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RatioRF: a novel measure for Random Forest
clustering based on the Tversky’s Ratio model
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Abstract—In this paper we propose RatioRF, a novel Random Forest-based similarity measure for clustering. We build upon

Tversky’s ratio model definition of similarity [1] and specialize it to the Random Forest case. We study some properties of the proposed

axiomatic similarity measure and present an extensive experimental clustering analysis involving different datasets and configurations.

Results confirm that RatioRF represents a good alternative to other similar measures for clustering recently studied in the literature.

Index Terms—Random Forests, clustering, similarity measure, Tversky model, decision trees

✦

1 INTRODUCTION

We start by introducing the two main ingredients of our
study: Random Forests (RF) and Tversky axiomatic model
of similarity.
A Random Forest (RF) [2], [3], [4] is a well known and
widely exploited tool for Pattern Recognition and Machine
Learning, in the class of ensemble methods [5], [6]. A RF
realizes an ensemble of decision trees [7]. Each decision
tree is a hierarchical partitioning of the object space, in
which each split is determined by a threshold on a single
feature. RFs achieve robustness by exploiting a randomiza-
tion mechanism in the learning of the different trees, which
are then aggregated to get the final model. In [2], Breiman
shows that this aggregation exhibits different interesting
theoretical properties: in particular, he derives an upper
bound on the generalization error, in terms of the strengths
of individual trees and their correlation. RFs have been ex-
tensively investigated for classification and regression, and
shown to compete well with most effective approaches such
as Support Vector Machines or Neural Networks. However,
in other pattern recognition scenarios, such as clustering,
RFs have received less attention, and their potential is far
from being completely understood.

The second ingredient of our study is Tversky ratio
model of similarity. Introduced in [1], this model is based
on a set of axioms that are aimed at capturing the way
humans choose levels of similarity1. Tversky assumes that
objects from some universe U are represented by features
from some space Φ. Precisely, Φ is assumed to be a “limited
set of features which are relevant to perform the task of
assessing pairwise similarity. Thus, the representation of an
object as a collection of features is viewed as a product of
a prior process of extraction and compilation.” To compute a
similarity, one should consider features that are in common
to the two objects as well as features that characterize
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1. On the basis of extensive experimental analysis, Tversky argues

that any similarity measure should satisfy such axioms.

one object but not the other. More formally, in [1], it is
argued that any similarity measure sTv(·, ·) that satisfies
the natural axioms, and is scaled to have value between 0
and 1, should have the following structural definition: given
objects x, y ∈ U, which are respectively represented by the
sets of features X and Y taken from the feature space Φ, the
similarity of x and y is given by

sTv(x, y) =
f(X ∩ Y )

f(X ∩ Y ) + αf(X − Y ) + βf(X − Y )
, (1)

with α, β ≥ 0 and f being a measure on the feature space.

Our aim is to exploit RF to perform—quoting [1]—“the
process of extraction and compilation” needed in the ratio
model, by selecting the “limited set of features which are
relevant to perform the task of assessing pairwise similarity”. In
this respect, we consider a decision tree as a tool that selects
the most significant features of the objects, i.e., those that
can best describe the distinctive elements of the objects that
are classified. We use Random Forests’ ability to make such
a selection more robust.

In order to properly asses the novelty of our approach
let us start by commenting on previous uses of Tversky’s
model. There have been several re-elaborations of the ratio
model together with proposals about how to use them in
contexts where data are organized in tree structures [8],
[9], [10], [11], [12]. However, most of these studies either
explicitly assume that such a tree structure represents a
taxonomy [8], [9], or implicitly rely on tests over disjoint
paths of the tree to be distinct [12]. These assumptions are
not generally valid in the case of decision trees (hence of
RFs).

The main contribution of this paper is to derive and
assess a more principled implementation of Tversky simi-
larity, which is directly linked to the structure of a decision
tree. A decision tree can be interpreted as an algorithm that,
given a set of possible tests/features, characterizes each
object x by selecting (adaptively) a specific subset of the
tests/features (a root-to-leaf path of the tree). According
to Tversky’s model, when we compare two objects, we
should restrict to a minimal set of features that identify
the two objects, and quantify among these, the features that
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distinguish the two objects from those that they share. Our
implementation is to consider as set of features on which to
compare x and y, all and only the tests encountered in the
paths they follow in the tree. This contrasts to the approach
used by most of the existing similarity measures that refer
to Tversky’s axiomatization and, like ours, are also based on
decision trees. Such approaches basically identify features
with the vertices of the tree, disregarding the semantic of
such vertices, namely the actual test they represent. To be
more specific, they consider as features shared by object x
and y only the tests in the common prefix of their paths;
and as differentiating features all the other tests in the two
paths, ignoring that on many of these latter tests the two
objects might actually agree.

We will elaborate on the structural differences between
our approach and previous analogous definitions of ratio-
model-based similarities in Section 3.2. In particular, we
will formally compare to the information theoretic measure
of [8], another axiomatic definition of similarity, and to
the RF-based measures introduced in [12]. We then give
experimental evidences of the efficacy of our novel model by
employing it in several clustering scenarios. Our empirical
evaluation involves 15 datasets, 4 clustering methods and
different parametrizations of the forest, comparing RatioRF
with the RF-clustering measures introduced in [12], the
original one proposed in [13] and the two more recent RF-
based measures [14] and [15]: the obtained results largely
confirm the suitability of the proposed measure for RF-
based clustering.

The rest of the paper is organized as follows: Section
2 discusses closely related work; Section 3 presents the
proposed clustering measure; Section 4 contains the experi-
mental evaluation, and Section 5 concludes the paper.

2 RELATED WORK

The basic idea of exploiting RFs to extract a meaningful
similarity measure between objects—to be used in a classic
distance-based clustering algorithm—has been proposed in
[2], [13]: given a tree of the forest, we can consider two
objects as similar if they end up in the same leaf, since they
have answered in the same way to all tests in their path;
a straightforward and natural similarity measure is thus
represented by the number of times – over the whole set
of trees – that two objects end up in the same leaf. Given the
distance, in [13] the final clustering is then obtained using
the PAM (Partitioning Around Medoids) algorithm. Despite
its simplicity, this clustering approach has shown to be very
useful in many different applications [16], [17], [18], [19]. Re-
cently, [12] extended the approach of [2], [13] by improving
the definition of the RF-similarity: the idea is to consider
that objects which do not end up in the same leaf may be
similar as well, since two objects that separate after t tests
can be considered to be more similar than two objects that
split after t−1 tests. Therefore, authors proposed a similarity
which is proportional to the averaged length of the path that
the two objects have in common in their traversal down
to the leaves (in a second variant, the paths are weighted).
Given the distances, the clustering is then obtained using
spectral clustering. It is observed that this distance is based
on another axiomatic definition of similarity, given in [8],

which uses an information theoretic approach. In Section
3.2, we will discuss this approach and its relation with
our proposal. We will show that as an implementation of
the measure axiomatized in [8], the similarity proposed in
[12] is somehow too restrictive and a bit myopic, and does
not exploit all the information contained in the trees of a
Random Forest.

Our method can be also somehow related to recent
works on metric learning, not specifically designed for
general purpose clustering, such as [14], [15], [20], [21],
[22]. These methods, which exploit Random Forests in the
metric learning process, are based on different ideas and
approaches, often involving labels: in our experimental
evaluation we consider [14], being strictly related to the
weighted version of the RF-based distance proposed in [12],
and [15], which can be considered as an extension of [14].
In particular, in [14] the defined similarity measure depends
on the distribution of the data: the idea is that two objects
are more similar if they are in a sparse region than if they
are in a denser one. Based on this principle, the authors
of [14] proposed a mass-based dissimilarity measure which
exploits the probability mass of a region, computed using
Isolation Forests [23] by considering the number of points
falling in a particular node of the tree – this is analogous
to the weighted version of the distance in [12]. In [15],
authors introduce the m0 distance as an extension of the
mp distances [24], a class of distances which can be also
implemented with Random Forests: actually the distance in
[14] represents the Random Forest implementation of m1.

A line of research more loosely connected to our ap-
proach regards the use of decision trees and RFs (or RF-
inspired mechanisms) to directly perform clustering. For
early examples of clustering with decision trees, see, e.g.,
[25], [26], [27]. In [28] a clustering method is employed
to build dictionaries for a Bag of Words classification of
images; in particular, Extremely Randomized Trees [29] are
used to build clustering forests in which each leaf represents
a distinct visual word – in this sense, forests are interpreted
as partitioners of the space. This approach has been ex-
tended in [30] along different directions: among others, by
working directly on pixels (and not on visual descriptors),
by considering the whole tree as a hierarchy of clusters,
and by using the obtained forest also for classification. In
[31], Perbet and colleagues propose a two-step clustering
algorithm, in which they interpret the trees of the forest
as multiple partitions of the input space, to be merged
and refined using a graph-based algorithm. In [32], a K-
means-style clustering algorithm has been proposed, in
which every cluster is described using an Isolation Forest
[23], a particular type of Random Forests designed for one-
class classification. Finally, in [33], the authors introduce
the “Cluster forests” algorithm, which employs a RF-like
mechanism: the algorithm realizes an ensemble (similarly
to RF) of clusterings by finding projections on which good
local clusterings exist, aggregating these clusterings to get
the final result.

3 THE SIMILARITY MEASURE RATIORF

Let U be the ground set of objects. Elements of U will be also
referred to as points. A decision tree on U is a binary tree T
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where: (i) each internal node ν is associated to a binary test
θν ; (ii) the two edges connecting the node to its children are
associated with the two possible results—denoted Y for yes
and N for no—of performing test θν on an object from U .
We use r(T ) to denote the root of T . Let ν be a node of T
at level h+ 1 and θ1, b1, θ2, b2, . . . , θh, bh be the sequence of
nodes (tests) and edges (results), encountered on the unique
path from r(T ) to ν. Then, we associate to ν the set of objects
Sν = {x ∈ U | θi(x) = bi, i = 1, . . . , h}. In words, a node ν
is representative of (or it contains) all the objects that, when
tested according to the adaptive strategy represented by the
decision tree T, follow the path from the root to ν. For each
object x there is a single leaf containing it and we denote it
by ℓ(x).

For each object x ∈ U we let PT (x) be the set of pairs
(test, result) associated to x by the strategy/tree T

PT (x) = {(θ, bθx) | θ is a test on the path from the root

r(T ) to the leaf ℓ(x) and bθx = θ(x)}.

Let θ be a test and b ∈ {Y,N}. We say that x agrees with
(θ, b) if θ(x) = b. We say that objects x and y agree on test θ
if θ(x) = θ(y).

3.1 Tversky’s Ratio model with decision trees

Recall the definition of Tversky ratio model in (1). We want
to employ a decision tree T to select the set of features Φ
relevant for the assessment of similarity between pairs of
objects from the universe U. In particular, we define

Φ = {(θν , b) | ν is a node of T, b ∈ {Y,N}} (2)

as the set of possible outcomes of the tests used by the
decision tree.

For an object x we define its feature set X = PT (x) as
a set of test results on the path from r(T ) to the leaf ℓ(x)
associated to x by the decision tree. These are the features
from Φ that are most relevant for x, in the sense of being
sufficient to identify x.

In Tversky’s model, for comparing objects x and y, we
have to distinguish in their set of representing features,
those that account for more similarity (and will contribute to
the term f(X ∩ Y )) from those that account for more differ-
ence (and will contribute to the terms f(X−Y ), f(Y −X)).

The crucial point in our implementation of Tversky’s
model of similarity, where features are selected using a
decision tree, is recorded in the following postulates:

1) only features in PT (x) and PT (y) are relevant for
the comparison of objects x and y;

2) a feature (θ, b) ∈ PT (x) ∪ PT (y) is either an ele-
ment of either commonality or an element of dis-
crimination between x and y according to whether
θ(x) = θ(y) or θ(x) 6= θ(y).

For 1) we note that for each object x, the decision tree
identifies a set of tests and results that are sufficient to
define x and “what is not x”. This is the set of features
PT (x). In Tversky’s words, the pairs of tests and results
on PT (x) are the features that are ”selected and compiled”
for x. “Being x” means to agree on each (θ, b) ∈ PT (x);
conversely, disagreeing on some (θ, b) ∈ PT (x) means “not

to be x”. Therefore, features neither in PT (x) nor in PT (y)
should not be considered relevant to compare the pair of
objects x, y, since such features were not chosen as relevant
for (the definition of) either object. This is, e.g., the case of
a feature (θ, Y ) 6∈ X ∪ Y = PT (x) ∪ PT (y) and such that
θ(x) 6= θ(y). Even though on such a test θ the two objects
disagree, the test θ has not been selected by the decision tree
to represent either of the two objects: it was not chosen to
define what is not x (hence dissimilar from x) nor to define
what is not y (hence dissimilar from y).

For 2), note that a feature (θ, b) that is in PT (x) and not
in PT (y) is important to distinguish x from U \ {x} and it
is not necessary to distinguish y from U \ {y}. However,
feature (θ, b) should be accounted to assess the dissimilarity
between x and y only if, on the test it represents, the two
objects disagree. Indeed, when this happens, we have that
the result of this test provides a relevant feature of x, one of
those on the basis of which we decide what is not x, and in
particular this test says that y is different from x.

As a result of the above observations, we define

X −· Y = {(θ, b) | (θ, b) ∈ X and θ(y) 6= b} (3)

to be the set of features that are relevant for x and on which
y disagrees. Symmetrically the set of features relevant for y
and on which x disagrees are given by the set

Y −· X = {(θ, b) | (θ, b) ∈ Y and θ(x) 6= b} (4)

We also define

X ∩· Y = {(θ, b) ∈ X ∪ Y | θ(x) = θ(y)} (5)

to be the set of features on which x and y agree, among
the features in PT (x) ∪ PT (y), which are those relevant for
describing them (i.e., for identifying one or the other).

Remark 1. X ∩· Y is the maximal set of features in X ∪ Y =
PT (x) ∪ PT (y) on which x and y agree.

We have X ∪ Y = PT (x) ∪ PT (y) = (X −· Y ) ∪ (Y −·

X) ∪ (X ∩· Y ) but the inclusions X ∩· Y ⊇ X ∩ Y, X −· Y ⊆
X − Y, Y −· X ⊆ Y −X, might be in general strict.

We conclude that, when features are selected using a
decision tree, X∩· Y,X−· Y, Y −· X are the correct terms to be
used to represent the feature sets X ∩ Y,X − Y, Y −X that
define Tversky’s ratio model. Therefore, a general decision
tree-based version of Tversky’s ratio model is given by

sTvDT (x, y) =
f(X ∩· Y )

f(X ∩· Y ) + αf(X −· Y ) + βf(Y −· X)
,

(6)
with α, β > 0 and f a non-negative and monotonically non
decreasing function defined on subsets of features.

In particular, we define the Ratio-DecisionTree similarity
measure RatioDT(·, ·) from (6) by choosing α = β = 1,
and f to be the function returning the cardinality of its
argument:

RatioDT(x, y) =
|X ∩· Y |

|X ∩· Y |+ |X −· Y |+ |Y −· X|
, (7)

These choices guarantee that the similarity measure is
symmetric and the corresponding dissimilarity obtained as
√

1− RatioDT(x, y) is a metric [34].

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 19,2022 at 12:06:52 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3086147, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1. The black nodes represent features shared by x and y, i.e., tests
on which they agree. White nodes are tests on which x and y disagree.

Figure 1 gives a pictorial example of the terms in the
computation of RatioDT. Assume that: (i) all tests θ1, . . . , θ8
are different; (ii) θi(x) = θi(y) for each i ∈ {1, 2, 5, 6, 7}. In
the figure, tests on which x and y agree are shown as black
dots and tests on which x and y disagree as white dots.
Then, we have |PT (x) ∩ PT (y)| = |{(θ1, b1), (θ2, b2)}| =
2. This accounts for the features on the intersection of the
two paths. However, the example is meant to show a case
where PT (x) ∩ PT (y) are not the only features that the two
objects share: in the remaining 6 features used to define x
and y, 3 more are features on which they agree (namely
(θ5, b5), (θ6, b6), (θ7, b7)). Then, according to our definitions,
we have |X ∩· Y | = 5, |X −· Y | = 2, |Y −· X| = 2. Hence,
RatioDT = 5

5+2+2 = 5
9 . Later we will refer again to this

same example while considering other measures in order to
clarify the difference from RatioDT.

3.2 Comparison with other measures

In this section we qualitatively compare our proposed mea-
sure with two other measures: i) the one introduced in [8], a
general-purpose similarity based on information theory and
ii) one of the measures introduced in [12], a set of recent and
high performing Random Forest-based clustering measures
inspired by [8].

In [8] Lin derives a similarity measure based on an infor-
mation theoretic perspective which exploits the concepts of
commonality and description. These terms can be seen as an
information theoretic re-elaboration of the terms in Tversky
ratio model. More in detail, given two objects x, y, [8]
defines the commonality between x and y as measured by
Inf [common(x, y)] where common(x, y) is a proposition
that states the common features between x and y and Inf(p)
is the amount of information contained in proposition p.
Analogously, description(x, y) is defined as a proposition
that describes what x and y are. Then, in [8] the similarity
between x and y is defined by:

sLin(x, y) =
Inf [common(x, y)]

Inf [description(x, y)]
. (8)

Let A ⊆ F be a set of features, as defined in our setting.
Let x(A) = {x ∈ U | ∀(θ, b) ∈ A, θ(x) = b} be the set of
objects that agree on all features (θ, b) in A. Let

f(A) = − log
|x(A)|

|U |
= − logPU [A] = Inf(A) (9)

be the information content of the set of features A with
respect to the uniform distribution PU on the set of objects.
Setting α = β = 1, Tversky’s similarity in (6) coincides with
sLin(x, y) of [8], where

commonT (x, y) = X ∩· Y

and
descriptionT (x, y) = PT (x) ∪ PT (y),

according to our definition of common and discriminating
features between x and y.

There is another interesting relationship between our
RatioDT and Lin’s information theoretic similarity. For a
decision tree T , define the dyadic probability distribution
PT , by setting

PT (x) = 2−h(ℓ(x)), (10)

where, for each node ν of T we denote by h(ν) the number
of edges on the path from the root to ν, i.e., the depth
of ν, and, ℓ(x) is the leaf containing x. Then, for each
x ∈ U , each test on the path leading to ℓ(x) provides
exactly one bit of information. Under this assumption,
and our interpretation of commonT (x, y) = X ∩· Y and
descriptionT (x, y) = PT (x)∪PT (y) we have that sLin(x, y)
basically coincides2 with RatioDT(x, y).

Inspired by [8], Zhu et al. define an alternative way to
extract a similarity measure from a decision tree, proposing
three novel RF-based similarity measures for clustering [12].
Let us concentrate on the second variant introduced in [12],
called ClustRF-Strct-Unfm. Let T be a decision tree defined
over the set of objects U , and, as above, let h(ν) denote, for
each node ν of T , the number of edges on the path from the
root to ν, i.e., the depth of ν. Given objects x and y let

λ(x, y) = h(lca(ℓ(x), ℓ(y)) (11)

where lca(ℓ(x), ℓ(y)) denotes the lowest common ancestor
of the leaves containing x and y. The ClustRF-Strct-Unfm
similarity measure, which we denote here by sZhu2 (i.e.
second variant) is defined by

sZhu2(x, y) =
λ(x, y)

max{h(ℓ(x)), h(ℓ(y))
. (12)

The motivation for such a definition—quoting from
[12]—is that “a larger value of λ(x, y) signifies more split
tests both x and y have gone through together, implying
higher similarity shared between them. A lower value in
λ(x, y) suggests subtle and weak similarity [. . . ]”. The
denominator is meant to scale the similarity measured by
λ(x, y) to a value between 0 and 1. In the third variant
(called ClustRF-Strct-Adpt) each node in λ(x, y) is weighted
by the inverse of its hierarchical neighborhood (number of
points reaching that node [35]). However, the reasoning
remains the same: the similarity between two objects is
proportional to the length of the common prefix between

2. The test where the two paths part is counted twice in RatioDT.
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Fig. 2. Points a, b, and c are separated by using tests on two different
coordinates. If we ignore test x2 < 0.5 when comparing a and b and
only consider the fact that they disagree on the root test, then we cannot
recognize that higher similarity between a and b with respect to the
similarity between a and c.

ℓ(x) and ℓ(y)—we will see the empirical behaviour of all
variants of [12] in the experimental section.

In general, one can interpret sZhu2(x, y) (and the third
variant as well) as a variant of Lin’s similarity sLin(x, y)
(resp. Tversky’s ratio model) where Inf [common(x, y)]
(resp. f(X ∩ Y )) is defined as the length of only the com-
mon prefix between ℓ(x) and ℓ(y), i.e., λ(x, y). We believe
that such a choice is both too restrictive and somehow
myopic since it completely ignores to analyze the elements
of commonality and discrimination in the sub-paths of
PT (x), PT (y) that extend below the test where they fork.
In particular, all the tests not in the sub-path common to
PT (x) and PT (y) are considered to account for dissimilarity
between x and y; this directly contrasts with our postulate
2). For instance, on the example in Figure 1, we have
sZhu2(x, y) = 1/3. More in general, it should be noted
that most previous implementations of Tversky’s models
[8], [11], like Zhu [12], take only the common path followed
by two objects as a proxy for the features they share. For an
extreme example of the difference in the similarity computa-
tion between such approaches and our model, consider two
objects that test different on the root vertex of the decision
tree, and then test equally on all tests encountered in the
remaining parts of the two distinct paths they follow. If h is
the height of the tree, our measure consider the similarity of
the two objects to be ∼ 1− 1/h, while the other approaches
would assign similarity ∼ 1/h. It is clear that in such cases,
our measure takes better account of the possible correlation
between tests that are significant for the objects and used
in different parts of the tree, resulting in a more precise
extraction of the features of similarity between the two
objects.

As another example motivating our definition, let us
consider the simple case in Figure 2. It is natural to assume
that a is more similar to b than to c and also a is as similar
to b as b is to c. However, if we consider the decision
tree in the figure, we have sZhu2(a, b) = sZhu2(a, c) =
0 and sZhu2(b, c) = 1

2 , while, with our similarity
measure, we have RatioDT(a, b) = RatioDT(b, c) =
1
3 , RatioDT(a, c) = 0. The fact that the measure of simi-
larity obtained using RatioDT is closer to the intuition is a
direct consequence of the choice of considering as common
features not only those in the common part of the paths, as
measured by λ(x, y). This is clearly a too restrictive measure

of commonality, since, in general, we have

λ(x, y) ≤ |PT (x) ∩ PT (y)| ≤ |X ∩· Y |

Moreover, it has other possible drawbacks when the simi-
larity is meant to be used for clustering. In particular, in the
construction of the decision trees, there may be situations
when the first cuts splits an existing cluster (especially
for not axis-aligned clusters); therefore, for several pairs of
points in the same cluster it is very likely that the similarity
extracted with the criterion of [12] will be zero or small; our
measure, instead, can balance the loss of the first intercluster
splits by considering also the later splits on which the points
agree.

3.3 A RF-based clustering approach

The RatioDT similarity measure can be straightforwardly
generalized to Random Forests by averaging the decision
tree distance in eq. (7) over all the trees in the forest. More
precisely, given a trained RF whose trees are T1, . . . , Tm,
fix a pair of points x, y ∈ U and let RatioDTt(x, y) be the
similarity computed according to (7) from the decision tree
Tt. Then, we define the Random Forest similarity measure
RatioRF(x, y) by averaging over all decision trees, i.e.

RatioRF(x, y) =
1

m

m
∑

t=1

RatioDTt(x, y). (13)

Given the measure, any distance-based clustering algorithm
can be used to get the final clustering. If the clustering
algorithm needs in input a dissimilarity, we transform our
similarity into a dissimilarity using

√

1− RatioRF(x, y), as
done in [13].

In order to derive the measure we should have a trained
Random Forest, which has to be learned without labels
(clustering); in the literature, there are many strategies to
derive it: the most common one consists in training a
standard classification forest which, for clustering tasks,
discriminates between the original data and a synthetically
generated negative class [12], [13]. Typically, the negative
class is obtained by sampling points from the product of
empirical marginal distributions of the observed data: in
this way the dependency structure of the original data is
removed. Other options are based on Extremely Random-
ized Trees [29] (trees which are based on random splits –
thus no need of labels), possibly also exploiting some extra
information, if available [28], [30]. Please note that here we
are not interested in optimizing this step, since we focus our
attention on the derivation of the similarity measure.

4 EXPERIMENTAL EVALUATION

In this section our proposed similarity measure RatioRF,
defined in eq. (7), is evaluated and compared with 5 alter-
native measures, hereafter referred to as: dShi, sZhu2, sZhu3,
dTing , and dAryal.

The measure dShi, defined in [2], [13], has been the
first version of a Random Forest-based distance used for
clustering: the similarity sShi(x, y) between points x and y is
defined as the number of trees where x and y fall in the same
leaf, divided by the total number of trees; the dissimilarity
dShi is then obtained as

√

1− sShi(x, y).
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The two measures sZhu2, sZhu3 were both introduced in
[12] as refinements of sShi. More precisely, sZhu2 represents
the second variant introduced in [12] (there called ClustRF-
Strct-Unfm), discussed in Section 3.2, whereas sZhu3 is the
third variant introduced in [12] (there called ClustRF-Strct-
Adp). The latter extends sZhu2 by weighing every node in
the common path – the weight of a node is computed as the
inverse of the number of points which reach such node3.

The fourth measure we consider for comparison, dTing ,
was defined in [14]. It is another Random Forest-based
similarity which shares some ideas with sZhu3. In particular,
the authors of [14] define the distance between two points x
and y as the ratio of points of the training set reaching the
LCA (Lowest Common Ancestor) of x and y.

Finally, measure dAryal is an adaptation to the RF case of
the very recent distance introduced in [15]. Here, the authors
introduce the m0 distance, an extension of the class of mp

distances [24], which can be also implemented with Random
Forests – dTing is the Random Forest implementation of m1.

The Matlab code used for the experiments is available at
the first author’s webpage4.

4.1 Experimental details

As commonly done in clustering, the evaluation is per-
formed using supervised datasets, removing labels, deter-
mining the clustering and comparing the obtained clusters
with the original classes to assess clustering performances.
We quantified the quality of the clustering results with two
classical measures, the purity index and the adjusted Rand
index (ARI) [36], [37].

To determine the purity, each cluster is assigned to
the class label that is most frequent in that cluster. The
purity index, ranging from 0 (worst) to 1 (best), is then the
proportion of examples assigned to the correct label.

For the computation of the ARI, a contingency table is
first built between the clustering and the true labeling. The
classic Rand index is determined by assessing the agreement
between the two partitions; in the ARI, such index is also
corrected for the chance of the formation of the clusters.
Also in this case, the higher the index value, the better the
clustering.

For testing we used 15 different datasets, which are de-
scribed in Table 1. The datasets are divided into two groups:
“Group 1” contains those of small/moderate size (up to
1.500 objects), while “Group 2”, contains larger datasets (up
to ∼20.000 objects). Datasets in the first group are used to
thoroughly test the framework with respect to the different
parametrizations. The datasets in the second group are
instead analysed with respect to a single parametrization
in order to evaluate the performances of the proposed
framework on larger scale problems.

Most of the datasets are available on the UCI ML
Repository5, except UAV, Volcano and Energy: UAV [38]
was downloaded from the authors’ web site6, whereas the

3. The first variant in [12] (ClustRF-Bi) coincides with sShi.
4. http://profs.scienze.univr.it/∼bicego/code.html
5. https://archive.ics.uci.edu/ml/datasets.php
6. In particular we used “Dataset 1” from

mason.gmu.edu/∼lzhao9/materials/data/UAV/

Volcano and Energy derive from two real world challeng-
ing non classical problems. Volcano deals with the clas-
sification of volcano seismic events [39]7, whereas Energy
represents a peculiar behavioural biometrics scenario which
exploits energy load profiles to identify users [40]. In the
Volcano dataset the seismic signals have been collected
at the Nevado del Ruiz volcano in Colombia, and pre-
processed by the Observatorio Vulcanológico y Sismológico
de Manizales, Colombia; each signal is represented using
the averaged spectrogram (65 bands): there are five different
seismic events, which represent the classes. In the Energy
case, the goal is to recognize people by exploiting the way
a person employs electrical energy in their house, from
a behavioural biometrics perspective: here, we employed
profiles from internet [41], using daily recordings (one reg-
istration every hour) of 50 users for one month; the signal is
used as it is (i.e. a 24-dimensional vector) – for more details,
analyses and alternatives for representation, please refer to
[40].

In all experiments, to train the Random Forest we used
the approach of [12], [13]. The binary decision trees are
built with two classes: the positive class, which contains the
points to be clustered, and a synthetically generated nega-
tive class, obtained with random sampling from marginals
(the negative class has the same number of objects as the
positive).

In all experiments related to the first group of datasets,
each tree is built by randomly selecting 80% of training set
– we choose this ratio in order to keep a good compromise
between the number of objects used to train the tree and
the diversity of them given by the randomization. For the
selection of the best split, we employed two options: select
it from all the features (“All”), or select it among a random
50% of the features (“Half”). This second option reduces
the possible choices, but at the same time enhances the ran-
domization inside each tree. As split criterion we used the
classical Gini criterion, and the splitting process is stopped
only when a node contains either one element or only
objects with the same label. Finally, we report experiments
with different forests sizes, namely 50, 100 and 200 trees.

For every configuration (number of trees - features),
Random Forests have been trained 30 times, each one repre-
senting the starting point from which to compute the simi-
larities. Given the similarity/dissimilarity, clustering is per-
formed with four different methods: spectral clustering [42],
a typical choice in more recent RF-clustering works (e.g.,
[12]), using the Ng-Jordan-Weiss normalized version [42],
and repeating the inner k-means 20 times8, Affinity Propa-
gation [43], a renown distance-based clustering approach9,
and two Hierarchical Clustering schemes, the Complete-
Link and Ward-Link (implementation of the Statistics and
Machine Learning Toolbox of Matlab).

In the second group of datasets we perform all experi-
ments using a single fixed parametrization. In particular, to
cope with the high dimension of the dataset, we train each

7. We thank J.M. Londoño-Bonilla and the Observatorio Vul-
canológico y Sismológico de Manizales, Colombia for the data.

8. https://github.com/areslp/matlab/blob/master/spectral clustering/
SpectralClustering.m

9. The version we used allows setting the number of clusters, see
http://www.psi.toronto.edu
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TABLE 1
Details of the datasets employed for testing.

— Group 1 —
Name Description #objects #features #cluster #obj per cluster
Iris Types of iris plant from sepal and petal features 150 4 3 50,50,50
Wine Origin of wines from chemical features 178 13 3 59,71,48
Glass Glass type from oxide content 214 9 4 70,76,17,51
WBC Detection of Breast Cancer 683 9 2 444,239
BTissue Types of Breast tissues from impedance features 106 9 6 21,15,18,16,14,22
Heart Types of heart diseases 297 13 2 160,137
Lung Types of Lung cancers 32 54 3 9,13,10
Parkinsons Presence of Parkinsons from voices 195 22 2 48,147
Auto-mpg Levels of city-cycle fuel consumption 398 6 2 229,169
Pima Presence of Diabetes 768 8 2 268,500
Volcano Types of seismic volcanic events 1078 65 5 153,333,237,251,104
Energy Personal usage of electricity in houses 1500 24 50 30 each
— Group 2 —
Name Description #objects #features #cluster #obj per cluster
Isolet Types of Spoken letters 7797 617 26 min:298 - max:300
Gas Types of gas from electronic noses 13910 128 6 min:1641 - max:3009
UAV Unmanned Aerial Vehicle Intrusion Detection 19380 54 2 8663,10717

tree with a small number of randomly picked samples (256,
in our experiments). Training with few random samples is
a solution widely and successfully applied in other RF sce-
narios like outlier detection [23]. Very recently, this scheme
has been successfully employed also for RF-clustering [44].
Training with few samples permits to have more compact
trees, thus speeding up both the RF training phase and the
distance computation. The other parameters are chosen as
follows: Gini criterion is used for computing the split thresh-
old; the best split is selected among 50% of the features; the
size of the forests is fixed to 100 trees; spectral clustering is
employed to get the final result (for the motivations behind
these choices see the analysis of parameters proposed in
Section 4.4). Also in this case experiments were repeated
30 times.

Results are described in the following subsections. We
present 5 different analyses: the first 4 are based on ex-
periments on the first group of datasets, whereas the last
(Subsection 4.6) contains the analysis on larger scale prob-
lems. More in detail, in Subsection 4.2 we analyze the av-
eraged accuracies according to different aspects (clustering
methods, datasets, and parametrizations of the forests); in
Subsection 4.3 we then present a deep comparison between
the proposed measure and the most direct competitor sZhu2;
subsequently, in Subsection 4.4 we perform an analysis of
the impact of the different parameters on the proposed
framework; finally, in Subsection 4.5 we propose some re-
sults using an automatic selection of the best parametriza-
tion.

4.2 Analysis 1: averaged accuracies

In this section we report the averaged accuracies related
to the 12 datasets of the first group: first, we performed
the average over all parameter configurations, repetitions,
clustering methods and datasets. In total, 8640 experiments:
6 forest parametrizations × 30 repetitions × 4 clustering
methods × 12 datasets. To investigate the different aspects,
we also provided aggregated results with respect to: varying
the datasets (720 experiments: 6 × 30 × 4), varying the
clustering methods (2160 experiments: 6 × 30 × 12 ); and

varying the parametrizations (1440 experiments: 30 × 4 ×
12).

In order to have a statistically significant comparison, for
every aspect we performed a paired t-test (significance 0.05)
to compare the accuracies of the best performing measure
with the others. Such results are reported in Table 2 for
both the Purity and the Adjusted Rand Index. A bold value
indicates that the best value is larger than the alternatives
with a statistical significance.

What we can immediately observe is that our proposed
novel measure largely outperforms all the competitors, with
a statistically significant difference with respect to: the total
average; all the different clustering methods; and all the
different parametrizations.

With respect to the different datasets, the proposed mea-
sure outperforms all the competitors except in Glass (for the
ARI index), Parkinsons (purity), Pima (purity) and Auto-
mpg (both purity and ARI). In these cases, however, no
measure is significantly better than the others.

For what concerns the alternative distances, we can
observe that on average dAryal performs better than the
others; sZhu2, sZhu3 and dTing perform equally, whereas
dShi is on average inferior. However, this last distance is par-
ticularly accurate in high-dimensional datasets, like Lung,
Parkinsons, Volcano and Energy. This is also confirmed by
the analysis reported with automatic versions – Section 4.5.

4.3 Analysis 2: deep comparison of RatioRF and sZhu2

We now report a comparison between RatioRF and its direct
competitor sZhu2, using the datasets in the first group. As
before, we focus on different clustering techniques, different
datasets and different forest parametrizations.

Given one particular aspect, we compared, among all
experiments involving such aspect, how many times the ac-
curacy obtained with RatioRF is larger/lower/equal than
that of sZhu2. Results are reported in Table 3, for both ARI
and Purity.

Every row of the table indicates the comparisons for a
particular aspect: for example, when comparing RatioRF
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TABLE 2
Averaged clustering accuracies (see text). A bold value indicates a statistically significant better result with respect to the other measures.

(Purity) (ARI)
dShi sZhu2 sZhu3 dTing dAryal

RatioRF dShi sZhu2 sZhu3 dTing dAryal
RatioRF

All Experiments
0.628 0.663 0.655 0.659 0.671 0.704 0.218 0.310 0.302 0.296 0.311 0.373

Different Clustering Methods
SC 0.668 0.690 0.684 0.681 0.696 0.725 0.274 0.349 0.340 0.332 0.349 0.408
AP 0.661 0.688 0.684 0.681 0.690 0.716 0.263 0.340 0.336 0.324 0.336 0.381
HC-CL 0.541 0.607 0.606 0.611 0.622 0.666 0.104 0.232 0.241 0.227 0.243 0.325
HC-W 0.641 0.666 0.646 0.663 0.675 0.709 0.231 0.317 0.290 0.302 0.317 0.380

— Different Datasets —
Iris 0.671 0.819 0.838 0.812 0.826 0.878 0.350 0.622 0.647 0.604 0.627 0.707
Wine 0.801 0.797 0.829 0.754 0.793 0.899 0.572 0.566 0.622 0.488 0.557 0.743
Glass 0.530 0.547 0.550 0.535 0.542 0.558 0.126 0.181 0.168 0.159 0.166 0.175
WBC 0.720 0.939 0.931 0.928 0.931 0.970 0.174 0.780 0.751 0.744 0.752 0.883
BTissue 0.577 0.568 0.576 0.566 0.574 0.597 0.353 0.341 0.354 0.333 0.347 0.379
Heart 0.674 0.674 0.695 0.659 0.677 0.748 0.149 0.149 0.180 0.126 0.150 0.252
Lung 0.518 0.498 0.510 0.492 0.501 0.530 0.091 0.063 0.083 0.053 0.066 0.113
Parkinsons 0.754 0.755 0.754 0.756 0.755 0.754 0.141 0.142 0.143 0.129 0.140 0.154
Auto-mpg 0.645 0.778 0.756 0.778 0.794 0.802 0.094 0.331 0.287 0.331 0.364 0.382
pima 0.654 0.658 0.658 0.658 0.680 0.659 0.018 0.046 0.043 0.053 0.029 0.066
Volcano 0.433 0.437 0.432 0.442 0.442 0.470 0.128 0.135 0.134 0.134 0.136 0.164
Energy 0.555 0.481 0.326 0.525 0.535 0.584 0.422 0.360 0.209 0.400 0.401 0.463

— Different Random Forest Parametrizations —
50 Trees - Half 0.626 0.672 0.669 0.669 0.683 0.713 0.208 0.323 0.316 0.311 0.332 0.384
50 Trees - All 0.614 0.643 0.643 0.636 0.642 0.689 0.203 0.280 0.286 0.263 0.274 0.354
100 Trees - Half 0.637 0.683 0.667 0.682 0.693 0.716 0.224 0.338 0.314 0.330 0.343 0.388
100 Trees - All 0.622 0.646 0.640 0.640 0.648 0.696 0.217 0.287 0.286 0.272 0.283 0.365
200 Trees - Half 0.640 0.682 0.665 0.678 0.705 0.715 0.233 0.339 0.316 0.323 0.344 0.387
200 Trees - All 0.627 0.650 0.643 0.647 0.653 0.695 0.224 0.291 0.292 0.279 0.291 0.363

and sZhu2 on the Iris dataset (first line of the “Different
Datasets” part of Table 3), we can see that in 71.2% of the 720
experiments (6 forest parametrizations × 30 repetitions × 4
clustering methods) the accuracy obtained with RatioRF is
larger than the accuracy obtained with sZhu2, whereas in
25.4% is lower, and in 3.3% they are equal. This represents
an alternative direct comparison since we analyse the be-
haviour of the two measures given exactly the same starting
point (the trained Random Forest, the clustering method or
the dataset).

From the table we can observe that RatioRF compares
very favourably with sZhu2: on average, in 65.8% of the
experiments RatioRF has larger purity than sZhu2, whereas
this increases to 73.5% when considering the ARI. This
superiority can be found in all aspects, with the exception
of some datasets; remarkably, in real world challenging
high dimensional problems (like Volcano and Energy) our
measure largely outperforms sZhu2: in more than 80% of
the cases for Volcano, and almost everywhere for Energy.

4.4 Analysis 3: impact of parameters

In this section we focus on experiments meant to assess
the impact of the parameters on the proposed frame-
work. We report a comparative analysis of the different
options relative to each aspect of the proposed RF clustering
pipeline (number of trees, feature subsampling and cluster-
ing method), using the RatioRF distance and the datasets
of the first group.

For each aspect we compute the average of the purity
and ARI values of the different alternatives by varying all

other aspects: for example, when analysing the number
of trees (first three columns of Table 4), we compute the
average of all results obtained with 50, 100 and 200 trees, for
all different feature subsampling, clustering methods, and
repetitions, thus resulting, for each dataset, in 240 values (2
feature subsamplings × 4 clusterings × 30 repetitions). The
row “Average” contains the average over all datasets (i.e.,
in the case of trees of 240 × 12 = 2880 values).

The analysis is reported in Table 4, for purity (top) and
ARI (bottom). Also in this table, for each dataset, a bold
value indicates the best option which has a statistically
significant difference with respect to the others, according
to an unpaired t-test with significance 0.05.

Different observations can be derived from the table. The
first one is that the number of trees does not represent a
crucial parameter in the proposed approach: in almost all
the experiments the averaged accuracy does not vary signif-
icantly among the different possibilities. The only exception
is the Energy dataset, where performances with 200 trees
are better than the alternatives. Energy is a dataset in which
we have many clusters (50) and many objects (1500), and
probably a larger number of trees is needed to unravel the
underlying complexity (please note the poor result with 50
trees).

A second observation regards the different options for
feature sampling. We can note that on average using half
of the features when choosing the split represents a better
choice, probably because of an increased randomization of
the forests. Even if there is not a clear trend linked to dataset
characteristics (like number of objects/features/clusters),
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TABLE 3
Pairwise comparison between RatioRF and sZhu2.

N. Tests (Purity) (ARI)
Win/Lose/Draw Win/Lose/Draw

All Experiments
8640 65.8%/18.1%/16.1% 73.5%/25.1%/1.4%

Different Clustering Methods
SC 2160 69.5%/15.0%/15.4% 77.1%/21.4%/1.5%
AP 2160 64.1%/20.9%/15.0% 70.4%/28.6%/1.0%
HC-CL 2160 65.9%/18.2%/15.9% 75.5%/23.1%/1.3%
HC-W 2160 63.5%/18.2%/18.3% 70.9%/27.4%/1.7%

Different Datasets
Iris 720 71.2%/25.4%/3.3% 72.2%/27.2%/0.6%
Wine 720 87.9%/8.8%/3.3% 89.9%/10.0%/0.1%
Glass 720 57.4%/38.8%/3.9% 44.3%/55.7%/0.0%
WBC 720 84.2%/12.4%/3.5% 84.9%/14.0%/1.1%
BTissue 720 68.1%/21.5%/10.4% 72.9%/26.8%/0.3%
Heart 720 82.1%/15.1%/2.8% 83.3%/16.5%/0.1%
Lung 720 57.4%/16.0%/26.7% 72.2%/21.5%/6.2%
Parkinsons 720 6.2%/9.4%/84.3% 53.1%/43.9%/3.1%
Auto-mpg 720 61.8%/29.4%/8.8% 63.7%/31.2%/5.0%
pima 720 30.4%/23.2%/46.4% 63.6%/36.4%/0.0%
Volcano 720 82.5%/17.2%/0.3% 82.2%/17.8%/0.0%
Energy 720 100.0%/0.0%/0.0% 99.4%/0.6%/0.0%

Different Random Forest Parametrizations
50 Trees - Half 1440 65.8%/18.7%/15.5% 72.2%/27.1%/0.8%
50 Trees - All 1440 67.4%/17.2%/15.3% 74.7%/23.6%/1.7%
100 Trees - Half 1440 61.7%/20.6%/17.6% 70.6%/28.3%/1.2%
100 Trees - All 1440 70.5%/11.8%/17.7% 79.4%/18.6%/1.9%
200 Trees - Half 1440 62.6%/22.8%/14.5% 70.2%/28.9%/0.9%
200 Trees - All 1440 66.5%/17.4%/16.1% 73.8%/24.4%/1.8%

TABLE 4
Analysis of the impact of the parameters.

Purity
N. Trees Feat. Sampling Clustering

Dataset 50 100 200 Half Full SC AP HC-CL HC-W
Iris 0.877 0.879 0.877 0.874 0.882 0.888 0.876 0.867 0.881
Wine 0.894 0.905 0.898 0.920 0.878 0.943 0.901 0.819 0.933
Glass 0.559 0.559 0.557 0.568 0.549 0.574 0.584 0.518 0.557
WBC 0.970 0.970 0.970 0.970 0.970 0.974 0.972 0.964 0.970
BTissue 0.600 0.601 0.590 0.613 0.580 0.610 0.603 0.575 0.600
Heart 0.747 0.747 0.749 0.752 0.743 0.764 0.772 0.715 0.740
Lung 0.532 0.529 0.530 0.550 0.510 0.542 0.530 0.524 0.525
Parkinsons 0.754 0.754 0.754 0.753 0.755 0.753 0.753 0.755 0.755
Auto-mpg 0.803 0.801 0.801 0.788 0.815 0.847 0.808 0.747 0.804
pima 0.659 0.660 0.659 0.662 0.657 0.668 0.663 0.654 0.651
Volcano 0.469 0.472 0.470 0.468 0.472 0.481 0.487 0.430 0.483
Energy 0.551 0.595 0.605 0.660 0.507 0.658 0.641 0.422 0.613
Average 0.701 0.706 0.705 0.715 0.693 0.725 0.716 0.666 0.709

ARI
N. Trees Feat. Sampling Clustering

Dataset 50 100 200 Half Full SC AP HC-CL HC-W
Iris 0.705 0.710 0.705 0.698 0.716 0.721 0.698 0.693 0.716
Wine 0.729 0.756 0.745 0.788 0.699 0.836 0.730 0.590 0.818
Glass 0.172 0.179 0.172 0.176 0.174 0.195 0.172 0.157 0.174
WBC 0.883 0.882 0.883 0.883 0.882 0.897 0.890 0.861 0.882
BTissue 0.380 0.387 0.371 0.398 0.360 0.385 0.382 0.362 0.386
Heart 0.251 0.251 0.253 0.261 0.242 0.279 0.296 0.198 0.234
Lung 0.116 0.109 0.113 0.138 0.089 0.129 0.107 0.111 0.105
Parkinsons 0.155 0.152 0.154 0.155 0.152 0.154 0.165 0.142 0.154
Auto-mpg 0.386 0.381 0.380 0.353 0.412 0.483 0.388 0.269 0.390
pima 0.065 0.069 0.064 0.074 0.058 0.098 0.083 0.047 0.036
Volcano 0.161 0.165 0.167 0.163 0.165 0.178 0.171 0.135 0.174
Energy 0.421 0.475 0.494 0.548 0.379 0.537 0.496 0.333 0.487
Average 0.369 0.376 0.375 0.386 0.361 0.408 0.381 0.325 0.380
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we can observe that, reasonably, the superiority of the
option “Half” is more evident for datasets with a larger
number of features, such as Lung, Wine and Energy.

Finally, concerning the clustering method, it seems evi-
dent that spectral clustering is the best choice for Random
Forest-based clustering, being superior to the alternatives in
8 cases over 12 (note that in 2 cases there is not a winning
option). This confirms recent trends in RF-clustering litera-
ture [12]. However, we note that also Affinity Propagation
works very well. This alternative (hardly investigated in RF-
clustering literature) also permits to automatically detect
the number of clusters (even if in our experiments this
number has been fed directly in input). For what concerns
hierarchical clustering, we can observe that the complete
link variant represents the worst choice for many datasets,
whereas the Ward Link reaches reasonable results almost
everywhere.

Summarizing, we think that the following parametriza-
tion for the proposed approach would permit to get rea-
sonable results in many situations: build forests with 100
trees, selecting half features for splitting, and use Spectral
Clustering to get the final clustering. If the problem appears
to be too complex (e.g. high number of clusters), try to
increase the number of trees.

4.5 Analysis 4: automatic versions

The large scope analyses presented in the previous sec-
tions showed that the proposed measure is consistently
better than the literature alternatives, for a large range
of parametrizations. In this section we report a practical
analysis, involving “automatic versions”, i.e. versions where
the parameters of the clustering procedure (number of trees,
splitting features, or clustering algorithm) are chosen in an
automatic manner.

Given a dataset, we computed the clustering with dif-
ferent parametrizations, selecting the best one using the
silhouette index [45], a well known internal index used to
evaluate clustering results. We chose this index for two
reasons: i) it is based on distances (a high index indicates
that points inside the same cluster are very similar, points
from different clusters are very dissimilar), so that it can
be directly computed using the RF similarities; ii) a recent
large scope experimental evaluation [46] showed that it is
one of the best internal criterion for assessing clustering
quality. For each dataset and each distance, we selected the
configuration leading to the highest silhouette (among all
parametrizations, clustering methods and repetitions). Such
values are reported in Table 5.

We can observe that, on average, also in this case our
measure largely outperforms the alternatives, with an im-
provement over the second best measure (sZhu3) which is
0.05 for purity and 0.08 for ARI. For what concerns the
different datasets, for Purity, in 7 datasets our measure
represents the best choice, in other 2 the best is dAryal,
in 1 dShi whereas in 2 datasets all measures lead to the
same accuracy; similar reasonings can be done w.r.t. the ARI
index.

Interestingly, whenever our measure is not the best
choice the measure which works best is not always the
same for different datasets. In other words, specific datasets

prefer specific measures (e.g., dShi seems to be very suitable
for high dimensional datasets, while performing poorly on
others), while our measure represents a good choice in
general.

4.6 Analysis 5: larger scale problems

In this section we show the results obtained with the
datasets of group 2, i.e. with datasets of larger size. As
described before, we used a single parametrization, in par-
ticular the one suggested at the end of the analysis reported
in Subsection 4.4: 100 trees, selecting half of the features for
the split, and using Spectral Clustering to get the final result.
As already done for the other analyses, for each dataset we
performed a paired t-test (significance 0.05) to compare the
accuracies of the best performing measure with the others.

The results are shown in Table 6 for Purity and Adjusted
Rand Index: also in this case, if present, a bold value
indicates that the best value is larger than the alternatives
with a statistical significance.

It is interesting to observe that also here RatioRF outper-
forms the alternative measures with statistical significance.
For what concerns the different alternative measures, we
have a confirmation that dShi is very adequate for high
dimensional datasets: in all these experiments this distance
reaches accuracies which are comparable to those obtained
with more sophisticated distances.

5 CONCLUSIONS

In this paper we proposed RatioRF, a Random Forest-
based similarity measure for clustering. RatioRF repre-
sents a novel way of extracting the information contained
in the trees of a RF to implement Tversky’s ratio model
definition of similarity. We present both a structural and
empirical comparison of RatioRF with analogous measures
in the literature. The extensive experimental results suggest
that RatioRF might be a valid alternative to the state-of-
the-art ones, with respect to different aspects, like forest
parametrizations, clustering algorithms or datasets.

REFERENCES

[1] A. Tversky, “Features of similarity,” Psychological review, vol. 84,
no. 4, p. 327, 1977.

[2] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
2001.

[3] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A
unified framework for classification, regression, density estima-
tion, manifold learning and semi-supervised learning,” Founda-
tions and Trends in Computer Graphics and Vision, vol. 7, no. 2-3, pp.
81–227, 2012.

[4] G. Biau and E. Scornet, “A random forest guided tour,” TEST,
vol. 25, no. 2, pp. 197–227, 2016.

[5] L. Kuncheva, Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

[6] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st ed.
Chapman & Hall/CRC, 2012.

[7] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., 1993.

[8] D. Lin, “An information-theoretic definition of similarity,” in Proc.
Int. Conf. on Machine Learning (ICML98), vol. 98, no. 1998, 1998, pp.
296–304.

[9] P. Resnik, “Semantic similarity in a taxonomy: An information-
based measure and its application to problems of ambiguity in
natural language,” J. Artif. Int. Res., vol. 11, no. 1, pp. 95–130, Jul.
1999.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 19,2022 at 12:06:52 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3086147, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Results with automatic versions.

(Purity) (ARI)
Dataset dShi sZhu2 sZhu3 sTing dAryal

RatioRF dShi sZhu2 sZhu3 sTing dAryal
RatioRF

Iris 0.819 0.705 0.846 0.658 0.658 0.973 0.551 0.473 0.617 0.390 0.390 0.922
Wine 0.785 0.610 0.949 0.610 0.605 0.949 0.450 0.400 0.854 0.400 0.397 0.854
Glass 0.559 0.521 0.582 0.526 0.516 0.587 0.208 0.215 0.217 0.220 0.211 0.214
WBC 0.650 0.968 0.968 0.930 0.937 0.977 -0.032 0.874 0.874 0.737 0.763 0.908
BTissue 0.438 0.438 0.362 0.448 0.552 0.419 0.230 0.267 0.218 0.228 0.344 0.252
Heart 0.618 0.537 0.625 0.696 0.659 0.794 0.053 0.000 0.060 0.152 0.099 0.345
Lung 0.581 0.549 0.549 0.549 0.549 0.581 0.160 0.111 0.111 0.111 0.111 0.160
Parkinsons 0.753 0.753 0.753 0.753 0.753 0.753 0.195 -0.098 -0.096 -0.098 0.010 -0.098
Auto-mpg 0.670 0.678 0.665 0.668 0.811 0.678 0.110 0.121 0.103 0.107 0.386 0.121
pima 0.651 0.651 0.651 0.651 0.651 0.651 0.005 0.005 0.005 0.004 0.004 0.019
Volcano 0.351 0.326 0.341 0.338 0.320 0.362 0.088 0.007 0.048 0.056 0.010 0.087
Energy 0.401 0.375 0.168 0.318 0.324 0.388 0.209 0.207 0.030 0.202 0.197 0.209
Average 0.606 0.593 0.622 0.595 0.557 0.676 0.185 0.215 0.253 0.209 0.243 0.333

TABLE 6
Results with datasets of group 2

Distance (Purity) (ARI)
dShi sZhu2 sZhu3 dTing dAryal

RatioRF dShi sZhu2 sZhu3 dTing dAryal
RatioRF

Isolet 0.495 0.498 0.494 0.489 0.500 0.523 0.373 0.374 0.370 0.361 0.379 0.408
Gas 0.453 0.463 0.463 0.455 0.449 0.487 0.197 0.206 0.205 0.198 0.195 0.233
UAV 0.963 0.953 0.960 0.954 0.955 0.965 0.857 0.823 0.846 0.824 0.829 0.865

[10] S. Santini and R. Jain, “Similarity measures,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 21, no. 9, pp. 871–883, 1999.

[11] L. Cazzanti and M. R. Gupta, “Information-theoretic and set-
theoretic similarity,” in Proc. Int. Symposium on Information Theory.
IEEE, 2006, pp. 1836–1840.

[12] X. Zhu, C. Loy, and S. Gong, “Constructing robust affinity graphs
for spectral clustering,” in Proc. Int. Conf. on Computer Vision and
Pattern Recognition, CVPR 2014, 2014, pp. 1450–1457.

[13] T. Shi and S. Horvath, “Unsupervised learning with random forest
predictors,” Journal of Computational and Graphical Statistics, vol. 15,
no. 1, pp. 118–138, 2006.

[14] K. Ting, Y. Zhu, M. Carman, Y. Zhu, and Z.-H. Zhou, “Overcoming
key weaknesses of distance-based neighbourhood methods using
a data dependent dissimilarity measure,” in Proc. Int. Conf. on
Knowledge Discovery and Data Mining, 2016, pp. 1205–1214.

[15] S. Aryal, K. Ting, T. Washio, and G. Haffari, “A comparative study
of data-dependent approaches without learning in measuring
similarities of data objects,” Data Min. Knowl. Discov., vol. 34, no. 1,
pp. 124–162, 2020.

[16] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and
D. Rueckert, “Random forest-based similarity measures for multi-
modal classification of alzheimer’s disease,” NeuroImage, vol. 65,
pp. 167 – 175, 2013.

[17] T. Shi, D. Seligson, A. Belldegrun, A. Palotie, and S. Horvath,
“Tumor classification by tissue microarray profiling: Random for-
est clustering applied to renal cell carcinoma,” Modern Pathology,
vol. 18, pp. 547–557, 2005.

[18] M. C. Abba, H. Sun, K. A. Hawkins, J. A. Drake, Y. Hu, M. I.
Nunez, S. Gaddis, T. Shi, S. Horvath, A. Sahin, and C. M. Aldaz,
“Breast cancer molecular signatures as determined by sage: Corre-
lation with lymph node status,” Molecular Cancer Research, vol. 5,
no. 9, pp. 881–890, 2007.

[19] S. I. Rennard, N. Locantore, B. Delafont, R. Tal-Singer, E. K.
Silverman, J. Vestbo, B. E. Miller, P. Bakke, B. Celli, P. M. Calverley
et al., “Identification of five chronic obstructive pulmonary disease
subgroups with different prognoses in the eclipse cohort using
cluster analysis,” Annals of the American Thoracic Society, vol. 12,
no. 3, pp. 303–312, 2015.

[20] C. Xiong, D. Johnson, R. Xu, and J. J. Corso, “Random forests for
metric learning with implicit pairwise position dependence,” in
Proc. Int. Conf. on Knowledge discovery and data mining, 2012, pp.
958–966.

[21] D. Johnson, C. Xiong, and J. Corso, “Semi-supervised nonlinear
distance metric learning via forests of max-margin cluster hier-

archies,” IEEE Trans. on Knowledge and Data Engineering, vol. 28,
no. 4, pp. 1035–1046, 2016.

[22] Y. Dong, B. Du, and L. Zhang, “Target detection based on random
forest metric learning,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 8, no. 4, pp. 1830–1838,
2015.

[23] F. Liu, K. Ting, and Z. Zhou, “Isolation forest,” in Proc. of Int. Conf.
on Data Mining, 2008, pp. 413–422.

[24] S. Aryal, K. Ting, G. Haffari, and T. Washio, “Mp-dissimilarity:
a data dependent dissimilarity measure,” in Proc. of Int. Conf. on
Data Mining (ICDM), 2014, pp. 707–712.

[25] H. Blockeel, L. D. Raedt, and J. Ramon, “Top-down induction of
clustering trees,” in Proc. Int. Conf. on Machine Learning (ICML
1998), 1998, pp. 55–63.

[26] B. Liu, Y. Xia, and P. Yu, “Clustering through decision tree
construction,” in Proc. Int. Conf. on Information and Knowledge
Management - CIKM, 2000, pp. 20–29.

[27] J. Basak and R. Krishnapuram, “Interpretable hierarchical cluster-
ing by constructing an unsupervised decision tree,” IEEE Trans. on
Knowledge and Data Engineering, vol. 17, no. 1, pp. 121–132, 2005.

[28] F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative visual
codebooks using randomized clustering forests,” in Advances in
Neural Information Processing Systems 19, 2006, pp. 985–992.

[29] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[30] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests
for image categorization and segmentation,” in Proc. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR 2008), 2008.

[31] F. Perbet, B. Stenger, and A. Maki, “Random forest clustering and
application to video segmentation,” in Proc. British Machine Vision
Conference, BMVC 2009, 2009, pp. 1–10.

[32] M. Bicego, “K-random forests: a K-means style algorithm for ran-
dom forest clustering,” in Proc. Int. Joint Conf. on Neural Networks
(IJCNN2019), 2019.

[33] D. Yan, A. Chen, and M. Jordan, “Cluster forests,” Computational
Statistics & Data Analysis, vol. 66, pp. 178–192, 2013.

[34] J. Gower, “Metric and euclidean properties of dissimilarity coeffi-
cients,” Journal of Classification, vol. 3, pp. 5–48, 1986.

[35] Y. Lin and Y. Jeon, “Random forests and adaptive nearest neigh-
bors,” Journal of the American Statistical Association, vol. 101, no.
474, pp. 578–590, 2006.

[36] C. Manning, P. Raghavan, and H. Schutze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[37] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classi-
fication, pp. 193–218, 1985.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 19,2022 at 12:06:52 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3086147, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[38] L. Zhao, A. Alipour-Fanid, M. Slawski, and K. Zeng, “Prediction-
time efficient classification using feature computational dependen-
cies,” in Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery &
Data Mining, 2018, pp. 2787–2796.

[39] M. Orozco-Alzate, P. Castro-Cabrera, M. Bicego, and J. Londoño-
Bonilla, “The dtw-based representation space for seismic pattern
classification,” Computers & Geosciences, vol. 85, pp. 86–95, 2015.

[40] M. Bicego, A. Farinelli, E. Grosso, D. Paolini, and S. Ramchurn,
“On the distinctiveness of the electricity load profile,” Pattern
Recognition, vol. 74, pp. 317–325, 2018.

[41] “https://archive.ics.uci.edu/ml/datasets/electrici-
tyloaddiagrams20112014.”

[42] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[43] B. Frey and D. Dueck, “Clustering by passing messages between
data points,” Science, vol. 315, p. 972976, 2007.

[44] M. Bicego, “Dissimilarity random forest clustering,” in Proc. Int.
Conf. on Data Mining (ICDM), 2020, pp. 936–941.

[45] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53–65, 1987.

[46] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. Perez, and I. Perona,
“An extensive comparative study of cluster validity indices,”
Pattern Recognition, vol. 46, no. 1, pp. 243 – 256, 2013.

Manuele Bicego Manuele Bicego is an asso-
ciate professor at the Computer Science Dept.
of the Univ. of Verona (Italy) since 2017. His re-
search interests are in statistical pattern recog-
nition and bioinformatics, e.g. on the probabilis-
tic modelling, representation, clustering and bi-
clustering of biological data. He is author of
more than 130 papers, published in international
journals, edited books and conferences. He is
AE of Pattern Recognition, and PC member
of many different international conferences and

workshops related to his research interests.

Ferdinando Cicalese Ferdinando Cicalese has
been associate professor of the Computer Sci-
ence dept, at Univ. of Verona (Italy) since 2014.
He received the Masters and PhD degrees in
computer science from University of Salerno
(Italy) in 1995 and 2001, respectively. From 2001
to 2014 he was first assistant professor and then
associate professor at University of Salerno and
from 2004 to 2009 he was research group leader
at Bielefeld University (Germany). His research
interests are in the area of algorithms and com-

plexity, (with a special emphasis on combinatorial search algorithms
and decision tree construction optimization), information theory and
fault tolerant error-correction codes. Dr. Cicalese is the recipient of the
2004 Sofja Kovalevskaja award from the Humboldt Foundation and the
Germany BMBF. He is author of more than 100 scientific publications,
including a Springer monograph on fault tolerant search algorithms, in
2011. Dr. Cicalese has been guest editor of international journals and
PC member and program chair of several international conferences.

Antonella Mensi Antonella Mensi received her
Master degree in Medical Bioinformatics from
the Univ. of Verona in 2018, with a thesis on
protein remote homology detection via multiple
instance learning and dissimilarity-based repre-
sentation. Since 2018, she is a Ph.D. student
in Computer Science at the Computer Science
Dept. of the Univ. of Verona. Her research inter-
ests include statistical pattern recognition, Ran-
dom Forests and bioinformatics.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 19,2022 at 12:06:52 UTC from IEEE Xplore.  Restrictions apply. 


