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Abstract. Isolation Forests are one of the most successful outlier detec-
tion techniques: they isolate outliers by performing random splits in each
node. It has been recently shown that a trained Random Forest-based
model can also be used to define and extract informative distance mea-
sures between objects. Although their success has been shown mainly
in the clustering field, we propose to extract these pairwise distances
between the objects from an Isolation Forest and use them as input to
a distance or density-based outlier detector. We show that the extracted
distances from Isolation Forests are able to describe outliers meaning-
fully. We evaluate our technique on ten benchmark datasets for outlier
detection: we employ three different distance measures and evaluate the
obtained representation using a density-based classifier, the Local Out-
lier Factor. We also compare the methodology to the standard Isolation
Forests scheme.

Keywords: Outlier detection · Isolation forests · Random forest-based
similarity

1 Introduction

Isolation Forests (IF) [16,18] represent a Random Forest-based technique for
outlier detection, which success have been assessed in many different contexts:
for example, in the comparative analysis shown in [9], they were proven to be
the most successful methodology to solve this task. In contrast to other Random
Forests approaches for outlier detection [7,23], which are based on a standard
classification Random Forest trained on normal data and artificially generated
outliers, Isolation Forests use trees in which splits are performed completely at
random (similarly to the Extremely Randomized Trees [10]). Given the trees,
IFs solve outlier detection using the concept of “isolation”, which encodes the
fact that outliers are probably well separated from the rest, thus being able to be
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“isolated” from the remainder of the data within the early splits of the tree. Thus,
the anomaly degree of a given point can be detected by looking at the depth of
the leaf it reaches. Isolation Forests have been extensively employed, extended
and improved in many different aspects [8,11,13,14,17,19,24]: most of these
extensions [8,11,13,14,17,24] were devoted to improve the training stage, for
example by defining novel ways to split a node; few of them focus on improving
the testing phase, i.e. the anomaly score [13,19].

In this paper we propose and investigate an alternative exploitation of the
Isolation Forests for outlier detection: instead of employing the isolation concept,
we investigate the possibility of exploiting the IF to derive pairwise distances
between objects, to be then used as input for a distance or density-based outlier
detection classifier.

The proposed approach starts from the following observation: Random
Forests (RF) are not used solely for classification or regression, but also as a
valid and flexible data description tool. For example, in the field of clustering,
there are different approaches which exploit the concept that the intrinsic nature
of Random Forests allows to describe data in a meaningful way. In all these tech-
niques –the so-called distance-based RF clustering methods [3,4,23,26,27]– the
idea is to exploit RFs to derive a dissimilarity measure between points, to be
subsequently used as input to a distance-based classifier. These measures have
been proven to be more descriptive than standard geometric-based distances
such as the Euclidean distance, and have been successfully applied in many
different domains [1,12,21,22]. In almost all these methods the trained forests
are standard binary classification RFs, built using the points to be clustered
and a synthetically generated negative class. Very recently [3], however, other
learning schemes have been investigated, able to work without generating a syn-
thetic negative class that tends to hide the true nature and complexity of the
data. Among other learning strategies, those based on random mechanisms were
shown to perform surprisingly well, permitting to derive meaningful and infor-
mative distances.

Following these findings, we propose an alternative IF-based outlier detec-
tion scheme, in which we exploit Isolation Forests to derive dissimilarities to
be used inside a distance-based outlier detector. In the paper we investigated
three different strategies for computing the dissimilarity, based on different
intuitions [23,27]. To investigate the suitability of the proposed framework we
employed ten different benchmark outlier detection datasets, evaluating the
different dissimilarities also in comparison with the standard Isolation Forest
scheme. Results were encouraging, confirming the richness of the information
that can be extracted from this particular type of Random Forests.

The remainder of the paper is divided as follows: in Sect. 2 we present the
Isolation Forests in detail; in Sect. 3 we describe the proposed methodology and
then we test it in Sect. 4. In Sect. 5 we make some conclusions.
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2 Isolation Forests

The most successful and used Random Forest-based technique for outlier detec-
tion is called Isolation Forest, or IF [16,18]. Differently from other RF-based
methodologies for outlier detection, which create artificial outliers in order to
employ RF for classification [7,23], IFs work in a completely unsupervised way.
They aim at separating each object from the rest of the dataset, independently
of the class it belongs to. The success of the IFs can be attributed to the way in
which they are built –the training phase– and secondly, by how the score of each
object traversing the forest is computed –the testing one. In the two following
Subsections we illustrate in detail such procedures.

2.1 Training Phase

An Isolation Forest is composed of several Isolation Trees (iTrees), which are
built using a random subsample of the training set drawn without replacement.
Each iTree is built recursively by partitioning each node into two children nodes
in a completely random way, inspired by the Extremely Randomized Trees [10].
An axis-parallel split is performed in the following way: a feature is chosen
completely at random, and then a random choice is made also for the value
along which to split, in the domain of the selected feature. The tree is built until
a stopping criterion is met: either we have reached the maximum established
depth or it is impossible to split the node.

This tree structure is able to well differentiate outliers from inliers due to the
fact that the former are usually fewer, different and heterogeneous with respect
to the rest of the dataset. Indeed early splits will have a higher probability to
separate outliers from the rest of the data due to the nature of outliers. Therefore
we can infer that on average outliers will tend to end up in leaves that have a
smaller depth than those that inliers will reach.

2.2 Testing Phase

In the testing phase an object x traverses each tree of a trained IF and a score
is inferred, indicating the probability of x being an outlier. The definition of
anomaly score s(x), given by Liu et al. [16,18], is as follows:

s(x, S) = 2−E(h(x))
c(S) (1)

where S is the number of training samples used to build a tree, c(S) is a nor-
malization factor needed for comparing differently built forests and E(h(x)) is
the average path length across all trees –for a more detailed explanation please
refer to [16,18]. The score, which varies in the range between 0 and 1 behaves
as expected: a smaller average depth will lead to a higher score which increases
the probability of a point to be an outlier.
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3 Methodology

The proposed methodology consists of three steps:

1. Train an Isolation Forest model F .
2. Extract from F a distance matrix D which contains in cell (x, y) the pairwise

distance between the xth and yth object. We call it the IF-distance.
3. Classify the objects using an outlier detector that takes D as input.

Step 1: Training of IF

The first step represents the standard training of Isolation Forests, as described
in Sect. 2. We train a forest F composed of T trees. Each tree t has been built
using S samples drawn without replacement from the training set. The recursive
building procedure continues until a maximum depth D is reached. Within each
tree t we define the following elements: (i) root is the root node of the tree; (ii)
n is either an internal node of the tree, i.e. a node which can be split and is
not the root, or a leaf node. Each node n contains < S objects: we indicate this
quantity with |n| and (iii) d() is the depth function which retrieves the depth of
each node, where d(root) = 0.

Step 2: Derivation of IF-distance

First, we introduce some useful notation. When objects x and y are travers-
ing a tree t, we define: i) lt(x) is the leaf node reached by x which has depth
dt(x) = d(lt(x)); ii) Px

t = {n1, n2, . . . ndt(x)} is the path traversed by x in t in
terms of set of nodes, excluding the root –since it is traversed by all objects. Note
that dt(x) = |Px

t |. iii) LCAt(x, y) is the lowest common ancestor of x and y, i.e.
the last node in which x and y are together. The split defined in this node will sep-
arate x from y; iv) λt(x, y) = d(LCAt(x, y)) and v) P(x,y)

t = {n1, ..., LCAt(x, y)}
is the path traversed by both objects, i.e. the subset of nodes traversed by both
x and y. Note that λt(x, y) = |P(x,y)

t |.
The IF-distance D has been computed using three different proposals, widely

and successfully employed in the clustering scenario [23,27].

1. In [4,23] two objects in a tree t are similar if they end up in the same leaf.
Therefore, in a forest, two objects are more similar if they reach the same
leaf in a greater number of trees. Formally, given objects x and y the Shi
similarity between the two objects is defined as:

SimShi(x, y) =
∑

t∈F 1(lt(x) = lt(y))
T

(2)

where 1 is the indicator function that returns 1 if the two leaves are equal
and T is the number of trees in F . This measure is then transformed into a
distance in the following way:

Shi(x, y) =
√

1 − SimShi(x, y). (3)
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The other two measures are defined by [27]. The authors generalize the concept
introduced by [22]: objects which do not arrive at the same leaf may share some
similarity, that can be measured via the length of their common path. The novel
measures introduced in [27] are ClustRF-Strct-Unfm and ClustRF-Strct-Adpt
which we will call SimZhu2 and SimZhu3 for the sake of simplicity:

2. Given two objects x and y that traverse a tree t, SimZhu2t is defined as:

SimZhu2t(x, y) =
λt(x, y)

max{|Px
t |, |Py

t |}
. (4)

The length of the common path is divided by the length of the longest path:
this is necessary since, given a fixed λ, the similarity between x and y should
be higher if the denominator is closer to λ. The measure is extended to F in
the following way:

SimZhu2(x, y) =
∑

t∈F SimZhu2t(x, y)
T

(5)

which is simply the average similarity between the two objects. We transform
the similarity into a distance as follows:

Zhu2(x, y) = 1 − SimZhu2(x, y). (6)

3. The variant called SimZhu3 is a weighted version of SimZhu2. Each node is
considered to have a depth-based importance since objects which are together
in a very deep node are more similar than objects which are together only,
for example, in the root. To account for this, in [27] they define the weight of
a node k to be 1

|k| since smaller nodes are usually deeper in a tree. Therefore
given objects x and y the similarity SimZhu3t in a tree t is:

SimZhu3t(x, y) =

∑
k∈P(x,y)

t

1
|k|

∑
k∈Pb

t

1
|k| + 1

|lt(b)|
(7)

where b = argmax
x,y

|Pb
t |. The measure is extended to F in the following way:

SimZhu3(x, y) =
∑

t∈F SimZhu3t(x, y)
T

. (8)

We transform the similarity into a distance as follows:

Zhu3(x, y) = 1 − SimZhu3(x, y). (9)

Step 3: Distance-based outlier detection

After having computed D, we can apply any distance-based outlier detection
method. Different techniques exist in the literature –for a detailed explanation
please refer to [6]. The most simple methods exploit the distance to the kth
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neighbor in different ways: an example is NNd [25]. NNd states that if the
distance between an object and its nearest neighbor is greater than the distance
between the latter and its nearest neighbor, then the object under analysis has
an increased probability of being an outlier.

Then there are more refined techniques which employ an estimation of the
relative density to solve the task, such as the Local Outlier Factor (LOF) [5]. LOF
works by comparing the neighborhood density of the object under analysis with
that of its neighbors. The object has a higher probability of being an outlier if at
least one of the neighbors has a denser neighborhood than its own. The classifier
has only one parameter to set: K, the neighborhood size. In our work we employ
LOF since it is more sophisticated than NNd.

4 Experimental Evaluation

In this Section we first describe the datasets and some experimental details and
then we present the obtained results and compare the methodology to the IFs.

4.1 Experimental Details

We evaluate the methodology on 10 UCI ML datasets1 which were transformed
into outlier detection datasets: in all of them nominal attributes were removed.
Then the outlier and inlier classes are defined based on previous works: for
Breastw, Ionosphere, Pima and Satellite see [16], for Glass and WBC see [15],
for Arrhythmia and Wilt refer to [11], for Musk follow [2] and for Letter refer
to [20] –as to this dataset further modifications were made other than defining
the classes2. In Table 1, datasets are described in terms of number of objects,
number of features and percentage of outliers. These datasets cover a large range
of situations: they differ greatly in the number of features (from 5 up to 164), in
the outlier percentage (from 3.17% up to 45.80%) and in the size (the smallest
one has 213 samples while the biggest 6435).

After a preliminary evaluation –not shown here–, we chose the following
parameters for the IF training: S = 256,D = log2(S), T = 150. The parameters
of the methodology are very easy to set, as shown in [16,18]: indeed we only
varied the forest size with respect to the default parametrizations since it shows
better performances. Each experiment was repeated 20 times. For each iteration
50% of the objects was randomly assigned to the training set and the other 50%
to the testing set, where the former did not contain any outlier.

Given the trained forests, we computed the IF-distances with the three vari-
ants described in Sect. 3: Shi, Zhu2 and Zhu3. As to the chosen classifier, LOF,
after preliminary analyses not shown here, we set K = 14 since it allows to
achieve the best performances on average. As accuracy measure, as often done
in outlier detection, we use the Area under the ROC Curve (AUC).
1 Available at https://archive.ics.uci.edu/ml/index.php.
2 All datasets adequately processed can be found at http://odds.cs.stonybrook.edu/,

except for Arrhythmia for which we use a different version [11].

https://archive.ics.uci.edu/ml/index.php
http://odds.cs.stonybrook.edu/
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Table 1. Overview of the 10 datasets used for the experimental evaluation.

Datasets Nr. of objects Nr. of features Outlier %

Arrhythmia 452 164 45.80%

Breastw 683 9 34.99%

Glass 214 9 4.21%

Ionosphere 351 32 35.90%

Letter 1600 32 6.25 %

Musk 3062 166 3.17%

Pima 768 8 34.90%

Satellite 6435 36 31.64%

WBC 378 30 5.56 %

Wilt 4839 5 5.39%

4.2 Results

The first analysis compares the three IF-distance measures we can compute from
the Isolation Forests. In Figs. 1 (a), (b) and (c) we present a pairwise comparison
between the distances: for each dataset we count for how many experiments the
first named measure is better than the second (blue bar), the second is better
than the first (orange bar) and for how many experiments the two distance
measures perform the same (yellow bar). The green line represents the maximum
number of experiments per dataset, which is 20. In Figs. 1 (a) and (c) we compare
Zhu2 with the other distances: its superiority is straightforward. Indeed for all
datasets except two it is better than the other distance measures and for one,
Musk, the performances are equal. Comparing instead Zhu3 and Shi, in Fig. 1
(b), we can observe that in many cases Zhu3 is the better choice, except for
Breastw, Pima and Wilt which are all rather small; for Musk we observe again
that the performances are independent of the used distance measure.

The second analysis compares the proposed methodology with the IF: we
present the results in Table 2. For each dataset we report the median across
the 20 repetitions. In detail, as to the proposed methodology we report the
accuracy achieved with the best distance measure, which is indicated between
parenthesis–if All is present, it means that all distances lead to the same accu-
racy. In addition we performed a Wilcoxon signed-rank test to assess whether
the differences between the methodologies are statistically significant. The scores
in bold are the best ones, and if a * is present, then the difference with the other
methodology is statistically significant. From Table 2 we can observe that on
seven datasets the best accuracy is reached when using the proposed methodol-
ogy. In detail in four cases it is achieved when using Zhu2 as distance measure
and for four out of these seven datasets the difference is statistically significant
–for Wilt and Letter the improvement is remarkable. In addition even though for
the remaining datasets IF is significantly better, only for Breastw the proposed
methodology actually fails. Finally if we observe the average results across all
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Fig. 1. Comparison between the proposed distances. Respectively each figure compares
(a) Shi with Zhu2 (b) Shi with Zhu3 and (c) Zhu3 with Zhu2.
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Table 2. Accuracy comparison between the IF and the proposed methodology.

Dataset IF LOF (Best Dist.)

Arrhythmia 0.773 0.778(Shi)

Breastw 0.995* 0.582(Zhu2)

Glass 0.729 0.733(Zhu2)

Ionosphere 0.894 0.906(Zhu2)

Letter 0.641 0.861*(Zhu2)

Musk 0.988 1.000*(All)

Pima 0.738* 0.696(Zhu2)

Satellite 0.810 0.840*(Zhu2)

Wbc 0.954* 0.938(Zhu2)

Wilt 0.516 0.903*(Shi)

Average 0.804 0.824

the datasets the maximum accuracy is reached with the proposed technique.
We can thus conclude it is advantageous to employ the IF-distance: this is par-
ticularly true if the dataset is big enough, i.e. if it has > 1000 objects.

5 Conclusions

In this paper we propose a novel methodology for outlier detection that exploits
Isolation Forests. From the latter we extract a distance matrix which is then
input to an outlier detector: the novel representation should be able to meaning-
fully describe the objects and identify the outliers, thanks to the intrinsic nature
of the trees composing the forest. We employed different RF-based distance mea-
sures and evaluate the methodology on ten datasets: the proposed technique has
been proven to be advantageous with respect to using Isolation Forests alone.
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