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a b s t r a c t 

Isolation Forest represents a variant of Random Forest largely and successfully employed for outlier de- 

tection. The main idea is that outliers are likely to get isolated in a tree after few splits. The anomaly 

score is therefore a function inversely related to the leaf depth. This paper proposes enhanced anomaly 

scores of the Isolation Forest by making two different contributions. The first consists in weighing the 

path traversed by an object to obtain a more informative anomaly score. The second contribution em- 

ploys a different aggregation function to combine the tree scores. We thoroughly evaluate the proposed 

methodology by testing it on sixteen datasets. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Random Forests (RF) are ensemble classifiers composed of ran- 

omized decision trees [1,2] . They are widely and successfully used 

n classification and regression but in the last few years their suc- 

ess is expanding also to other learning fields such as clustering, 

urvival analysis, multi-label classification and outlier detection. 

In particular we focus on outlier detection which is the task 

f finding abnormal objects in a dataset [3] . There exist two cate- 

ories of RF-based techniques for outlier detection: i) methodolo- 

ies which use standard RF for classification and create an artifi- 

ial negative class [4,5] ; ii) techniques that design novel types of 

andom Forests able to work with objects coming from only one 

lass. The ancestor of the latter category is the methodology called 

solation Forest (iForest) [6,7] which has been proved to be one of 

he best techniques for outlier detection [8,9] . iForest solves outlier 

etection by isolating each object in the dataset, i.e. by separating 

t from the rest of the data in an unsupervised way. To achieve 

nd retrieve isolation, iForest employs Isolation Trees (iTrees) and a 

epth-based anomaly score. The former are trees in which at each 

ode the split is performed completely at random: both the feature 

nd the cut-point along which to split are chosen randomly. Out- 

iers are usually few and different from the rest of the data and 

herefore they are more likely to be separated after few splits in 

Trees, i.e. they have a higher isolation capability. To quantify this 

haracteristic, an anomaly score based on the depth is computed. 

or each tree we retrieve the depth of the reached leaf and then 
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e compute the average across all trees. The final anomaly score 

s inversely proportional to the average reached depth. Therefore 

utliers, that are more likely to end up in leaves at smaller depths 

han inliers do, will have a higher anomaly score. 

There exist several works that extend iForests, most of them fo- 

using on the training phase [10–16] . Indeed there are fewer ex- 

ensions of the testing phase [10,12,15–17] , i.e. the definition of the 

nomaly score, which remains an open research direction. 

In this paper we focus on extending the testing phase of Iso- 

ation Forest, in detail we make two contributions 1 . The first one 

s based on the fact that the original anomaly score is computed 

sing only the depth of the reached leaf, while there are many 

ther information in a tree that can be exploited. Therefore we 

ropose an improved score that uses these information to weigh 

he path traversed by an object. The second contribution focuses 

n the score at forest level, i.e. on how to aggregate the scores 

btained from each tree. The original anomaly score is penalized 

henever there are trees composed by unlucky randomly gener- 

ted splits, i.e. the feature or/and the cut-point along which to split 

re bad in terms of isolation. Therefore, starting from a probabilis- 

ic interpretation of the trees, we design a novel anomaly score 

hat tries to improve the original one by employing a different ag- 

regation function to obtain the anomaly score at forest level. 

From an experimental point of view we tested the methodol- 

gy on 16 datasets obtaining promising results. In detail we inves- 

igated different parametrizations and configurations, comparing 

oth the path-weighted variants and the novel aggregation func- 

ion with the original anomaly score. In addition, we also make a 
1 A preliminary version of this paper was published in [18] in which we propose 

art of the first contribution. 

https://doi.org/10.1016/j.patcog.2021.108115
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omparison between the proposed approach and some extensions 

f the iForest with good results. 

The rest of the paper is organized as follows: in Section 2 we 

resent in detail the Isolation Forest, while in Section 3 we 

horoughly define the proposed methodology. Section 4 is ded- 

cated to the experimental part and the related results. Finally, 

ection 5 contains some conclusions. 

. Background 

Isolation Forest is a RF-based methodology for outlier detection 

esigned by Liu et al. [6,7] . Differently from other techniques it 

oes not aim at discriminating the two classes, but rather at isolat- 

ng each point from the rest of the data. Isolation is achieved using 

he Isolation Trees (iTrees) which are based on [19] . In [19] the au-

hors propose an alternative tree structure, called ExtraTrees , to the 

ne used in binary RF for classification [1] . While in [1] trees are

uilt a on random subsample of the training set drawn with re- 

lacement, each ExtraTree is built using the entire training set, to 

educe the bias of the classifier. The other main difference between 

1] and [19] stands in the splitting procedure: in both method- 

logies at each node a subset of features is selected but while in 

1] all possible splits are evaluated, in [19] the best split is cho- 

en from a very restrictive set, leading to an increased degree of 

andomness. In detail for each of the chosen features the cut-point 

long which to split is selected randomly from the range of the 

eature. The extreme version of the ExtraTree structure is called 

otally randomized trees, in which each split is performed com- 

letely at random: both the feature and the cut-point are chosen 

andomly. 

The iTrees are based on this latter version, which does not re- 

uire any information on the class of the objects to split the nodes, 

llowing iTrees to work in an unsupervised way. Differently from 

otally randomized trees, each iTree is built using a subsample of 

he training set, drawn without replacement. Outliers are usually 

ew objects which are very different from the rest of the data, 

herefore by using iTrees there is a higher probability to pick a 

plit early in the tree-building process that may separate the out- 

ier from the rest of the data. In other words outliers are likely 

o be isolated after few splits and they will end up in leaves at a

mall depth. 

At testing level, the isolation capability of each object must 

e recovered: to do so in [6,7] the authors define an anomaly 

core solely based on depth. In detail, considering an iForest F the 

nomaly score of a point x is defined as: 

 (x ) = 2 

− E(h t (x )) 

c(N) (1) 

here N is the number of training samples used to build a tree, 

(h t (x )) is the average path length across all trees and c(N) is a

ormalization factor needed to compare forests of different sizes. 

o compute c(N) , which can be seen as the average path length, 

6,7] employ the estimation of the average path length of unsuc- 

essful searches in Binary Search Trees, which is defined in the fol- 

owing way according to [20] : 

(N) = 

{ 

2 H(N − 1) − 2(N − 1) /N if N > 2 

1 if N = 2 

0 otherwise 
(2) 

here H(N) indicates the N 

th harmonic number. 

The term E(h t (x )) in Eq. (1) is defined as: 

 ( h t ( x ) ) = 

∑ 

t∈F h t ( x ) + 

∑ 

t∈F c ( | l t ( x ) | ) 
| F | (3) 

here t is a tree, l t (x ) is the leaf in tree t reached by x and

 t (x ) = |P t (x ) | with P t (x ) being the set of nodes traversed by x

rom the root to a leaf, i.e. it is its path in the tree t . In this case
2 
he normalization factor c(| l t (x ) | ) is employed to estimate the av-

rage depth of the tree that can be built from l t (x ) when t is not

ully grown. The anomaly score defined in Eq. (1) is a very good 

easure to characterize outliers since, as mentioned before, few 

plits are needed to isolate them. In other words, outliers will be 

ikely to traverse a shorter path with respect to inliers, producing 

n higher anomaly score (usually ≥ 0 . 5 as stated in [7] with a max-

mum value of 1 and a minimum of 0). 

The methodology has been shown to be very successful 

8,9] leading to several extensions [10–17] . In [10] the same au- 

hors of iForest propose an alternative way to build the iTree such 

hat clustered outliers can be detected: they introduce non-parallel 

plits and a standard deviation-based optimization function. In the 

ame work the authors propose an alternative way of determin- 

ng the path length: if an object traverses an internal node but 

t is out of range with respect to the performed split, it is more 

ikely that the object is an outlier, and therefore the node is not 

ounted in the total path length. In [11] a similar idea to [10] is

arried out but the split is completely random. In [12] Guha et al. 

ropose a modification of the iTree: they weigh the choice of the 

eature along which to split such that uninformative features are 

iscarded. They also introduce a new anomaly score for streaming 

ata based on the change in the model complexity if the object 

ere to be removed. In [13] the authors modify the iTree to im- 

rove detection when only inliers are available; in detail [13] in- 

roduces splits which are able to cut outside the feature range and 

t establishes a threshold on the node size, below which a node 

annot be split. Another work, [14] , performs isolation by choos- 

ng the split which is able to create one node of maximum volume 

nd the smallest number of points–the outliers–and the other of 

inimum volume and the maximum number of points–the inliers. 

n [17] the authors propose a novel anomaly score that assigns to 

ach object a fuzzy value of membership to each traversed node; 

o obtain the forest score the values in a tree are summed and 

hen averaged over the different trees; an object with a low value 

f membership is more likely to be an outlier. The same authors of 

17] , in [15] propose to optimize the iTree structure by extending 

he possibility to split each node into k children nodes, where k 

s optimally and locally chosen using k-means; the scoring func- 

ion is analogous to the one defined in [17] . Finally in [16] the

uthors present a novel training methodology based on similar- 

ty. Each tree is built by splitting each node into maximum k chil- 

ren, where k is fixed, by choosing k random prototypes among the 

raining objects. The remaining objects are assigned to the node 

hich representative prototype is the most similar according to a 

redefined kernel function. In [16] they also propose a novel scor- 

ng function proportional to the number of training objects that 

nd up in the leaf reached by the testing object under analysis. 

Summarizing Isolation Forest represents a very successful 

ethodology which has been thoroughly extended, especially in 

ts training stage. This paper is inserted into the context of the ex- 

ensions of the testing phase. The extensions present in literature 

ssume different perspectives. In detail [12] defines a score in the 

ontext of streaming data while [16] proposes a scoring function 

ased on the leaf size. Then [17] introduces a membership score 

hat can be interpreted as a weight for the traversed path, in other 

ords it can be considered as a special case of our framework. Fi- 

ally [10] represents the approach with the intuition most simi- 

ar to ours: the authors improve the anomaly score by employing 

ath-related information, but they do it in a different way–via the 

emoval of nodes from the path rather than quantitatively exploit- 

ng the information these nodes contain. We can therefore con- 

lude that our methodology differs from previous works since we 

ropose refinements of the anomaly score while maintaining the 

riginal concept of [6,7] . In detail we propose several scores that 

re weighted using the information present in each traversed node 
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nd we introduce an aggregation function that exploits in a differ- 

nt way the same information of the original anomaly score. 

. Proposal: Enhanced anomaly scores 

The proposal is divided into two subsections, one per contribu- 

ion. The first contribution comprises of five novel anomaly scores 

hich embed additional information in the scoring function. The 

econd contribution consists in a novel function to aggregate at 

orest level the scores obtained from each tree: we derived the 

ew formula starting from an analysis of the anomaly score at tree 

evel. 

.1. Path-weighted scores 

The first contribution tries to overcome the limitations of the 

nomaly score by employing additional information. Indeed in its 

riginal formulation the anomaly score only uses the depth of the 

raversed path: all nodes and the objects they contain are consid- 

red to have the same importance, which is a rather approximate 

ssumption. Therefore we propose to weigh the path traversed by 

he object in each tree. We define five different variants, which we 

all path-weighted anomaly scores . All variants employ information 

elated to the training process and the structure of the tree, encod- 

ng it as a weight for each traversed node. 

In particular the variants that we propose redefine the function 

 t (x ) which retrieves the path length of x in a tree t . In detail we

an write h t (x ) as follows: 

 t (x ) = 

∑ 

k ∈P t (x ) 

1 . (4) 

iven a tree t and the path P t (x ) of an object x , we can generalize

 t (x ) as h w 

t (x ) , which we define as: 

 

w 

t (x ) = 

∑ 

k ∈P t (x ) 

w tk (5) 

here w tk represents the weight the node k has in tree t . Clearly, 

hen considering w tk = 1 ∀ t, k , we have the original anomaly

core and thus h w 

t (x ) = h t (x ) . 

Aggregating at forest level h w 

t (x ) , we can make a novel formu-

ation of the anomaly score presented in Eq. (1) : 

 

w (x ) = 2 

− E(h w t (x )) 

c(N) (6) 

hich corresponds to the original unweighted anomaly score when 

h w 

t (x ) = h t (x ) . 

Summarizing, after defining the weights w tk , we embed them 

nto Eq. (5) and then into Eq. (6) –or an analogous aggregation 

unction–to obtain the path-weighted anomaly score. 

We design five different definitions for w tk , briefly described in 

he following. 

Variant 1 – Neighborhood: The first variant we present is 

ased on the notion of neighborhood given by [21] . Given an ob- 

ect x that traverses a node k in a tree t , the neighborhood of x in

elation to k is the set of all the training points passing from said

ode, i.e. the set of training objects that node k contains. We can 

eneralize this concept, removing the relation to x : N tk is the set of

raining objects that pass by k in t . The size of the neighborhood 

s an indicator of the importance of a node: nodes with a small 

eighborhood are more important because they have a higher de- 

criptive capability than nodes with a larger one. 

In standard RF for classification, the neighborhood is larger 

or early-created nodes, such as the root, which contains the en- 

ire training set, and smaller for the leaves. The interpretation is 

lightly different when using the Isolation Forest as training model: 

he smaller and more informative neighborhood appears not only 
3 
hen the depth is very big but also when the depth is small 

nd an outlier has been isolated–which results in leaves at small 

epths. We therefore want to assign a greater weight to nodes 

hich neighborhood is small. Given a tree t and a node k in t , 

e define its weight w 

N 
tk 

as: 

 

N 
tk = 

1 

| N tk | (7) 

here | N tk | indicates the size of the neighborhood, i.e. the number 

f objects that node k contains. 

We call V 1 the path-weighted anomaly score obtained from 

mbedding w 

N 
tk 

into Eq. (5) and then into Eq. (6) . 

Variant 2 – Proxy: The second weighted variant is based on 

oncepts from [14] , an extension of Isolation Forest that we men- 

ioned in Section 2 . In particular Goix et al. propose a new train-

ng process to build the trees which optimizes the splitting proce- 

ure. The methodology chooses in a node the split that minimizes 

 proxy function which captures the information loss caused by 

he split. This is a standard procedure carried out in binary clas- 

ification by exploiting the class labels. In the unsupervised con- 

ext, labels are not available and a different definition for the proxy 

unction must be provided. 

In detail the final aim is to have a minimum volume node con- 

aining the maximum number of objects, ideally the inliers, and a 

aximum volume node containing the minimum portion of them, 

deally the outliers. In practice to manage the absence of labels the 

ne-class proxy function works in the following way: i) in each 

ode it estimates the number of outliers based on the number of 

nliers; ii) it captures the information loss by employing the vol- 

me of the node that is being split and that of its parent–for fur- 

her details please refer to [14] . The meaning behind the one-class 

roxy is the following: the lower its value the better the split, i.e. 

he better the isolation process. On the contrary, if the proxy of 

he node has an high value it means that the split is not able to

eparate well the objects contained in the node. 

Based on these notions, we define a new weight w 

P 
tk 

, given a 

ree t and a node k in t , as: 

 

P 
tk = 

1 

proxy t (k ) 
(8) 

here proxy t (k ) is the proxy measured in the node k of tree t . We

all V 2 the path-weighted anomaly score that employs w 

P 
tk 

. 

Variant 3 – Proxy-Neighborhood: The third variant we define 

ombines the first two weights, i.e. it takes into account both the 

eighborhood size of the node and the goodness of the split. 

Given a tree t and a node k in t , its weight w 

PN 
tk 

is: 

 

PN 
tk = 

1 

proxy t (k ) | N tk | . (9) 

e call the path-weighted anomaly score that employs w 

PN 
tk 

, V 3 . 

As to the remaining two variants, their definition starts from 

he following observation: whenever there are multiple outliers 

parsely distributed in the space, or if there are some outliers 

hich are closer than expected to the normal data distribution, it 

ay happen that the number of splits required to separate said 

utliers from the rest, will be higher than expected. In Fig. 1 

e present a practical example of the behaviour of the standard 

nomaly score. We simulate an iTree by performing manual splits. 

e focus on the isolation of four objects: each one is highlighted 

n a plot, and its isolation is clear from the highlighted splits. The 

tandard anomaly scores of the highlighted points are: (a) 0.5 (b) 

.0 625 (c) 0.0 625 and (d) 0.0 0 098 which correspond to: 1, 5, 5

nd 10 splits respectively. We can observe that while there is a no- 

iceable difference between inliers and distant outliers, it is rather 

ifficult to make a distinction between the outlier closer to the in- 

ier distribution and the marginal inlier, i.e. between Fig. 1 (b) and 
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Fig. 1. Each plot represents the isolation of one object via an Isolation Tree. The objects are respectively: (a), (b) outliers and (c), (d) inliers. 
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c). Actually their scores at tree level are identical. However we 

an make the two following observations: i) because of the isola- 

ion principle, leaves higher in a tree are likely to contain outliers, 

hereas deeper leaves typically contain inliers; ii) in a tree higher 

odes usually contain many objects whereas deeper nodes con- 

ain fewer objects. Therefore we can reasonably infer that leaves at 

mall depths are likely to have ancestor nodes with many objects. 

nstead inliers are usually isolated very deeply in a tree and thus, 

he last splits before their isolation are often described by small 

odes–and this makes sense since inliers are part of the same data 

istribution. Therefore we would like to design a path-weighted 

core that does not only consider the number of objects encoun- 

ered in the traversed path, but also their depth. This information 

orresponds to the depth of the Lowest Common Ancestor (LCA) of 

he testing object and each training object encountered in the path 

rom the root to the leaf. Presuming the assumption is true, we 

an define a weight for x with respect to a training object y used 

o build the tree t: 

 

LCA 
t (x, y ) = d(x ) − LCA (x, y ) (10) 

here LCA is the depth of the LCA, and d(x ) is the depth of the

esting object, necessary to account for the fact that the impor- 

ance of the depth of the LCA is related to the depth of the testing

oint itself–note that in order to use this information to weigh the 

ath, we first must traverse the tree and retrieve the leaf x ends 

p into. 

Finally, based on the above weight we can define two different 

ariants of w tk : 

Variant 4 – LCA of the Neighborhood: Before defining w tk we 

xtend the definition of w 

LCA 
t (x, y ) to all training objects contained 

n the nodes traversed by x : we define the total weight of the path.
4 
e call it w 

LCA 
P t (x ) 

and it is defined as: 

 

LCA 
P t (x ) = 

∑ 

y ∈S t w 

LCA 
t (x, y ) 

|S t | (11) 

here S t is the training set used to build t and |S t | is its size. We

an observe that all training objects are encountered in the path 

f x and therefore each y ∈ S t must be considered in the weight-

ng procedure. The weight is averaged across all samples. We can 

ewrite the path weight w 

LCA 
P t (x ) 

as a variant of w tk . Given a tree t

nd a node k in t we define w 

LCA 
tk 

as: 

 

LCA 
tk = 

∑ 

y ∈ N tk 
1 (d(k ) = LCA (x, y )) · w 

LCA 
t (x, y ) ∑ 

y ∈ N tk 
1 (d(k ) = LCA (x, y )) 

(12) 

here d(k ) is the depth of node k and 1 () is an indicator func-

ion. This function is 1 only once for a specific weight w 

LCA 
t (x, y ) ,

hat is when the node k and the LCA are at the same depth. The

atter happens when k and the LCA are the same node since there 

s only one node in P t (x ) for which the depth is d(k ) . The indica-

or function is necessary otherwise the relation between x and y is 

onsidered in each node k where y is present. The weight is thus 

veraged only for those samples in k to which a weight has been 

ssigned. When embedding this weight in Eq. (6) , we obtain the 

ath-weighted variant V 4 . 

Variant 5 – LCA of the Neighborhood (Anomaly Score): The 

ast variant is slightly different from the latter, starting from the 

efinition of w 

LCA 
t (x, y ) which we redefine as w 

LCA −AS 
t (x, y ) : 

 

LCA −AS 
t (x, y ) = 2 

−w 

LCA 
t (x,y ) . (13) 

his results also in a novel formulation of the path-weight as 

 

LCA −AS 
P t (x ) 

: 

 

LCA −AS 
P t (x ) 

= 

∑ 

y ∈S t w 

LCA −AS 
t (x, y ) 

|S t | . (14) 
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inally we redefine the weight assigned to each node as w 

LCA −AS 
tk 

: 

 

LCA −AS 
tk 

= 

∑ 

y ∈ N tk 
1 (d(k ) = LCA (x, y )) · w 

LCA −AS 
t (x, y ) ∑ 

y ∈ N tk 
1 (d(k ) = LCA (x, y )) 

. (15) 

he main difference with respect to the previous variant is that 

e already assign an anomaly score between 0 and 1 to each 

eight present in the path. In other words each weight describes 

ow much the traversed node contributes to the outlierness of the 

oint. 

This last variant is a stand-alone with respect to the previously 

efined criteria: the weight is embedded into Eq. (5) , but it is not

ossible to apply Eq. (6) . Thus we must define a different aggrega- 

ion criteria to obtain the path-weighted anomaly score, which we 

all V 5 : 

 5(x ) = 

∑ 

t∈F h 

w 

t (x ) 

|F| (16) 

here h w 

t (x ) takes w 

LCA −AS 
tk 

as weight for each node. We can ob-

erve that V 5 is simply the average of the tree scores. 

In conclusion the last two variants allow for outliers closer to 

he normal distribution to have a greater score and subsequently 

he probability of being wrongly classified as an inlier lowers. Even 

or inliers the score tends to be increased, but since their score is 

ery low, the impact of using this additional information is weaker. 

n practice if we consider again the example in Fig. 1 and com- 

ute V 5 we obtain the following scores: (a) 0.5, (b) 0.1118, (c) 

 . 1099 and (d) 0.0226–analogously it works for V 4 . We can ob-

erve that only score (a) is equal to s (x ) , this is due to the fact

hat the LCA with all other training points is the root, which has 

epth 0. All other scores instead, increase: we can observe that the 

arginal inlier is now scored a little lower than the outlier closer 

o the main data distribution, as expected from the assumptions 

n which V 4 and V 5 are based on. We can also observe that even

f score (d) increases, it is still much lower than the other scores. 

his example suggests that employing the depth of the LCA to en- 

ich the score can be beneficial at the level of a single tree, and

hus it can subsequently lead to improvements at forest level. 

Summarizing, the path-weighted anomaly scores that we have 

roposed and described are based on the idea that to score a point 

 in a tree we should not only consider the leaf it ends up into, but

he whole structure of the tree, i.e. we should relate the testing 

oint x to the training set of the tree. 

.2. Probability-based aggregation function 

The second contribution focuses on the improvement of the 

cores at forest level, i.e. how to aggregate the scores obtained 

rom each tree. Our reasoning starts from the concept that the 

Tree structure can be interpreted from a probabilistic point of 

iew. In detail we can start from Eq. (1) , which computes the 

nomaly score in a forest and if we consider a single tree t the 

ormula becomes: 

 t (x ) = 2 

−h t (x ) (17) 

to simplify the notation we assume t to be completely grown so 

hat the we can leave out the normalization term c(| l t (x ) | ) . This

ormulation is equivalent to the definition of p(l(x )) , the probabil- 

ty of the leaf l reached by x in a binary dyadic tree [22] . Therefore

t seems reasonable to enrich the anomaly score with a probabilis- 

ic interpretation, i.e. we can interpret s t (x ) as the probability of x

eing an outlier. 

The interpretation at forest level is more complex. Eq. (1) can 

e decomposed in the following formula: 

 

−
∑ 

t∈F h t (x ) 

|F| = 2 

− h 1 (x )+ ... + h |F| (x ) 

|F| = 2 

− h 1 (x ) 

|F| · . . . · 2 

− h |F| (x ) 

|F| . (18) 
5 
ollowing the reasoning done above, we can interpret Eq. (1) as 

he product of the probabilities. The probabilistic interpretation be- 

ind this is that each tree, or better each leaf reached by the ob- 

ect, is independent: the joint probability of independent events 

s the product of their probabilities. This is a very reasonable ap- 

roach since the trees are built independently. Therefore given a 

orest composed of two independent trees, this scoring function 

epresents the probability of x being an outlier in the first tree and 

n the second tree at the same time; this can be generalized to 

ny number of trees. In some scenarios, using the product of the 

ree scores is disadvantageous. For example if we want to isolate 

n outlier and one of the trees is unable to do it in few steps, the

core at forest level will be lower than expected. Therefore we can 

onclude that the original anomaly score can be a very restrictive 

ule. 

To obtain a less restrictive score, we start from a different 

ssumption: trees are replicas of the same event. Therefore the 

nomaly score at forest level should represent the expected value 

f the probability distribution which values are the different leaves, 

.e. the different replicas, reached by the object. Thus the probabil- 

ty of x being an outlier in the forest should be the average of the

robabilities of x being an outlier in each tree. Following this rea- 

oning we define the novel anomaly score p(x ) of an object x in a

orest F as: 

p(x ) = 

2 

−h 1 (x ) 

|F| + . . . + 

2 

−h |F| (x ) 

|F| . (19) 

he formula of p(x ) can be written as: 

p(x ) = 

∑ 

t∈F 2 

−h t (x ) 

|F| . (20) 

his new definition leads to a less restrictive score, i.e. p(x ) is able 

o better mitigate the presence of badly built trees than s (x ) does. 

To better understand the drawback of employing s (x ) with re- 

pect to using p(x ) we can observe Fig. 2 . We have a set of nor-

ally distributed objects shown as circles and an outlier shown 

s a square, which is distant from the rest. We perform random 

plits that lead to the generation of two Isolation Trees, which we 

all Tree 1 and Tree 2. In Fig. 2 we show the splits performed in

ach tree to isolate the outlier in the left and right plot respec- 

ively. We can observe that in the first tree, the outlier is isolated 

fter one split while Tree 2 takes five splits to separate the ob- 

ect from the rest. If we consider the tree scores we would have: 

 1 (x ) = 0 . 50 0 0 and s 2 (x ) = 0 . 03125 . Tree 2 is inaccurate , meaning

hat it is unable to detect the outlier since it does not isolate it 

fter few splits. By combining the scores using the original scoring 

unction we obtain s (x ) = 0 . 01563 which is lower than any of the

nomaly scores at tree level–due to the aggregation function that 

enalizes greatly badly built trees. If instead we compute p(x ) , we 

btain p(x ) = 0 . 2656 which is much higher than s (x ) , i.e. the prob-

bility of x of being an outlier when evaluated with p(x ) is higher. 

These considerations are also confirmed if we interpret the 

riginal and proposed score in the field of ensemble classifiers 

23] , to which iForests belong to. Indeed the original anomaly score 

 Eq. (1) ) is a variant of the product rule while our proposal corre-

ponds to the sum rule ( Eq. (20) ): long considerations (e.g. [24] )

ave been made about the importance of which combiner function 

o use in an ensemble classifier, as Isolation Forests are. In [24] it 

s explained that the product rule is more inaccurate due to the 

act that a single bad score can decrease the overall performance 

f the methodology. We expect, due to all these considerations, to 

btain more refined results when using p(x ) with respect when 

mploying s (x ) . 
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Fig. 2. The two plots represent a data distribution contaminated by an outlier. In each figure the outlier is isolated via random splits of two Isolation Trees. 

4

a

t

t

d

j

t

 

i

t

b

F

S

t

4

r

U

[

[

a

r

a

t

t

c

t

e

t

a

f

o

e

o

f

o  

p

Table 1 

Overview of the 16 datasets used for the experimental evaluation. 

Datasets Nr. of Objects Nr. of Features Outlier % 

Adult 48,842 6 23.93% 

Annthyroid 7200 6 7.42% 

Arrhythmia 452 164 45.80% 

Cardiotocography 2126 21 22.15% 

ForestCover 286,048 10 0.96% 

Hepatitis 80 19 16.25% 

Http 567,498 3 0.39% 

Ionosphere 351 32 35.90% 

PageBlocks 5473 10 10.23% 

Pendigits 10,992 16 10.41% 

Pima 768 8 34.90% 

Shuttle 49,097 9 7.15% 

Smtp 95,156 3 0.03% 

Spambase 4601 57 39.40% 

Stamps 340 9 9.12% 

Wilt 4839 5 5.39% 

a

[

a

c

a

t
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. Results and discussion 

The current section describes the experiments done to evalu- 

te the presented methodology. In the first subsection we present 

he experimental details. Subsequently, in Section 4.2 we compare 

he original anomaly score s (x ) with the weighted variants, in or- 

er to show that the weighing of the path traversed by the ob- 

ects can lead to improvements. In Section 4.3 we compare the 

wo aggregation rules s (x ) and p(x ) to confirm our hypothesis that 

p(x ) is less strict than the original scoring function s (x ) . Further,

n Section 4.4 we also analyze the weighted scores when using 

he novel aggregation function p(x ) , in order to assess that com- 

ining the two contributions can lead to further improvements. 

inally, Section 4.5 is dedicated to a run-time analysis, whereas 

ection 4.6 compares the proposed approach with some recent ex- 

ensions of the iForest. 

.1. Experimental details 

To assess the robustness of the proposed methodology we car- 

ied out experiments on 16 datasets. In detail 12 of them are 

CI-ML datasets [25] which are benchmarks for outlier detection 

7,14] ; these datasets were processed following the indications of 

14] which in most cases consists of removing categorical features 

nd partitioning the classes into outliers and inliers. Each dataset 

esults from the union of the training and testing partitions avail- 

ble in the UCI-ML repository. The remaining 4 datasets, Cardioco- 

ography, Hepathitis, PageBlocks and Stamps , were taken from [26] ; 

hese datasets are processed in the following way: they do not 

ontain duplicates and they are normalized; in addition we chose 

o keep all the outliers. For all datasets we empirically discov- 

red that a z-score standardization was in general beneficial for all 

echniques involved in the experimental evaluation. Therefore we 

dded this pre-processing step, analogously to [14] and differently 

rom [26] in which they employ a min-max scaling. 

In Table 1 each dataset is described in terms of name, number 

f objects, number of features and outlier percentage. The datasets 

ncompass a wide variety of cases: they differ in size (the smallest 

ne has 351 objects while the biggest 567,498), in the number of 

eatures (from a minimum of 3 up to 164) and in the percentage 

f outliers ( [0 . 03% − 45 . 8%] ). Having datasets with a high outlier

ercentage is not uncommon in this field since often the datasets 
6 
re adaptations of classification problems; and as explained in 

26] the percentage of outliers does not influence the discussion 

bout which methodology is the most suitable for the task. As ac- 

uracy measure we adopted the area under the ROC curve (AUC) 

s often done in the outlier detection field [6,27] . 

On each dataset we carried out several experiments by varying 

he number of trees in a forest T (50, 100, 200, 500), the num- 

er of randomly sampled objects used to build each tree N (64, 

28, 256, 512, 1024), the maximum depth D of each tree ( N − 1 ,

og 2 (N) ) and the number of randomly chosen features to build 

ach tree F ( d , d / 2 where d is the number of features of the

ataset). For each experiment the dataset has been randomly split 

n half, i.e. one part used for training and one for testing, with the 

onstraint that the training set does not contain outliers, as done 

n [14] . Further, each experiment has been repeated 10 times; in 

etail for each dataset the 10 partitions of training and testing sets 

re the same independently of the parametrization setting. 

.2. Comparison between s (x ) and path-weighted anomaly scores 

The first analysis compares s (x ) ( Eq. (1) ) with the path-

eighted anomaly scores V 1 − V 5 as defined in Section 3.1 . 
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Fig. 3. Comparison between s(x) and the weighted variants of the mean rank when varying the training sample size N. 
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In Fig. 3 we have four plots: each one analyzes and compares 

he behaviour of each path-weighted variant and of s (x ) when 

arying the training sample size N. In particular, in the plot we 

isplay the mean rank, i.e. the position of a given technique in the 

anking obtained by sorting the AUC values of each dataset aver- 

ged across the 10 iterations and the forest size T . The difference 

mong the four plots stands in the values of the other two param- 

ters D and F , which are fixed for each plot and explore all pos-

ible combinations–4 in total. In Fig. 4 we repeat the analysis by 

onsidering variations in the forest size T . 

We can observe that in both Figs. 3 and 4 , independently of the

nalyzed parameters, most path-weighted variants perform well, 

ften outranking s (x ) . The observation is always true for the vari-

nts based on the LCA, V 4 and V 5 , and in particular the latter

eems to be the best choice in almost all cases. Also V 2 is able

o outrank the unweighted variant in more than half the examined 

arametrizations, nevertheless it is difficult to generally establish 

hich one is better. Instead the variants based on the neighbor, 

 1 and V 3 are almost always outranked by the unweighted vari- 

nt s (x ) . In addition we can infer that in Fig. 3 s (x ) tends to im-

rove as the number of training objects increases; this observation 

s reasonable: with fewer data it is even more important to em- 

loy additional information. Nevertheless the improvement of s (x ) 

ever leads to it being the best or second best choice. If we con- 

ider Fig. 4 we can observe that each variant tends to have a simi-
7 
ar rank across different parametrizations: only for V 3 we can no- 

ice a drastic change in ranking with a particular parametrization, 

.e. when D = N − 1 , F = d, probably because it exploits a greater

mount of information. As to s (x ) we can therefore observe that 

hanging the number of trees does not lead to a relevant change 

n the ranking: it is always outranked by at least one variant. 

To better understand the behaviour of the variants on the dif- 

erent datasets, in Table 2 we show the results on each dataset 

hen training the iForest with the default parametrization ( N = 

56 , T = 100 , F = d, D = log 2 (N) ) [6,7] (see Appendix A for the

esults on each dataset when using the same parametrization ex- 

ept for D = N − 1 ). The results for each dataset have been aver-

ged across the 10 iterations. To assess the statistical significance 

f the results we performed a Wilcoxon signed-rank test with sig- 

ificance level α = 0 . 05 followed by a Bonferroni correction: we 

ut a ∗ next to the path-weighted variant whenever it is signifi- 

antly different from s (x ) . Furthermore, we mark in bold the best 

verall variant for each dataset. 

In Table 2 we can observe that there is at least one path- 

eighted variant significantly outperforming s (x ) on 12 out of 16 

atasets; in detail the best performing variant seems to be V 5 , con- 

rming the observations made on Figs. 3 and 4 , closely followed 

y V 4 . We can also observe that V 1 and V 3 , as expected from the

nalyses on Figs. 3 and 4 , perform rather poorly compared to the 

ther variants. Finally, s (x ) is never the best significant choice. 
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Fig. 4. Comparison between s(x) and the weighted variants of the mean rank when varying the forest size T . 

Table 2 

Standard parametrization: comparison between s (x ) and path-weighted scores. 

Dataset s(x) V1 V2 V3 V4 V5 

Adult 0.657 0.655 ∗ 0.656 0.655 ∗ 0.655 0.657 

Annthyroid 0.915 0.906 ∗ 0.910 0.907 ∗ 0.922 ∗ 0.942 ∗

Arrhythmia 0.758 0.753 ∗ 0.756 0.753 ∗ 0.759 0.772 ∗

Cardiotocography 0.755 0.752 0.743 ∗ 0.751 0.744 ∗ 0.743 

Forestcover 0.841 0.816 ∗ 0.824 ∗ 0.817 ∗ 0.853 ∗ 0.927 ∗

Hepatitis 0.701 0.688 0.709 0.676 ∗ 0.711 0.745 ∗

Http 0.991 0.990 0.994 ∗ 0.987 ∗ 0.994 ∗ 0.994 

Ionosphere 0.905 0.889 ∗ 0.909 0.888 ∗ 0.921 ∗ 0.943 ∗

PageBlocks 0.802 0.787 ∗ 0.792 ∗ 0.779 ∗ 0.827 ∗ 0.862 ∗

Pendigits 0.799 0.807 0.837 ∗ 0.804 0.836 ∗ 0.852 ∗

Pima 0.733 0.737 ∗ 0.738 ∗ 0.737 ∗ 0.727 ∗ 0.714 ∗

Shuttle 0.996 0.995 ∗ 0.996 ∗ 0.995 ∗ 0.997 ∗ 0.998 ∗

Smtp 0.908 0.916 ∗ 0.924 ∗ 0.912 ∗ 0.918 ∗ 0.920 ∗

Spambase 0.844 0.838 ∗ 0.839 ∗ 0.839 ∗ 0.843 0.845 

Stamps 0.957 0.956 0.956 0.956 0.958 0.951 

Wilt 0.474 0.468 0.474 0.469 ∗ 0.503 ∗ 0.577 ∗
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a

In order to make a global comparison between all proposed 

ariants and s (x ) we employ the Friedman test followed by a 

ost-hoc Nemenyi test. The Friedman test is a non-parametric test 

hich should be used when comparing more than two methodolo- 

ies as suggested in [28] . It exploits the ranking of the methodolo- 

ies to assess whether there is a significant difference among the 

ethods; if the null hypothesis is rejected we can proceed with 

 Nemenyi test that assesses which pairs of methods are statis- 

ically different by employing a critical value. The critical value 

s the minimum difference that must exist between the ranks of 

he methodologies under consideration. The results of these tests 

an be depicted via a critical diagram [28] : we represent the ranks 
8 
rom highest to lowest and if the methods are connected by a line 

t means that they are not statistically different. We represent such 

est for the results of Table 2 in Fig. 5 (a) whereas in Fig. 5 (b) we

how the results of the test when changing the depth parameter to 

 = N − 1 (see Appendix A for the related table). The significance 

evel has been set to α = 0 . 05 . The critical diagram in Fig. 5 (a)

onfirms that while V 1 and V 3 are the worst performing variants 

nd are not comparable to s (x ) , V 5 is the best variant, compara-

le only to V 4 , showing a persistent improvement. From Fig. 5 (b)

e can instead observe that s (x ) is one of the worst variants along

ith V 3 , while the best methodology is still V 5 –even though it is

omparable to other path-weighted variants. 

In general we can conclude that weighing the path is conve- 

ient and advantageous. In detail the variant that performs the 

est is V 5 , independently of the used depth, closely followed by 

 4 . Please note that in Table 2 for HTTP and Shuttle, two datasets

or which all methodologies perform very well, there are some 

ases for which the difference of two techniques in terms of av- 

raged AUC is very small but statistically significant. We checked 

his strange behaviour, and we discovered that, on these datasets, 

ach technique does not vary too much over the different repeti- 

ions. Therefore, even if the difference between the averaged AUC 

f two techniques is low, this difference is always present: since 

he statistical test is based on rankings, the difference turns out to 

e statistically significant. This effect can be noticed also in Table 4 . 

.3. Comparison of s(x) to p(x) 

The second analysis compares s (x ) , which is the classical 

nomaly score obtained from Eq. (1) , and p(x ) , the novel anomaly 



A. Mensi and M. Bicego Pattern Recognition 120 (2021) 108115 

Fig. 5. Critical diagram comparing the 6 scoring functions when employing the standard parametrization with the exception of the depth set to (a) D = log 2 (N) and (b) 

D = N − 1 . 

Fig. 6. Comparison between s(x) and p(x) of the mean rank when varying the training sample size N. 
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core that we propose in Eq. (20) , which is derived from a different

ggregation of the tree scores. 

To understand the general behaviour of the two aggregation 

ules s (x ) and p(x ) , in Figs. 6 and 7 we plotted their behaviour

cross different sample sizes N and forest sizes T , respectively. The 

ean rank is computed in the same way as done in Section 4.2 .

n Fig. 6 we can observe that independently of all parameters, the 

roposed refinement of the anomaly score is almost always ranked 

etter than s (x ) (except in three particular settings). We can ob- 

erve that s (x ) improves as the training sample size increases, as 

lso observed in Fig. 3 . Similar considerations can be made when 
9 
bserving the behaviour of the two scores across different forest 

izes in Fig. 7 . 

Also in this case we present in Table 3 the AUC results of the 

wo alternatives for each dataset when using the standard iFor- 

st parametrization ( N = 256 , D = log 2 (N) , T = 100 , F = d) [6,7] –

e report the mean rank in the last row. As done in Section 4.2 ,

o assess statistical significance we performed a Wilcoxon signed- 

ank test with α = 0 . 05 : whenever the null hypothesis is rejected, 

e put in bold the best result. From Table 3 we can observe that 

p(x ) represents very often the best choice, as confirmed by the 

ean rank, validating the conclusions made on Figs. 6 and 7 . 
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Fig. 7. Comparison between s(x) and p(x) of the mean rank when varying the forest size T . 

Table 3 

Comparison between s(x) and p(x) when 

using the standard iForest parametriza- 

tion. 

Dataset s(x) p(x) 

Adult 0.657 0.656 

Annthyroid 0.915 0.927 

Arrhythmia 0.758 0.767 

Cardiotocography 0.755 0.747 

Forestcover 0.841 0.925 

Hepatitis 0.701 0.742 

Http 0.991 0.993 

Ionosphere 0.905 0.934 

PageBlocks 0.802 0.843 

Pendigits 0.799 0.784 

Pima 0.733 0.703 

Shuttle 0.996 0.997 

Smtp 0.908 0.910 

Spambase 0.844 0.835 

Stamps 0.957 0.949 

Wilt 0.474 0.531 

Ranks 1.62 1.38 

Table 4 

Standard parametrization: comparison between p(x ) and path-weighted scores. 

Dataset p(x) V1 V2 V3 V4 V5 

Adult 0.656 0.656 0.656 0.655 0.656 0.657 

Annthyroid 0.927 0.922 0.928 0.921 0.941 ∗ 0.942 ∗

Arrhythmia 0.767 0.758 0.764 0.757 0.772 0.772 

Cardiotocography 0.747 0.744 0.730 0.742 0.746 0.743 

Forestcover 0.925 0.850 ∗ 0.876 ∗ 0.847 ∗ 0.931 0.927 

Hepatitis 0.742 0.711 ∗ 0.732 0.697 ∗ 0.743 0.745 

Http 0.993 0.995 0.996 ∗ 0.994 0.994 0.994 

Ionosphere 0.934 0.918 ∗ 0.938 0.917 ∗ 0.943 ∗ 0.943 ∗

PageBlocks 0.843 0.830 ∗ 0.836 0.813 ∗ 0.857 ∗ 0.862 ∗

Pendigits 0.784 0.846 ∗ 0.871 ∗ 0.84 ∗ 0.829 ∗ 0.852 ∗

Pima 0.703 0.729 ∗ 0.727 ∗ 0.728 ∗ 0.710 0.714 ∗

Shuttle 0.997 0.997 ∗ 0.997 0.996 ∗ 0.998 ∗ 0.998 ∗

Smtp 0.910 0.922 ∗ 0.923 ∗ 0.918 0.918 0.920 

Spambase 0.835 0.842 0.841 0.845 0.844 0.845 

Stamps 0.949 0.954 0.951 0.953 0.951 0.951 

Wilt 0.531 0.512 0.534 0.513 0.575 ∗ 0.577 ∗
10 
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Fig. 8. Comparison between p(x) and the weighted variants of the mean rank when varying the sample size N. 

4

i

S

 

t

t  

f  

f

i

t

o  

e

a

a

t

T

w

T

t  

a

t

b

w

F

s  

c

a

p

s

T

t  

i

i  

p

f

i

v

w  

w

c

A

o

r

.4. Comparison between p(x ) and path-weighted anomaly scores 

In Section 4.2 we have shown the improvements of us- 

ng a weighted path to compute the anomaly score while in 

ection 4.3 we experimentally assessed the advantages of using 

p(x ) as the anomaly score instead of s (x ) . Since the difference be-

ween p(x ) and s (x ) stands in the aggregation function applied to 

he tree scores, we can embed the weights defining V 1 − V 4 in the

ormulation of p(x ) ( Eq. (20) ) analogously as what has been done

or s (x ) . We therefore propose an analysis aimed at understand- 

ng whether the weighted variants that employ p(x ) as aggrega- 

ion rule are able to improve the unweighted variant. For the sake 

f completeness we also include V 5 ( Eq. (16) ) in the comparison,

ven though its performance does not change with respect to the 

nalyses of Section 4.2 –recall that V 5 is obtained using a different 

ggregation function than both p(x ) and s (x ) . 

In Figs. 8 and 9 we analyze the parameters N and T respec- 

ively in terms of mean rank of p(x ) and the weighted variants. 

he analysis is performed and pictured in the same way as what 

e have done for the other comparisons in Section 4.2 and 4.3 . 

he conclusions that we can infer from Figs. 8 and 9 are similar 

o those made in Section 4.2 . The variants based on the LCA, V 4

nd V 5 always outrank the unweighted counterpart. Even though 

he variants based on the neighborhood, V 1 and V 3 seem not to 
11 
ring any advantage, there is a slight improvement of the former 

ith respect when employing s (x ) as aggregation function. From 

ig. 8 we can infer that p(x ) improves when increasing N, as ob- 

erved in Fig. 3 . If we instead focus on Fig. 9 p(x ) does not have a

onstant behaviour with respect to the forest size. 

In Table 4 we present the results on each dataset averaged 

cross 10 iterations when training the iForest using the default 

arametrization as done in Section 4.2 (see Appendix A for the re- 

ults when using the same parametrization except for D = N − 1 ). 

he statistical analysis and the visualization of the results is iden- 

ical to that of Table 2 . Analogously it holds for the global compar-

sons shown via critical diagrams in Figs. 10 (a) and (b). 

From Table 4 we can infer similar conclusions to those made 

n Table 2 : we can observe that all variants, except V 1 and V 3 ,

erform reasonably well. In general, using the novel aggregation 

unction seems to lead to an improvement. The critical diagram 

n Fig. 10 (a) validates the observations made in Table 4 : several 

ariants perform comparably well, with V 5 being the best choice, 

hile V 1 and V 3 perform the worst but are comparable to the un-

eighted variant p(x ) . Instead in Fig. 10 (b), which depicts the 

ritical diagram of the results of the test when D = N − 1 (see 

ppendix A for the related table), we can make a slightly different 

bservation: V 3 , the worst performing variant, is no longer compa- 

able to p(x ) . 
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Fig. 9. Comparison between p(x) and the weighted variants of the mean rank when varying the forest size T . 

Fig. 10. Critical diagram comparing the 6 scoring functions when employing the standard parametrization with the exception of the depth set to (a) D = log 2 (N) and (b) 

D = N − 1 . 
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.5. Run-time analysis 

In this section we make some qualitative and quantitative con- 

iderations on the computational overhead introduced by the pro- 

osed modifications. First of all it is important to note that there 

s no overhead when using the p(x ) aggregation function; actu- 

lly s (x ) and p(x ) use the same exact information, but combine it

ifferently. For what concerns the different weighting functions, to 

ompute V 1 we need to know the number of training objects con- 

ained in a node; this information is needed also for computing 

he standard anomaly score (see Eq. (3) ), and therefore its compu- 
12 
ation does not cause overhead (please note that this information 

an be easily stored during the training phase). As to V 2 (and V 3 ),

e need to calculate the proxy in each node, which requires to 

ake the whole training set traverse each tree. As to V 4 we need 

o compute the LCA of the testing object and each training object, 

hich require several traversals of each tree. The same reasoning 

olds for V 5 , in which we also have an additional operation for 

ach weight in the path. 

To provide a quantitative illustration of the required times we 

rained an iForest using the standard parametrization. We report 

n Table 5 the time in milliseconds that it takes to score a testing 
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Table 5 

Testing time in milliseconds of each scoring function using the standard parametrization. 

Dataset s(x) V1 V2 V3 V4 V5 

Adult 0.965ms 0.961ms 0.959ms 0.966ms 1.100ms 1.810ms 

Annthyroid 0.978ms 0.988ms 1.010ms 0.993ms 1.150ms 1.860ms 

Arrhythmia 0.838ms 0.836ms 1.070ms 1.080ms 1.280ms 1.810ms 

Cardiotocography 0.956ms 0.959ms 1.020ms 1.020ms 1.250ms 2.160ms 

Forestcover 0.990ms 1.020ms 0.994ms 0.990ms 1.130ms 2.090ms 

Hepatitis 0.708ms 0.669ms 1.230ms 1.270ms 1.830ms 2.220ms 

Http 1.000ms 1.030ms 0.992ms 0.995ms 1.100ms 2.120ms 

Ionosphere 0.840ms 0.831ms 1.070ms 1.050ms 1.480ms 2.100ms 

PageBlocks 0.894ms 0.898ms 0.921ms 0.911ms 1.050ms 1.780ms 

Pendigits 0.982ms 0.971ms 0.991ms 1.000ms 1.180ms 2.490ms 

Pima 0.988ms 0.977ms 1.160ms 1.130ms 1.520ms 2.420ms 

Shuttle 0.957ms 0.972ms 0.981ms 0.976ms 1.100ms 2.000ms 

Smtp 0.998ms 0.997ms 1.000ms 0.999ms 1.110ms 1.920ms 

Spambase 1.120ms 0.976ms 1.000ms 0.992ms 1.290ms 1.800ms 

Stamps 1.070ms 1.030ms 1.310ms 1.290ms 1.910ms 2.630ms 

Wilt 0.964ms 1.010ms 1.030ms 1.030ms 1.530ms 2.440ms 

Avg. 0.953ms 0.945ms 1.050ms 1.040ms 1.310ms 2.100ms 
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Fig. 11. Critical diagram comparing the proposed approach with extensions of iFor- 

est. 
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2 Please note that some of the results shown in Table 6 are different from those 

reported in [16] , mainly because we used a different version of the datasets and we 

did not perform a specific tuning of the parameters. 
bject–averaged for all objects in the testing set. The results gener- 

lly confirm the qualitative considerations; V 5 leads to the highest 

verhead, however the increase in testing time is highly balanced 

y the very good performances of the variant in terms of AUC. 

.6. Comparison with extensions of isolation forest 

In this section we compare the proposed approach to three ex- 

ensions of the Isolation Forest. In particular we considered Sci- 

orest (SCIF) [10] and two very recent proposals, namely Extended 

solation Forest (EIF) [11] , and Generalized Isolation Forest (GIF) 

16] . All three techniques have been described in Section 2 . We 

mployed the default parametrization for each technique, as ob- 

ained from the original papers; for parameters for which no de- 

ault values were given, we performed some preliminary experi- 

ents to find proper values. In detail for EIF we set T = 200 , N =
56 , D = log 2 (N) and the extension level to d − 1 . For SCIF we

et T = 100 , N = 256 , D = log 2 (N) , q = 2 , τ = 10 . For GIF we set T =
28 , N = max (Ntr, 256) , D = log 2 (N ) where N tr is the size of the

raining set; as the authors of [16] do in one of their analyses we

et the kernel to RBF and τ = 0 . 1 ; k , i.e. the number of children in

hich a node can be split, was set to 2, in order to have binary

rees; finally, the scaling value S (needed to compute the param- 

ter of the RBF kernel σ ) was set to S = 0 . 75 –except in case of

< 0 . 1 for which we increased S. As to the scoring function, we

sed the default one for each of the extensions: in [11] they em- 

loy s (x ) , in [10] they employ a modified version that does not

ake into account all traversed nodes as explained in Section 2 , 

hile in [16] they use as score the proportion of the objects that 

nd up in the leaf. For the proposed approach, we employed our 

est variant ( V 5 ), training the iForest with the default parametriza- 

ion. 

In Table 6 we present the average AUC across 10 iterations for 

ll datasets. As done for the other experimental analyses, we per- 

ormed a Wilcoxon signed-rank test with α = 0 . 05 adjusted with a 

onferroni correction, indicating with a ∗ a statistically significant 

ifference between the competitor and our approach (we also re- 

ort in bold the best result). We also make a global comparison 

f the four methodologies by performing a Friedman test followed 

y a Nemenyi test with significance level set to α = 0 . 05 (the cor-

esponding critical diagram is shown in Fig. 11 ). The results of the 

omparison are definitely interesting, and show that standard Iso- 

ation Forests results can be improved by more sophisticated train- 

ng strategies but also by better exploiting the information con- 

ained in a classically trained one. Actually the proposed approach 
13 
ompares very well with alternatives, being for many datasets the 

est choice 2 

. Conclusions 

The paper proposes novel anomaly scores for Isolation Forests. 

n detail we make two contributions. The first aims at improv- 

ng the scores at tree level by employing additional information 

resent in the tree: we propose 5 different variants. The second 

ontribution is based on aggregating the scores at forest level in a 

ifferent way than how the original anomaly score does, starting 

rom a probabilistic interpretation of the tree. 

The proposed anomaly scores have been thoroughly evaluated 

n sixteen datasets. Obtained results were really encouraging, also 

n comparison with other extensions of iForests based on sophis- 

icated training procedures. In detail improvements are made not 

nly when employing additional information in the score compu- 

ation, but also when simply changing the aggregation scheme. 

Since we evaluated our approach solely on a standard iForest, 

n the future we would like to investigate the combination of the 

roposed anomaly scores with more refined isolation-based train- 

ng procedures. Some issues may arise due to the different tree 

tructure: maybe to better exploit it some variants would need to 

e adapted. Nevertheless, since these alternative methodologies are 

solation-based, our approach is likely to work well. 
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Table 6 

Comparison between the proposed approach and other methodologies. 

Dataset 

Proposed 

Approach 

Extended 

iForest SciForest 

Generalized 

iForest 

Adult 0.657 0.639 ∗ 0.656 0.634 ∗

Annthyroid 0.942 0.715 ∗ 0.932 0.679 ∗

Arrhythmia 0.772 0.756 0.741 ∗ 0.498 ∗

Cardiotocography 0.743 0.696 ∗ 0.769 0.693 

Forestcover 0.927 0.887 ∗ 0.834 ∗ 0.948 

Hepatitis 0.745 0.713 ∗ 0.678 ∗ 0.669 ∗

Http 0.994 0.991 ∗ 0.990 ∗ 0.891 ∗

Ionosphere 0.943 0.925 ∗ 0.889 ∗ 0.818 ∗

PageBlocks 0.862 0.799 ∗ 0.923 ∗ 0.662 ∗

Pendigits 0.852 0.782 ∗ 0.817 ∗ 0.913 ∗

Pima 0.714 0.73 ∗ 0.602 ∗ 0.663 ∗

Shuttle 0.998 0.993 ∗ 0.998 0.789 ∗

Smtp 0.920 0.899 0.917 0.749 ∗

Spambase 0.845 0.604 ∗ 0.840 0.604 ∗

Stamps 0.951 0.942 ∗ 0.945 0.864 ∗

Wilt 0.577 0.361 ∗ 0.498 ∗ 0.355 ∗
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ppendix A. Results with full depth 

This additional section includes Tables 7 and 8 , which respec- 

ively refer to Sections 4.2 and 4.4 . In detail both tables show 

he results on each dataset when training the iForest with the 

efault parametrization ( N = 256 , T = 100 , F = d), except for the

epth which is set to D = N − 1 . The difference between the tables
able 7 

tandard parametrization: comparison between s (x ) and path-weighted scores, D = 

 − 1 . 

Dataset s(x) V1 V2 V3 V4 V5 

Adult 0.659 0.660 0.659 0.649 0.658 0.656 

Annthyroid 0.919 0.937 ∗ 0.933 ∗ 0.909 0.929 ∗ 0.949 ∗

Arrhythmia 0.757 0.763 0.763 0.751 0.758 0.774 ∗

Cardiotocography 0.747 0.697 ∗ 0.655 ∗ 0.629 ∗ 0.735 ∗ 0.732 

Forestcover 0.834 0.865 ∗ 0.856 0.820 0.845 ∗ 0.934 ∗

Hepatitis 0.701 0.717 0.724 0.680 0.717 ∗ 0.738 ∗

Http 0.992 0.996 ∗ 0.996 ∗ 0.995 0.994 ∗ 0.994 

Ionosphere 0.910 0.941 ∗ 0.955 ∗ 0.941 ∗ 0.928 ∗ 0.949 ∗

PageBlocks 0.811 0.887 ∗ 0.833 0.825 0.845 ∗ 0.872 ∗

Pendigits 0.834 0.927 ∗ 0.926 ∗ 0.927 ∗ 0.868 ∗ 0.874 ∗

Pima 0.731 0.697 ∗ 0.712 ∗ 0.681 ∗ 0.724 ∗ 0.701 ∗

Shuttle 0.996 0.996 0.996 0.987 ∗ 0.997 ∗ 0.998 ∗

Smtp 0.911 0.922 0.929 ∗ 0.917 0.923 ∗ 0.919 

Spambase 0.833 0.796 ∗ 0.824 0.748 ∗ 0.833 0.840 

Stamps 0.957 0.928 ∗ 0.939 0.832 ∗ 0.956 0.951 

Wilt 0.531 0.698 ∗ 0.684 ∗ 0.722 ∗ 0.57 ∗ 0.664 ∗

able 8 

tandard parametrization: comparison between p(x ) and path-weighted scores, D = 

 − 1 . 

Dataset p(x) V1 V2 V3 V4 V5 

Adult 0.657 0.660 0.658 0.649 0.658 0.656 

Annthyroid 0.928 0.941 0.937 0.913 0.943 ∗ 0.949 ∗

Arrhythmia 0.768 0.765 0.767 0.752 0.772 0.774 

Cardiotocography 0.747 0.698 ∗ 0.676 ∗ 0.639 ∗ 0.745 0.732 ∗

Forestcover 0.925 0.877 ∗ 0.890 0.831 ∗ 0.931 0.934 

Hepatitis 0.745 0.718 0.727 0.674 ∗ 0.742 0.738 

Http 0.993 0.995 ∗ 0.995 ∗ 0.995 0.994 0.994 

Ionosphere 0.934 0.943 0.956 ∗ 0.940 0.945 ∗ 0.949 ∗

PageBlocks 0.843 0.888 ∗ 0.855 0.838 0.859 ∗ 0.872 ∗

Pendigits 0.787 0.926 ∗ 0.917 ∗ 0.924 ∗ 0.837 ∗ 0.874 ∗

Pima 0.703 0.697 0.709 0.680 ∗ 0.709 0.701 

Shuttle 0.997 0.997 0.996 0.988 ∗ 0.998 ∗ 0.998 

Smtp 0.911 0.921 0.924 0.915 0.919 0.919 

Spambase 0.835 0.800 ∗ 0.836 0.756 ∗ 0.847 0.840 

Stamps 0.949 0.929 0.941 0.835 ∗ 0.951 0.951 

Wilt 0.538 0.706 ∗ 0.687 ∗ 0.727 ∗ 0.600 ∗ 0.664 ∗
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14 
tands in the aggregation function: in Table 7 s (x ) is used, while in

able 8 p(x ) is employed. The results for each dataset have been 

veraged across the 10 iterations. The statistical analyses and the 

isualization of the results are identical to those of Tables 2 and 4 .

In Table 7 there is at least one path-weighted variant signifi- 

antly outperforming s (x ) on 11 datasets. In detail V 5 seems to be

he best variant and all path-weighted variants, except V 3 , perform 

ignificantly better than s (x ) on at least 7 datasets. Finally s (x ) is

he best significant choice only for one dataset. 

From Table 8 we can infer, similarly to Table 7 , that all variants

xcept V 3 work well. We can also make two novel observations: 

) we cannot establish one best variant since V 5 and V 4 perform 

omparably well; and ii) p(x ) performs well confirming the good- 

ess of the novel aggregation scheme. 
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