

4 Understanding the Bounds

The two bounds say that the probability that the RF-based distance is sig-
nificantly larger than the true distance can be made as small as possible by
increasing the number of trees of the forest, as long as the conditions in Eq. (7)
and in Eq. (9) are satisfied. In this section we discuss the relationship between δε,
δ and the size M of the forest established by the bounds and the conditions. The
parameters ε and θ are given by the proper representation available. We let P ∗

be a desired upper bound on the probability in the right-hand side of Eqs. (8) and
(10), i.e., P ∗ is an upper bound on the probability that the RF-based distance
dR is not a good approximation of the true distance d∗.

4.1 The Number of Trees M

From Eqs. (8) and (10) we can compute the minimum number of trees—
henceforth denoted by Mmin—needed to guarantee the upper bound P ∗.

Shi Distance. Let μt =
[
1 − ((1 − θ)(1 − ε))h

]
. Then, the upper bound P ∗

is guaranteed by requiring exp
(−Mδ2μt

3

)
≤ P ∗ which implies M ≥ −3 lnP ∗

μtδ2
.
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The last expression is minimized by δ = 1, hence we have:

MSh
min =

−3 lnP ∗

μt
=

−3 lnP ∗

1 − ((1 − θ)(1 − ε))h
. (27)

RatioRF Distance. Analogously, we can compute the minimal number of
trees MRR

min, necessary for guaranteeing the upper bound P ∗ on the proba-
bility in the right side of Eq. (10), when the RatioRF distance is used. Let
μi

t = [1 − (1 − θ)(1 − ε)] be the upper bound we obtained on the expected value
of Xi

t as defined in Eq. (20). Proceeding as for the Shi distance, we get the

condition M ≥ −3 ln(0.5P ∗)
hμi

tδ
2

, from which (with δ = 1) we have

MRR
min =

−3 ln(0.5P ∗)
h [1 − (1 − θ)(1 − ε)]

(28)

For a better visualization of the relationship between MSh
min and MRR

min and the
parameter ε, in Fig. 1(a), we provide such plots, for increasing ε ∈ [0.05, 0.5],
assuming the other parameters in (27) and (28) fixed to θ = 0.01, P ∗ = 0.05,
and h = 8 which represents the expected height of the trees built on 256 samples
(see e.g. [2,6]). As empirically accepted, these plots show that small forests are
indeed sufficient. We can also observe that the curve for RatioRF is drastically
better, especially for larger ε.

Fig. 1. (a) MSh
min and MRR

min versus ε; (b); Approximation versus ε.

4.2 The Approximation δε

From the conditions in Eqs. (7) and (9) we estimate the minimum δε, which
constraints the best approximation guarantee one can probabilistically achieve
with the RF-distance.
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Shi Distance. From the condition (7) we have that δε is lower bounded as

δε ≥
(1 + δ)

[
1 − ((1 − θ)(1 − ε))h

]
ε

− 1, and its minimum value—denoted by

δSh
ε(min)— is achieved with δ �→ 0, that is

δε > δSh
ε(min) =

[
1 − ((1 − θ)(1 − ε))h

]
ε

− 1 (29)

RatioRF Distance. Analogously, for the best approximation guarantee achiev-
able in the case of the RatioRF distance, as given by the minimum value of δε

in condition (9), here denoted δRR
ε(min), we have:

δε > δRR
ε(min) =

[1 − (1 − θ)(1 − ε)]
ε

− 1 =
θ(1 − ε)

ε
(30)

On the basis of (29) and (30), in Fig. 1(b), we plot the (best possible) approxi-
mation (1+δSh

ε(min))ε computed with the Shi distance and 2(1+δRR
ε(min))ε computed

with the RatioRF distance as a function of the parameter ε taken as an estimate
of the true distance. Also in this case the remaining parameters are fixed to
θ = 0.01, P ∗ = 0.05 and h = 8.

4.3 Using the Bounds for Estimating the Size of the Forest

Let us conclude our treatment with some practical considerations on how, in
a given problem, the bounds can be used to compute the minimal number of
trees required to get the guarantee with a given probability P ∗ and a given
approximation parameter δε. The procedure is described in the following. Please
note that we repeat and summarize some of the formulas shown before, in order
to have a clear comparison between the two distances.

Step 1. Fix the required approximation on the distance δε. Important, the
conditions in Eqs. (29) and (30) should hold:

Shi: δε > δSh
ε(min) =

[
1 − ((1 − θ)(1 − ε))h

]
ε

− 1 (31)

RatioRF: δε > δRR
ε(min) =

θ(1 − ε)
ε

(32)

It is possible that for some choices of θ, ε, h the corresponding δε is too high.

Step 2. Compute the corresponding δ(max), i.e. the largest δ for which the
validity conditions in Eqs. (7) and (9) for the bounds hold. Please note that
we are looking for the maximum δ since this would permit to get the minimal
amount of trees

Shi: δSh
(max) =

(1 + δε)ε

1 − ((1 − θ)(1 − ε))h
− 1 (33)

RatioRF: δRR
(max) =

(1 + δε)ε
1 − (1 − θ)(1 − ε)

− 1 (34)
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Step 3. Compute the minimum number of trees for which the bound holds for
a given probability P ∗ and for the given approximation level δε, which is:

Shi: MSh
min =

−3 lnP ∗[
1 − ((1 − θ)(1 − ε))h

]
(δSh

(max)))
2

(35)

RatioRF: MRR
min =

−3 ln(0.5P ∗)
h [1 − (1 − θ)(1 − ε)] (δRR

(max))
2

(36)

In Fig. 2 we provide the number of required trees for different values of δε.
Also in this case let us keep fixed θ = 0.01 and P ∗ = 0.05, and let us vary ε in
the interval [0.05-0.5], with step 0.01, with h = 8. The behaviour is reported in
Fig. 2. Please note that we report only the values for RatioRF, since δε(min) for
Shi is always larger than the required approximation δε. This provides a further
theoretical confirmation of the superiority of the RatioRF measure with respect
to the Shi distance: for the latter measure, with the analysed configuration of
θ, P ∗, it is not possible to have a reasonably low approximation rate.

Fig. 2. Number of required trees, for a different approximation levels δε. A circle
denotes a value of ε for which the condition on δε was not satisfied (i.e. δε < δε(min))

5 Discussion and Final Remarks

In the paper we have shown that, given a proper representation, it is possible
to approximate the true distance between two objects with a ERT-based RF-
distance, an approximation which is guaranteed by choosing a sufficiently large
number of trees. This provides a theoretical confirmation of the widely assessed
empirical efficacy of such ERT-based RF distances. Moreover, we have also shown
that the approximation rate is drastically better for the RatioRF distance, thus
confirming the empirical results shown in [6].
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In the presentation of our result, we assumed that the tests on the same
root-to-leaf path are on distinct features, so that the thresholds are all uniformly
randomly sampled in [0, 1]. Let us now concentrate on the general case, i.e. we
can use many times the same feature. We will concentrate on the Shi distance,
similar reasoning can also be applied in the RatioRF case. Suppose that two
objects are at distance less than ε; suppose first that all tests are on the same
feature f , and that f ∈ F̃ . In this case, the probability that the two objects are
not split in the first i tests is ≥ max{0, 1 − (2i − 1)ε}.

If we now assume that, along a root to leaf path (of length h), feature f is
tested hf times, we have:

P (Xt = 0) ≥
hf∏
i=1

max
{
0,

[
1 − (2i − 1)ε

]}

Note that this probability is smaller than the probability defined in Eq. (14),
possibly becoming 0: this is reasonable, since if we continue to split on the same
feature f we continue to reduce the domain, which will be at a certain level so
small that x and y are split with probability 1.

If we have |F | features, each one used hf times in the path, then the proba-
bility in (14) can be written as

Pr(Xt = 0) ≥ (1 − θ)h
|F |∏
f=1

⎡
⎣ hf∏

i=1

max
{
0,

[
1 − (2i − 1)ε

]]⎤⎦ (37)

From this, we have that the expected value E[Xt] satisfies:

E[Xt] ≤ 1 −
⎛
⎝(1 − θ)h

|F |∏
f=1

⎡
⎣ hf∏

i=1

max
{
0,

[
1 − (2i − 1)ε

]]⎤⎦
⎞
⎠ (38)

which can now be used in the place of the one defined in Eq. (15) to complete
the proof also in this case.

Rather than re-deriving the resulting (much more involved) bound, we limit
ourselves to observe that the bound worsens with the decrease of the expected
value. On the other hand, this analysis provides additional interesting informa-
tion. The fact that, when features are expected to be reused several times on
the same root-to-leaf path induces a worst approximation guarantee of the RF-
distance with respect to the true distance provides a theoretical justification for
the empirical evidence that for most of the ERT-based RF-distances the good
results are obtained i) by using small trees – e.g. [6,25,26,28] and ii) on datasets
with a large number of features – e.g. [5].
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