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a b s t r a c t 

Biclustering can be defined as the simultaneous clustering of rows and columns in a data matrix and it 

has been recently applied to many scientific scenarios such as bioinformatics, text analysis and computer 

vision to name a few. In this paper we propose a novel biclustering approach, that is based on the con- 

cept of dominant-set clustering and extends such algorithm to the biclustering problem. In more detail, we 

propose a novel encoding of the biclustering problem as a graph so to use the dominant set concept to 

analyse rows and columns simultaneously. Moreover, we extend the Dominant Set Biclustering approach 

to facilitate the insertion of prior knowledge that may be available on the domain. We evaluated the 

proposed approach on a synthetic benchmark and on two computer vision tasks: multiple structure recov- 

ery and region-based correspondence . The empirical evaluation shows that the method achieves promising 

results that are comparable to the state-of-the-art and that outperforms competitors in various cases. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biclustering 1 is usually defined as the simultaneous clustering 

f both rows and columns of a given data matrix [1–4] . Given a

ata matrix, the goal of biclustering techniques is to extract sub-

ets of rows that exhibit a “similar” behaviour in a subsets of

olumns (and vice versa). A key difference between biclustering

nd clustering is the exploitation of local information (instead of

lobal) to retrieve coherent submatrices : when performing cluster-

ng, data-points are grouped together considering the whole set

f features (i.e., we consider global information), in contrast when

erforming biclustering data-points can be grouped together be-

ause they share a coherent behaviour on sub-sets of features (i.e.,

e consider local information). Bi-clustering was first devised to

nalyse the expression of genes in microarray data [2,5] . However,

ecently it has been used in a wide variety of applications rang-

ng from clickstream data analysis [6] , to recommender systems

7] and computer vision (e.g., facial expression recognition [8] , mo-

ion and plane estimation [9,10] and region based correspondences

11] ). 

The relevant literature on biclustering offers a wealth of tech-

iques 2 that focus on different aspects such as efficiency of the

iclustering procedures, interpretability of the biclusters computed
∗ Corresponding author. 

E-mail address: matteo.denitto@univr.it (M. Denitto). 
1 Biclustering is sometimes also called co-clustering in the relevant literature. 
2 We refer to [1,3,5,12] for detailed reviews. 
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y the approach and so forth. Several of such techniques take in-

piration from clustering methods and adapt them to bicluster-

ng, for example by iteratively performing clustering on rows and

olumns [13,14] . 

Following this research line this paper proposes a new bi-

lustering algorithm that is based on the dominant-set clustering

ethod. The notion of dominant set is present in several areas of

esearch, ranging from optimization theory to graph theory, game

heory and pattern recognition. Taking the clustering viewpoint our

nput is a set of object V and we wan to group such objects. In this

ontext, a dominant set C ⊆V is a subset of objects that meets two

roperties: i) all elements belonging to C should be highly similar

o each other, and ii) C can not be a proper subset of any larger

luster. As a consequence, C can be considered a maximally coher-

nt set of data items [15,16] . Considering this perspective, a domi-

ant set C is encoded by a characteristic vector x where an entry x i 
epresents the likelihood that the object v i belongs to the extracted

luster. A clustering algorithm based on dominant set is presented

n [15,16] . Such algorithm is based on solid theory and has been

horoughly evaluated in different settings. In contrast to standard

lustering approaches, dominant set clustering does not partition

he data and can be very effective when there is a high level of

oise or several outliers may be present. Moreover, dominant-set

lustering does not require the similarity matrix to be symmetric.

hese two features define a strong relationship between dominant-

et clustering and biclustering approaches: most biclustering meth-

ds do not partition the data and operate on non-squared (and

ence not symmetric) data matrices [1] . 

https://doi.org/10.1016/j.patcog.2020.107318
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107318&domain=pdf
mailto:matteo.denitto@univr.it
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A first step toward the usage of dominant sets in the bicluster-

ing scenario has been presented in [17] . Authors propose an itera-

tive procedure that retrieves biclusters by shifting and sorting the

columns/rows of the input matrix. The dominant set characteristic

vector is used to sort and shift the rows and columns. A key point

is that in this approach rows and columns are not grouped simul-

taneously, while the possibility to simultaneously form groups of

rows and columns is a crucial element for several biclustering ap-

proaches and also for this paper. In a similar way, the approach

proposed in [18] addresses the biclustering problem by retriev-

ing the so called bi-cliques on a bipartite-graph adjacency matrix.

While such technique shares some ideas with our approach, a key

difference is that the technique proposed in [18] does not retrieve

dominant sets as a result. For this reason we do not discuss this

approach in further details. 

We believe that it is interesting and important to further in-

vestigate how dominant sets can be used in the biclustering sce-

nario. An important stream of work in the biclustering literature

formalizes the biclustering problem as an edge-cutting problem in

a weighted bipartite graph. The bipartite graph is composed of a

set of nodes that represents rows while the other represents the

columns [19,20] . However, we can not directly apply the concept of

dominant set to a bipartite graph to perform biclustering: a domi-

nant set is equivalent to maximal clique [15] , and a maximal clique

in a bipartite graph is composed by only two nodes. We thus pro-

pose to represent the biclustering problem adopting a novel graph

representation where entries of the data matrix represent a sim-

ilarity measure between rows-columns couples. The intuition be-

hind this proposal considers that in various biclustering scenar-

ios (e.g., gene expression, click stream data and recommender sys-

tems) entries of the data matrix encode “the importance” of a row

for a specific column. Moreover, we modify the bipartite graph ad-

jacency matrix following the ideas proposed in [16,21] so to obtain

a theoretically solid dominant set. Finally, we show how to include

prior knowledge in the bi-clustering task with a simple principled

extension. Prior knowledge in the context of bi-clustering relates

row-row and column-column entities of the problem. These addi-

tional relations (constraints) allow the user to drive the final so-

lution to include or exclude certain rows or columns. We evaluate

the proposed approach both on synthetic and real datasets. Our re-

sults show that the approach favourably compares with the state-

of-the-art. 3 

The rest of the paper is organized as follows: Section 2 intro-

duces the dominant-set clustering approach; Section 3 describes

our algorithm in its basic version. Section 4 describes the exten-

sion of our algorithm to include prior knowledge. Each of these

two sections contains an experimental evaluation for the proposed

approach. Finally Section 6 concludes the paper. 

2. Dominant set clustering 

The approach proposed in this manuscript extends the domi-

nant set (DS) clustering algorithm [23] , a recent and powerful clus-

tering approach, to the biclustering scenario. Before going into the

details of the proposed biclustering approach, in this section we

provide the necessary background knowledge concerning the dom-

inant set (DS) algorithm – for all the details, we refer interested

readers to the recent survey published in [15] . 
3 A preliminary version of this paper appeared in [22] : the current manuscript 

contributes upon [22] in the following directions: i) from a methodological per- 

spective we proposed a principled extension of Denitto et al. [22] showing how to 

include prior knowledge in the DSB framework, grounding this finding in the the- 

ory of Dominant Set; and ii) we assessed the goodness of the proposed method 

with and without prior knowledge on an extensive novel experimental session. 
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The Dominant Set (DS) algorithm is a graph-based clustering

ethod, in which the data to be clustered is embedded into a

raph, where the nodes represent the objects to be clustered, and

he weighted edges represent the pairwise similarities between

hem. The goal is to partition (cluster) the nodes of a graph into

isjoint and highly compact sets, which, in the DS algorithm, are

epresented by the so called Dominant Sets. More in detail, the

S algorithm generalizes the notion of maximal/maximum clique

o edge-weighted graphs: searching for a dominant set [23] cor-

esponds in finding a maximal clique in a weighted graph, which

urns out to be equivalent in reaching an equilibrium conditions in

 non-cooperative game and finding a local solution of a quadratic

ssignment problem. 

More formally, in the DS algorithm, a dataset is embedded

nto an undirected edge-weighted graph G = (V, E, ω) with no self

oops, in which the vertices V are the items of the dataset. The

dges E ⊆V × V correspond to the pairwise relations between

odes, and the weight function ω : E → R > =0 quantifies the pair-

ise similarities. The graph, as usual, is represented in terms of an

 × n pairwise symmetric matrix A = (a i j ) where n is the number

f vertices (objects in the dataset): 

 i j = 

{
w (i, j) if (i, j) ∈ E 
0 otherwise. 

Two desirable properties shall hold: having a high intra-cluster

omogeneity while having a low inter-cluster homogeneity . These

wo properties are fundamental to separate and group objects in

he best way possible. Both properties are directly reflected in the

ombinatorial formulation of the DS (see [23] for the details). In

act, thanks to its one-to-one correspondence with maximal clique,

he DS method is able to find compact (highly similar subset of

bjects) and well separated structures (highly dissimilar). 

As stated above, a DS can be found optimizing a standard

uadratic assignment problem, defined as: 

maximize x 

T A x (1)

ubject to x ∈ � 

n 

here A is the similarity matrix of the graph and x is the so-

alled characteristic vector in which each i th component represents

he probability of belonging to a dominant set. The vector x lies

n the n-dimensional simplex � 

n , i.e. 
∑ 

i x i = 1 , ∀ i , x i ≥ 0 . It has

een shown in [15] that, if x is a strict local solution of (1) then its

upport σ ( x ) = { i ∈ V | x i > 0 } is a dominant set. A DS is therefore

ound by looking at a local solution of (1) . A way to find such lo-

al optimizer, is to use a result from the evolutionary game theory

24] known as replicator dynamics (RD). This approach considers a

cenario whereby individuals are repeatedly drawn at random from

 large, ideally infinite, population to play a two-player game. In

ontrast to classical game theory, here players are not supposed to

ehave rationally or to have complete knowledge of the details of

he game. They act instead according to an inherited behavioural

attern, or pure strategy, and an evolutionary selection process op-

rates over time on the distribution of behaviours. In particular,

e adopt the iterative discrete-time replicator dynamics, which are

efined in Eq. (2) : 

 i (t + 1) = x i (t) 
(A x (t)) i 

x (t) T A x (t) 
(2)

t convergence of Eq. (2) certain components of x will emerge

 x i > 0) while others get extinct ( x i = 0 ). The convergence of

q. (2) can be reached by fixing a maximum number of steps or

hen the distance between two successive iterations is smaller

han ε (|| ( x (t) − x (t + 1) ) || 2 ≤ ε) . 

Summarizing, to cluster a dataset, the dominant set algorithm

ollows these steps: 
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4 Please note that this representation has been also used in another work to 

match set of objects [21] in k -partite graph- 
5 Without loss of generality we assume a positive data matrix D . 
1. Construct an undirected graph G = (V, E, ω) with no self-loop

in which V is the set of observations in the dataset, E is the

set of pairwise relations and ω is a pairwise similarity between

all the vertices. The similarity ω can be given in input or can

be computed using any similarity function between objects (e.g.

the cosine similarity for vectors). 

2. Store the graph in an n × n matrix A ( n = | V | ). 
3. Initialize x in the barycenter of the simplex ( x i = 1 /n ∀ i =

1 . . . n ) 

4. Run the replicator dynamics ( Eq. (2) ) until convergence 

5. Extract the support from x . The set of nodes in the support cor-

responds to a dominant set. 

6. A dominant set corresponds to a single cluster: if the prob-

lem requires to find more clusters (or if a complete partition-

ing is necessary), remove the extracted nodes from the graph

(mask/remove the corresponding rows and cols in the matrix

A ) and iterate again on the remaining ones. 

. The proposed approach: biclustering with dominant sets 

In this Section we introduce our extension of the Dominant Sets

lgorithm to the biclustering case. As discussed in Section 1 , the

oal of biclustering is to cluster simultaneously the columns and

he rows of a given data matrix. We denote the data matrix as

 ∈ R 

n ×m , and we indicate with R = { 1 , . . . , n } and K = { 1 , . . . , m }
he set of row and column indices. We use D TL , where T ⊆R and

 ⊆K , to represent the submatrix with the subset of rows in T and

he subset of columns in L . We can now define a bicluster to be

 submatrix D TL , where the subset of rows of D with indices in

 exhibits a “coherent behaviour” (in some sense) across the set

f columns with indices in L , and vice versa. The definition of

he coherence criterion impacts on the biclusters that we want

o retrieve (for a comprehensive survey of biclustering criteria, see

1,25] ). 

In this paper we propose to tackle biclustering by exploiting the

rinciples of dominant sets. As mentioned in Section 1 a prelimi-

ary approach toward this objective was proposed in the literature.

pecifically, authors of [17] propose an algorithm that clusters rows

nd columns iteratively but does not fully exploit the potentials of

ominant sets. In more detail, the approach described in [17] pro-

oses a weighted correlation measure that defines a similarity ma-

rix between the rows of the given data matrix. Dominant-set clus-

ering is then applied to such data matrix, exploiting the charac-

eristic vector x C to sort the rows of the matrix. As a result of this

rocedure, rows that belong to the bicluster are placed at the bot-

om of the data matrix. After this step, authors compute a similar-

ty matrix for the columns weighting the correlation by using x C .

his results in higher weights for rows that belong to the bicluster.

ext, authors apply dominant-set clustering to the columns simi-

arity matrix. The idea is that weighting the columns correlation by

sing the characteristic vector (computed on the rows) should help

n extracting a subset of columns that exhibit a coherent behaviour

n that particular subset of rows. Finally, columns are ordered ac-

ording to their characteristic vector and the entire process is it-

ratively repeated twice for rows and columns [17] . The resulting

ata matrix now contains the bicluster in the bottom-right posi-

ion. To extract the bicluster from the matrix, authors compute the

orrelation between consecutive rows (starting from the bottom),

nd they stop when such correlation is below a certain threshold

same procedure applies for retrieving bicluster columns). In sum-

ary, the work proposed in [17] exploits the output of dominant-

et clustering to order rows and columns iteratively so to position

he bicluster in the bottom-right portion of the data matrix. 

Other techniques consider the use of a weighted bipartite graph

epresentation to address biclustering. Usually, such techniques

epresent the set of rows R and the set of columns K with two dis-
inct sets of nodes. Then, the approaches connect only nodes be-

onging to different sets weighting the edges with the data matrix

ntries. The biclustering problem can now be cast as an edge cut-

ing problem where the remaining edges represent the rows and

he columns that belong to the bicluster [20] . The cut is performed

y considering a pre-defined objective function. 

Our proposed algorithm exploits the underlying DS theory

ence requires to represent the input objects with a similarity

raph: our idea is to create a graph where the nodes represent

he rows and the columns, i.e. a graph with (n + m ) nodes (for an

nput data matrix with n rows and m columns): a subset of nodes

an therefore represent a subset of rows, a subset of columns, or

 subset of rows and columns – this last being a possible biclus-

er. Being more formal, our biclustering problem is represented by

 graph G = (V, E, ω) where vertices V = { 1 , . . . , n + m } represent

he union of rows ( { v 1 , . . . , v n } ) and columns ( { v n +1 , . . . , v n + m 

} ) of

 data matrix D . In order to get only subsets of rows and columns

i.e. biclusters), we have to force a structure like a bipartite graph.

o get this, we first set the portion of A that represents the similar-

ties for row-row and column-column pairs to 0 – hence forcing no

onnections between such vertices (we will see in Section 4 how

his part, if not set to zero, can be fruitfully used to encode a-priori

nowledge). Second, we insert the data matrix D in a particular

osition of the adjacency matrix A , i.e. in the set of edges con-

ecting the two partitions of the bipartite graph (the rows and the

olumns): the idea is to set the similarity between a row i and a

olumn j as the entry D ij of the input data matrix. This choice is

easonable for many biclustering problems, especially those which

nvolve the analysis of preference/consensus matrices [26] . In such

ontexts, the entry D ij of the matrix represents how much the row

 (object i ) prefers a given column j (feature j ): in [26] authors

how that several problems can be interpreted from this perspec-

ive. In more detail, we set A ([1 , . . . , n ] , [ n + 1 , . . . , n + m ]) = D –

gain, this represents the set of edges connecting the two par-

itions of the bipartite graph. Then, to have a symmetric adja-

ency matrix, we also set A ([ n + 1 , . . . , n + m ] , [1 , . . . , n ]) = D 

T . This

s mandatory for the dominant set framework because it requires

 square pairwise similarity matrix. 4 

We now have a squared similarity matrix that represents a bi-

artite graph, hence we can apply dominant set clustering ap-

roaches to such a matrix and directly obtain a bicluster. In more

etail, the adjacency matrix we defined has high values 5 only in

ositions that encode row-columns relationships. Hence, the dom-

nant set should be a group of rows that have high similarities in

 subset of columns (and vice versa). However, recall that, as men-

ioned in Section 2 , from graph theory we know that a dominant

et of A is equivalent to a maximal clique in the correspondent

raph. Hence, since we encode our problem by using a bipartite

raph (as we set row-row/column-column entries to be zero), a

aximal clique will always have just two vertices: one row and

ne column. In particular, we can not find a maximal clique with

hree nodes, because there will certainly be a missing edge: actu-

lly, a set of three nodes will contain at least two nodes of the

ame type (rows or columns), and by construction there are no

dges between row-row or column-column. To avoid this prob-

em, we insert a negative value −α (where α ≥ 0) on the main

iagonal of the similarity matrix A . This is equivalent to solve a

tandard quadratic problem where we increase the values of the

ff-diagonal entries of A by α and we set the main diagonal to

 [16,27] . Crucially, by inserting α on the off-diagonal entries we

ntroduce row-row and column-column edges, hence obtaining a
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Fig. 1. Flowchart of the method. In italics the sizes of the matrices involved on each 

step. 

Fig. 2. Procedure for building the similarity matrix. 
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classic graph (not bipartite). Hence when we compute dominant

sets on this version of A we will obtain maximal cliques, where

a subset of rows will be selected simultaneously with a subset of

columns. The main idea of the proposed algorithm is graphically

sketched in Figs. 1 and 2 provides a visual representation of the

procedure that we use to build the similarity matrix A . 

Intuitively, this is possible because, regardless of the value used

for α, the information we care about is preserved in the rows-

columns portions of A (since we increase all entries by α and

hence it is not informative). It has also been theoretically proved

that increasing the value of α will increase the dimension of the

resulting clique [15,16,27] , as shown in Fig. 3 . 

In summary, given a data matrix D with n rows and m columns,

our approach for biclustering with dominant sets – named Domi-

nant Set Biclustering (DSB) – performs the following steps: 

1. we encode the biclustering problem by considering a graph

with n + m vertices. The first n vertices represent the rows

while the remaining m vertices represent the columns. 
Fig. 3. Different results
2. We then connect rows and columns vertices with weights that

correspond to the entries of D . All other connections (row-row

and column-column) are set to zero. 

3. We set to −α the weights of self connections. 

4. The resulting similarity matrix A , of dimension (n + m ) × (n +
m ) , can now be given in input to the dominant sets algorithm:

a dominant set in such graph is a maximal clique that identifies

a group of rows that exhibit high similarities with a group of

columns, hence a bicluster. 

The algorithm requires two parameters which are i) α (i.e., the

alue for diagonal weights), ii) the convergence criterion for the

eplicator dynamics. The setting of α is definitely important, and

s typically application dependent (as shown in the experimental

ection). In Section 5 we present some guidelines and comments

n the impact of this parameter. On the contrary, the convergence

riterion does not impact too much the results, and can be defined

ither by specifying a maximum number of iterations or by setting

 threshold between consecutive changes of x . Notice that this al-

orithm can recover only a single bicluster at a time. However, as

ften employed in the literature [2,28,29] ), we can retrieve several

iclusters by “masking” the obtained bicluster and then search for

he next one. In our approach we decided to mask the extracted

icluster by inserting zeros in the corresponding positions of the

djacency matrix A . 

.1. Experimental evaluation 

We evaluate the basic approach by considering two sets of syn-

hetic datasets and one Computer Vision dataset (namely Multiple

tructure Recovery) divided in two problems (motion and planar

egmentation). 

.1.1. Synthetic experiments 

The two synthetic benchmarks simulate gene expression ma-

rices that contain a single bicluster. In the first dataset, we im-

lanted biclusters with constant value (we name this “Constant Bi-

luster Benchmark”), while in the second dataset we use additively

oherent biclusters (we name this “Evolutionary Bicluster Bench-

ark”). 

We use the following procedure to generate the matrices in

oth cases: i) we generate a 50 × 50 matrix that contains random

alues, uniformly distributed between 0 and 1; ii) we insert a con-

tant valued (or additively coherent valued) bicluster. The dimen-

ion of such bicluster is 25% of the matrix size and it is inserted

n a random position of the data matrix; iii) finally, we perturb the

ntire matrix using Gaussian noise. The standard deviation of the

aussian noise is a percentage of the difference between the mean

f the entries belonging to the bicluster and the mean of the back-

round. We consider 5 different noise levels (i.e. percentages) that
 varying alphas. 
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Fig. 4. Purity ( Fig. 4 a,c) and Inverse Purity ( Fig. 4 b,d) for matrices with constant 

( Fig. 4 a,b) and additive coherent ( Fig. 4 c,d) biclusters 
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ange from 0 (no noise) to 0.2 (high noise). We generate 30 matri-

es for each noise level (75 matrices in total). 

We assess the quality of the retrieved biclusters by using two

tandard indices, also used in previous work [30] : i) purity : defined

s the percentage of points that are retrieved by the algorithms

hich belong to the real bicluster; ii) inverse purity : defined as the

ercentage of points belonging to the real bicluster which were re-

rieved by the algorithms. Formally, the indices are calculated as

ollows: 

urity = 

| C ∩ L | 
| C| , Inverse Purity = 

| L ∩ C| 
| L | ;

here C is the bicluster found by the algorithm and L is the real

icluster. 

In all the experiments we set the convergence threshold for the

ominant Set Biclustering (DSB) as 10 −20 , whereas α was set to

 (for some comments and guidelines on how to set this parame-

er please see Section 4 ). We compare the proposed approach with

our biclustering algorithms, including the previous one adopt-

ng dominant set (mentioned in Section 1 , which we refer to as

eighted Correlation Coefficient - WCC). For the OOB, EBG and

AP algorithms we consider the results published in [9] , while for

CC we implemented the approach following the indications pre-

ented in [17] and we use the values suggested in that paper to

une the parameters. 

Fig. 4 reports the results achieved for the Constant and Evo-

utionary Bicluster benchmarks. Each graph reports the value of

urity ( Fig. 4 a,c) and inverse purity ( Fig. 4 b,d) for all the tested

ethods, varying the noise level. Each point reports the perfor-

ance value averaged over 30 runs with the specified noise level.

f the difference between the different methods and our proposed

pproach is statistically significant 6 we use a full marker. 

Results clearly show that our approach significantly outper-

orms the competitors, and this is particularly true when consider-

ng increasing noise levels. This confirms that dominant sets hold

reat potentials in retrieving biclusters in situations that exhibit a

igh level of noise. Notice that the weighted correlation coefficient
6 Statistical significance was measured by performing a t-test for each noise level 

on the result of the 30 matrices), the significance level was set to 5%. 

c  
mpacts on the performance for WCC, which is indeed expected.

he motivation is the follow: if we can select the correct columns

hat are involved in the bicluster, then the behaviour of the bi-

luster (in the selected columns) will be similar to the background

ecause the value of the bicluster is constant. Hence, it is difficult

or this method to differentiate between these two situations. This

lso explains the better performance of WCC in the evolutionary

icluster benchmark: in this case the background and the biclus-

er have different behaviours (because the background is constant

hile the bicluster evolves). In any case, the proposed approach is

uperior in both situations, indicating that the use of a solid frame-

ork to encode dominant sets provides significant benefits. 

.1.2. Multiple structure recovery 

Multiple structure recovery (MSR) relates to the extraction of

ultiple models from noisy or outlier-contaminated data. MSR is

 challenging and significant problem, which is a crucial element

or many computer vision applications [32,33,31] . In general, an in-

tance of an MSR problem can be represented by a preference ma-

rix that contains the points under analysis, along one dimension,

nd the hypotheses/structures for the models, in the other dimen-

ion. The entry ( i, j ) in this matrix indicates how well a given point

 is represented by the hypothesis/structure j . 

We focus our analysis on the Adelaide dataset, which was previ-

usly used to assess the quality of biclustering algorithms [9] . Such

ataset involves two type of MSR problems: motion and plane es-

imation. Motion segmentation takes as input two different images

f the same scene, where several objects move independently, and

he goal is to recover subsets of point matches that undergo the

ame motion. Plane segmentation takes two uncalibrated views

f a scene, and aims at retrieving the multi-planar structures by

tting homographies to point correspondences. The AdelaideRMF

ataset 7 comprises 38 image pairs (19 for motion segmentation

nd 19 for plane segmentation), with matching points contami-

ated by strong outliers. The dataset also offers the ground-truth

egmentations. Following [9,34] , we also adopt the misclassifica-

ion errors to assess the results. 

Tables 1 and 2 show the achieved results. For what concerns

he proposed approach, due to the heterogeneity of the dataset

38 matrices, which characteristics are drastically different – see

he first two columns), we tested the values of α in the set

3 , 1 , 0 . 1 , 10 −5 , 10 −7 ] (the convergence threshold for replicator dy-

amics was set to 10 −5 ). Then we reported two different results,

n the last two columns of the tables. The last column ( DSB best )

eports the results for the DSB algorithm that we achieved when

e consider the best performance with respect to the misclassi-

cation error for each different matrix (varying the parameters).

he results in the sixth column ( DSB best set ), reports the results

chieved by selecting a single set of parameters for each dataset

one for the motion segmentation and one for the plane estima-

ion). While the results in the last column are slightly worse the

ifference is small, demonstrating that dominant sets are robust to

oise and the presence of outliers. We compare our approach to

ecent state of the art methods: T-linkage [35] , RPA (Robust Prin-

ipal Analysis [36] ) and RCMSA (Random Cluster Model Simulated

nnealing [37] ). When considering these other techniques, our ap-

roach improves the results in the plane segmentation dataset

able 2 , and provides comparable results on the motion segmen-

ation dataset Table 1 . 

. Injecting prior knowledge in dominant set biclustering 

In this section we describe an extension of the DSB which

onsiders the exploitation of a priori information. Even if this
7 https://cs.adelaide.edu.au/ ∼hwong/doku.php?id=data . 

https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Table 1 

Misclassification error (ME %) for motion segmentation. k is the number of models and % out is 

the percentage of outliers. 

k %out T-lnkg RCMSA RPA DSB best set DSB best 

biscuitbookbox 3 37.21 3.10 16.92 3.88 10.42 6.17 

breadcartoychips 4 35.20 14.29 25.69 7.50 5.48 5.48 

breadcubechips 3 35.22 3.48 8.12 5.07 5.21 5.21 

breadtoycar 3 34.15 9.15 18.29 7.52 11.44 11.44 

carchipscube 3 36.59 4.27 18.90 6.50 4.24 4.24 

cubebreadtoychips 4 28.03 9.24 13.27 4.99 9.48 9.48 

dinobooks 3 44.54 20.94 23.50 15.14 14.16 14.16 

toycubecar 3 36.36 15.66 13.81 9.43 16.00 16.00 

biscuit 1 57.68 16.93 14.00 1.15 16.36 16.36 

biscuitbook 2 47.51 3.23 8.41 3.23 2.63 2.63 

boardgame 1 42.48 21.43 19.80 11.65 8.96 8.96 

book 1 44.32 3.24 4.32 2.88 10.69 10.69 

breadcube 2 32.19 19.31 9.87 4.58 11.57 9.50 

breadtoy 2 37.41 5.40 3.96 2.76 3.12 3.12 

cube 1 69.49 7.80 8.14 3.28 3.31 3.31 

cubetoy 2 41.42 3.77 5.86 4.04 4.81 4.81 

game 1 73.48 1.30 5.07 3.62 1.71 1.71 

gamebiscuit 2 51.54 9.26 9.37 2.57 4.57 4.57 

cubechips 2 51.62 6.14 7.70 4.57 7.04 7.04 

mean 9.36 12.37 5.49 7.96 7.62 

median 7.80 9.87 4.57 7.04 6.17 

Table 2 

Misclassification error (ME %) for planar segmentation. k is the number of models and % out 

is the percentage of outliers. 

k %out T-lnkg RCMSA RPA DSB best set DSB best 

unionhouse 5 18.78 48.99 2.64 10.87 25.00 25.00 

bonython 1 75.13 11.92 17.79 15.89 4.04 4.04 

physics 1 46.60 29.13 48.87 0.00 2.83 0.94 

elderhalla 2 60.75 10.75 29.28 0.93 5.14 2.80 

ladysymon 2 33.48 24.67 39.50 24.67 10.54 10.54 

library 2 56.13 24.53 40.72 31.29 13.95 13.95 

nese 2 30.29 7.05 46.34 0.83 0 0 

sene 2 44.49 7.63 20.20 0.42 0.40 0 

napiera 2 64.73 28.08 31.16 9.25 13.24 13.24 

hartley 2 62.22 21.90 37.78 17.78 3.12 1.56 

oldclassicswing 2 32.23 20.66 21.30 25.25 8.44 8.44 

barrsmith 2 69.79 49.79 20.14 36.31 51.03 51.03 

neem 3 37.83 25.65 41.45 19.86 25.72 15.76 

elderhallb 3 49.80 31.02 35.78 17.82 25.88 18.82 

napierb 3 37.13 13.50 29.40 31.22 20.84 20.84 

johnsona 4 21.25 34.28 36.73 10.76 20.37 20.37 

johnsonb 7 12.02 24.04 16.46 26.76 19.87 19.87 

unihouse 5 18.78 33.13 2.56 5.21 3.69 3.69 

bonhall 6 6.43 21.84 19.69 41.67 38.76 38.76 

mean 24.66 28.30 17.20 15.41 14.19 

median 23.38 29.40 17.53 13.24 13.24 
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exploitation is not new in both contexts of clustering and biclus-

tering [11,38] , its consideration in the context of the dominant

set theory is completely novel. A common assumption [11,38] is

to consider pair-wise information to guide the grouping, typically

to encourage points to be grouped together. In our case, however,

the type of information that we can consider is double: i) we can

favour rows (or columns) to be grouped together and ii) we can

prevent rows (or columns) to be grouped together. Injecting such a

priori information into our framework is very straightforward. Ac-

tually, remember that putting −α on the main diagonal has the

effect of assigning to each row-row and column-column similar-

ity the exact same value (thus not informative) α. Looking at it as

an adjacency matrix, this means adding edges between row nodes

(and between columns nodes) with the same weight. However,

when a priori knowledge is available we could modify such val-

ues in order to favour or not particular couples of rows/columns

to be grouped together. Moreover, removing particular edges we

can prevent rows/columns to be grouped together. Thus, by sim-
 n  
ly modifying the matrix A we can easily integrate a priori infor-

ation. Another feature of the designed similarity matrix is the

ossibility of handling information deriving from different sources

t once. In fact, we can integrate the similarity between rows and

olumns with some other knowledge concerning only rows (or

nly columns). More in detail, the matrix A becomes: 

1. A ∈ R 

(n + m ) ×(n + m ) ; 

2. A ([1 , . . . , n ] , [ n + 1 , . . . , n + m ]) = D ; 

3. A ([ n + 1 , . . . , n + m ] , [1 , . . . , n ]) = D 

T ; 

4. A (i, i ) = −α, ∀ i ∈ [1 , . . . , n + m ] ; 

5. A ([1 , . . . , n ][1 , . . . , n ]) = R ; 

6. A ([ n + 1 , . . . , n + m ][ n + 1 , . . . , n + m ]) = C; 

here R is a matrix composed of the prior knowledge on the rows

nd C is a matrix containing the prior knowledge on the columns.

n Fig. 5 we show how the similarity matrix A is modified for

his task. A critical aspect here, is to balance the different compo-

ents of the matrix such that the weights do not differ too much.
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Fig. 5. Procedure for injecting prior Knowledge in the similarity matrix. 
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his is particularly important in order to not favour uninforma-

ive/trivial solutions. For example if the row-row weights (top-left

lock of the matrix) result unbalanced w.r.t. the row-column the

nal solution will be mostly comprised by row elements which

s not the aim of this work. Balancing the similarity matrices is

hen nothing than an easy task because, most of the time, the a-

riori knowledge comes or are computed with a different function

hen the one used in matrix D, hence the values have different

ound or meaning. In order to do so, we introduced a parame-

er β which is used to scale the values in correspondence of the

ow-row/column-column similarities. This scaling makes the entire

atrix in the same range. The parameter α is kept as in the stan-

ard DSB version (see Section 3 ) in order to find a solution wider

s needed. The final matrix A is then the following: 

1. A ∈ R 

(n + m ) ×(n + m ) ; 

2. A ([1 , . . . , n ] , [ n + 1 , . . . , n + m ]) = D ; 

3. A ([ n + 1 , . . . , n + m ] , [1 , . . . , n ]) = D 

T ; 

4. A (i, i ) = −α, ∀ i ∈ [1 , . . . , n + m ] ; 

5. A ([1 , . . . , n ][1 , . . . , n ]) = β ∗ R ; 

6. A ([ n + 1 , . . . , n + m ][ n + 1 , . . . , n + m ]) = β ∗ C; 

Please note that the replicator dynamics (see Eq. (2) ) are not

ffected by this configuration change, and thus the procedure to

btain biclusters from A is the same described in Section 3 . 

.1. Experimental evaluation 

A recent Computer Vision scenario where biclustering with

rior knowledge already showed its potential is the one called

egion-based correspondence (RBC) [11,39] . Generalizing, in RBC the

roblem is formulated as that of finding regions on two different

hapes that behave similarly and can thus be easily put in cor-

espondence. This problem is different from another well-studied

ask, called shape co-segmentation , since in RBC the goal is not to

nd meaningful semantic segments in various shapes ( e.g. , limbs in

nimal shapes), but rather to determine regions in the two shapes

hat are in correspondence [11] . 

As presented in [39] and [11] , RBC can be tackled as a biclus-

ering problem. In fact, following the framework in the cited pa-

ers, we can obtain an affinity matrix representing the similarities

etween different shape vertices. Analysing such matrix with a bi-

lustering algorithm we would obtain a subset of vertices of the

rst shape (rows) behaving coherently in a subset of vertices of
he second shape (columns), which is the goal of RBC. Concern-

ng RBC-specific techniques, the most relevant are represented by

he recent stable region correspondences (SRC) approach [39] and

y the S 4 B technique [11] . Concerning these techniques, it is im-

ortant to highlight that SRC does not involve any a priori infor-

ation, whereas S 4 B exploits geodesic distances to encourage near

oints to be grouped together. 

The experimental evaluation is based on FAUST [40] , a challeng-

ng recent dataset containing 100 scanned human shapes (10 poses

f 10 subjects). This dataset presents both near-isometric (different

oses of the same subject) and non-isometric deformations (due

o the significant variability between different subjects). All of the

hapes have the same number of vertices, and the ground-truth

ne-to-one correspondence (or map) between each pair of shapes

s available. We analyse the same 50 randomly selected pairs of

hapes in [11] , which are divided in three scenarios: Scenario1,

hich contains pairs of shapes of the same subject in different

oses, Scenario2, containing pairs of different subjects in the same

ose, and the most challenging Scenario3, including pairs of dif-

erent subjects in different poses. The accuracy of a given algo-

ithm can be assessed by comparing the extracted regions with the

round-truth mapping between the two shapes. We measure the

ccuracy of the results as proposed in [11] , the higher the better. 

On the described task we evaluate the proposed DSB algorithm

ithout and with prior information. We extract 20 biclusters for

ach couple varying the parameters α ∈ { 10 −5 , 30 , 60 } and β ∈ {0,

, 12}. Once the 20 biclusters have been extracted, since the eval-

ation method expects one single label for each vertex (no over-

ap between biclusters), we assign to each point the label of the

rst bicluster including it. We then consider the best set of biclus-

ers for each couple of shape. Regarding the prior information, we

rst compute the geodesic distance between all points belonging

o the first shape, repeating the process for the second shape. This

ives us two distance matrices D 1 and D 2 of size n × n and m × m

espectively. Both matrices are then turned to similarities with a

inear transformation, hence: 

 = max (D 1 ) − D 1 

 = max (D 2 ) − D 2 

hen we used directly those matrices in the affinity matrix of the

SB (see Section 4 ) with the parameter α and scaling constant β . 

To provide a first idea on how the proposed framework works

n this context, we reported in Fig. 6 some results: we can observe

hat, qualitatively, the results on the 3 scenarios from FAUST are

articularly good. 

In a first set of experiments, we compare the proposed DSB

with and without prior knowledge) with SRC and S 4 B. We also

nclude in the comparison the SSBi technique [10] , an algorithm

imilar to the algorithm of S 4 B, with the only difference that it

oes not exploit any prior knowledge. The results are reported in

able 3 . As shown, DSB comparably performs with respect to the

urrent state of the art. Particularly, we can see that the base-

ine method DSB provides extremely good results when compared

ith SRC, SSBi and S 4 B. When prior information is included into

SB, the performances considerably increase, improving the state

f the art. An important consideration to formulate is that the pro-

osed method extracts one bicluster at a time, thus the results can

ary significantly on the basis of how biclusters are masked and

erged. This strengths even more the comparison with S 4 B, which

xtracts many biclusters simultaneously. 

As a second set of experiments we tested how DSB (in both

ariants) works as initialization for other algorithms. Actually,

ther methods produce point-to-point correspondences based on

eometric features of the shapes. For example, a popular point-

o-point correspondence method is the so called blended intrin-

ic maps (BIM) [41] . In order to use BIM in the context of
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Fig. 6. Qualitative results of our method on three scenarios from FAUST dataset. 

Table 3 

Results on the FAUST dataset using the different approaches. The top/bottom tables show 

mean/median scores for each scenario, and the global mean/median score. 

Shapes Couples Stable Region SSBi S 4 B DSB best no PK DSB best w. PK 

scenario1 90.6 30.09 95.39 95.36 96.35 

scenario2 84.81 26.69 95.08 93.04 96.48 

scenario3 86.19 32.72 94.68 89.98 94.66 

global 86.58 31.8 94.8 90.93 95.05 

Shapes Couples Stable Region SSBi S 4 B DSB best no PK DSB best w. PK 

scenario1 93.23 27.98 96.94 95.09 96.8 

scenario2 85.39 29.58 94.42 91.92 97.11 

scenario3 87.92 33.67 95.43 89.38 94.89 

global 89.33 31.26 95.52 90.12 95.02 

Table 4 

Results on the FAUST dataset using BIM with different initializations. The 

top/bottom tables show mean/median scores for each scenario, and the 

global mean/median score. 

Shapes Couples BIM Voronoi BIM S 4 B BIM DSB best w. PK 

scenario1 94.97 96.89 95.97 

scenario2 93.74 93.55 96.31 

scenario3 92.93 92.79 93.58 

global 93.26 93.36 94.14 

Shapes Couples BIM Voronoi BIM S 4 B BIM DSB best w. PK 

scenario1 95.49 97.22 97.7 

scenario2 93.16 92.98 96.83 

scenario3 92.96 92.6 94.04 

global 93.1 93.15 94.5 
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corresponding regions problem, we follow [11,39] and use the

point-to-point mapping to transport the segmentation computed

on one shape to the other. However, since its performance is highly

influenced by the starting segmentation, we evaluate the point-to-

point mapping using three possible segmentations: (i) based on

geodesic Voronoi cells around a farthest point sampling [42] , which

provides segments of uniform size; (ii) based on the output la-

bels of S 4 B (which exploits geodesic distances) and; (iii) based on

the output of DSB with prior knowledge. This gives us a starting

segmentation, which we transfer to the second shape using the

correspondences provided by BIM. Table 4 reports the result of

BIM when initialized with the different methods. As can be seen,

the regions provided by DSB with prior knowledge are better than

those obtained with the competitors in most of the cases. 

5. Setting the parameters α and β

The proposed algorithm, in the most complete version (i.e. with

also prior knowledge), depends on the parameters α and β: the
ormer represents the value subtracted from the diagonal of the

uilt similarity matrix, whereas the second weights the impor-

ance of the a priori knowledge. As common in many cluster-

ng and biclustering algorithms, the proper setting of these pa-

ameters depends on the given application, and can influence the

esult. 

However, for what concerns α, we can derive some guidelines

n how to set its value by exploiting some recent theoretical re-

ults derived for Dominant Sets [16,27] . In particular, it has been

roved in [27] that the value of α is bounded by the largest eigen-

alue of the similarity matrix. In other words, setting α to a value

arger than such largest eigenvalue results in a dominant set which

overs the whole set of objects. In our context, this means that

e obtain a bicluster which covers the whole matrix. Second, in

16] it has been shown that the value of α is linked to the di-

ension of the obtained dominant set. In our context, this means

hat larger values of α permit to get larger biclusters; in Fig. 7 we

how, for the SRC problem, the extracted regions when varying α:

s expected, larger values permit to get larger regions. 

The second parameter, β , quantifies the importance of the a

riori information: the larger this value, the more important is

he prior knowledge. This is a common scenario in pattern recog-

ition (i.e. regularization): the selection of the best parameter in

his context represents a still unsolved challenge, typically faced

sing context-dependent knowledge. In general, in our approach

 high β permits to give higher importance to the row-row and

olumn-column relations with respect to the row-column ones. In

he SRC problem, this is equivalent to look for more compact re-

ions (i.e. regions with nearby vertices), possibly loosing coherence

etween the two shapes. For example, in the first row of Fig. 8 ,

e can observe that when increasing β our approach is able to

ecover regions with less holes. In general, however, changing β
ay also lead to different regions, as shown in the second row of

ig. 8 (where we used a larger α). This is reasonable, since the
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Fig. 7. Influence of parameter α. 

Fig. 8. Influence of parameter β . 
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nal result is obtained through an optimization procedure which

onsiders all ingredients. 

Concluding, we can report that in our experiments the selection

f the proper values for the parameters α and β was not so com-

licated, obtaining reasonable results after few trials. Moreover, in

he MSR case, results do not change too much when varying these

alues. This can be seen by looking at the last two columns of

ables 2 and 1 ; in the last column, we used for each experiment a

ifferent set of parameters, whereas in the second-to-last we use

he same set: the difference is very narrow. 
. Conclusions 

This paper proposes a novel approach to address the biclus-

ering problem. The proposed algorithm extends the definition of

ominant sets (which is already widely exploited for clustering)

o the biclustering scenario. In more detail, we propose a novel

aradigm to represent the biclustering problem that has a sound

heoretical basis. The main idea is to embed the bipartite graph –

ypical of the biclustering scenario – in a standard similarity graph,

o be analysed and processed using the dominant sets algorithm.

uch novel paradigm allows us to retrieve from the graph Dom-

nant sets, that represent the biclusters, efficiently by using stan-

ard discrete-time replicator dynamics. We also proposed a vari-

nt of the paradigm that can introduce into our framework the

rior knowledge on the relations between row-row and column-

olumn; the possibility of injecting this prior knowledge into the

iclustering scenarios can be very useful in many scenarios, such

s the analysis of biological data [43] . The whole framework thus

esults in a flexible and appealing algorithm for a variety of usages.

e empirically evaluated the performance of the algorithm on

oth synthetic and real datasets, involving challenging computer

ision applications, such as Multiple Structure Recovery (MSR) and

egion-Based correspondence (RBC). Results are encouraging when

ompared to recent state-of-the-art methods. 

From a general perspective, we think that this paper opens the

oute to the exploitation of classical similarity-based clustering ap-

roaches to solve the biclustering problem. More in detail, among

ther contributions, here we have proposed a scheme which per-

its to formulate the biclustering problem as a classical cluster-

ng problem, which can – in principle – be solved with other pair-

ise similarity-based methods. In this sense it would be very in-

eresting to investigate how and when alternative schemes can

e more adequate that the dominant sets algorithm. More in re-

ation to the proposed scheme, an open problem which still de-

erves some attention is the proper setting of the parameters α
nd β . As discussed above, an adequate setting of these values is

efinitely application-dependent, and can influence the result of

he algorithm. However, a possibility is to exploit the recent re-

ults obtained in the dominant set field [16,27] , where some the-

rems and bounds have been provided to help the setting of the

alue of the parameters. Finally, even if we demonstrated the us-

bility of the proposed scheme in two challenging real scenarios,

e think it can be also used in other contexts. In particular, we

hink it would be worth to apply the proposed framework also for

iological data analysis, for example in the context of analysis of

xpression data. In such cases, prior knowledge on relations be-

ween genes can be easily derived from biological studies, and can

e successfully exploited to improve biclustering results – this has

een shown for example for the biclustering approaches based on

opic models [44,45] . 
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