
Proximity Isolation Forests
Antonella Mensi, Manuele Bicego

Department of Computer Science
Università degli Studi di Verona

Verona, Italy
Email: antonella.mensi@univr.it

David M.J. Tax
Faculty of Electrical Engineering,

Mathematics and Computer Science
TU Delft

Delft, The Netherlands

Abstract—Isolation Forests are a very successful approach for
solving outlier detection tasks. Isolation Forests are based on
classical Random Forest classifiers that require feature vectors
as input. There are many situations where vectorial data is
not readily available, for instance when dealing with input
sequences or strings. In these situations, one can extract higher
level characteristics from the input, which is typically hard and
often loses valuable information. An alternative is to define
a proximity between the input objects, which can be more
intuitive. In this paper we propose the Proximity Isolation Forests
that extend the Isolation Forests to non-vectorial data. The
introduced methodology has been thoroughly evaluated on 8
different problems and it achieves very good results also when
compared to other techniques.

I. INTRODUCTION

Random Forests (RF) [1] are a flexible, interpretable tool
used in a wide variety of fields for solving classification and
regression tasks [2]–[6]. A RF is a set of randomized decision
trees [7]: each tree is made of a random subsample of the
training set and in each node a random subset of the features
is evaluated. Aggregating together the trees into a forest leads
to robustness and higher accuracy [1], [8] with respect when
using a single classifier. In [9] it has been shown that RF
are direct competitors of neural networks and support vector
machines in the fields of classification and regression.

In other learning paradigms, like outlier detection [10], the
use of RF is not as extensive. The RF-based techniques that
have been applied to outlier detection, can be distinguished in
two classes: the first class of methods aims at using standard
Random Forests for classification by creating an artificial class
of outliers, e.g. using uniform sampling [11], [12]. The second
class of methodologies instead aims at isolating each object
in the dataset, i.e. it does not focus on separating the two
classes. The cornerstone of this type of approaches is known
as Isolation Forests [13], [14] in which Extremely Randomized
Trees [15] are used in their most extreme form: a node is split
by randomly choosing both the feature and the threshold value.
Since outliers are usually few and very different from the rest
of the data, they tend to be isolated earlier in a tree than inliers
do. The inverse of the depth of the leaf reached by the object
is then used as the outlier score.

This methodology has been thoroughly studied [16] and
several extensions have been proposed [17]–[21]. These tech-
niques work very well with vectorial data but the same
attention has not been given to non-vectorial data: indeed there

is no RF-based methodology for outlier detection designed to
work with them–except for [18] which is although a technique
strictly for streaming data. Nevertheless outlier detection is
crucial for tasks where data are for example sequences, e.g.
finding abnormal sequences in an ECG [22], images, e.g.
detecting small masses in a brain image [23], or graphs, e.g.
detecting traffic-related anomalies [24].

In this paper we present an extension of the Isolation Forests
[13], [14], called Proximity Isolation Forest (PIF). It is a
Random Forest-based outlier detector which works with non-
vectorial data in terms of dissimilarities, i.e. it can work with
all types of data for which a distance measure is defined.
PIFs are an ensemble of Proximity Isolation Trees, which are
decision trees built using only the dissimilarities between the
objects. To grow the tree for outlier detection, five different
split criteria are proposed: two of them are random, directly
inspired by the Isolation Forests, while the other three try to
capture the differences between the inliers and outliers, e.g.
by evaluating the scatter within a node.

All variants have been evaluated on 8 different non-vectorial
problems using different parametrization settings. In addition,
we report a comparison with state-of-the-art density and
distance-based techniques: the obtained results support that
using RF-based techniques is advantageous even when dealing
with non-vectorial data.
The remainder of the paper is organised as follows: Section
II presents the background, Section III the proposed method-
ology, Section IV contains the experimental evaluation and
lastly in Section V we draw some conclusions and lay out
some future work prospects.

II. BACKGROUND

As mentioned in Section I, Random Forests have been
extensively used for classification and regression and less
in other contexts. In the field of outlier detection the most
famous and successful Random Forest-based method is called
Isolation Forest (iForest) [13], [14]. iForest aims at isolating
each instance from the rest of the data and not at differentiating
inliers from outliers as other RF-based methods do [11],
[12]. An iForest is an aggregation of Isolation Trees (iTrees).
These iTrees are based on extremely randomized trees for
classification [15]: in each node the split is performed by
randomly picking a feature and a value in the domain of the
chosen feature. Since outliers are usually few and different

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 8021

with respect to inliers, in the first splits the probability to
choose a value along a feature that is able to separate an
outlier from the rest of the data is higher. This means that
outliers are typically isolated early in the tree, i.e. they tend
to end up in leaves which depth is lower than that of the
leaves where inliers end up into. This characteristic of early
isolation is enhanced and captured in the testing phase by: i)
computing an anomaly score which is inversely proportional to
the path length, i.e. length of the path from the root to the leaf
reached by the object under analysis ii) aggregating at score
level the trees into a forest, making the results more robust
and less prone to randomness and improving the generalization
capabilities of the method. The aggregation function consists
in averaging the single scores.

iForests have been proven to be very successful [16] and
they have been widely employed [25], [26] and extended [17]–
[20]. In SCiForest [20] the iForest has been extended to detect
also clustered outliers and not only isolated ones. To do that,
the nodes are split using a random hyperplane built on a subset
of features instead of an axis-parallel split. A criterion based
on the standard deviation of the data is used for choosing
the best hyperplane. A similar technique is called Extended
Isolation Forest [19] which splits nodes using random hy-
perplanes: for each dimension the slope is selected from the
standard normal distribution and the intercept is drawn from
the uniform distribution covering the range of values along the
feature under analysis. An alternative approach [17] uses an
adaptation of the Gini index [27] to the one-class context to
find imbalanced node splits, and uses a volume estimation to
find the number of outliers. Then the work in [18] adapts the
concept of iForest for streaming data, i.e. there is an online
update of the trees, in addition to introducing a weighted
choice of the feature along which to split, to decrease the
probability of splitting along irrelevant features. Finally, in
[21] the anomaly score is enriched and improved by using
additional information like the cardinality of the nodes in the
trees.

When faced with non-vectorial data, two approaches are
possible: i) extract high-level features from the dataset or ii)
develop methods which work with non-vectorial data. The first
choice may seem easier but in reality extracting discriminative
and relevant features is quite difficult. The second option
instead can be more appropriate: among others, it comprises
of all techniques which work with pairwise distances of the
objects instead of the objects themselves.

Concerning the latter category, several techniques [28]–
[30] have been designed for classification and regression. The
authors of [30] propose the Proximity Forests for supervised
classification. Here a node is split in the following way: a
prototype is selected for each class and the objects in the
node are assigned to the closest prototype. The prototypes
are usually chosen among a set of pairs of prototypes by
following an optimization procedure that employs the standard
Gini criterion [27]. Aside from Proximity Forests there are
Similarity Forests introduced in [29]: this work proposes a
technique which assumes that a theoretical embedding of the

objects in a multidimensional space exists, but the represen-
tation itself is not known. To split a node two objects y and
z are chosen as prototypes and all the other objects i in the
node should be projected on the line from y to z, i.e. to know
all possible splitting points. Nevertheless since the projections
are not known in practice, similarities between the objects
and the prototypes are used instead. Finally to choose the best
split the Gini index [27] is used. This methodology works
well even in the case of multidimensional data and it is able
to handle missing similarities. Another methodology is that
of Comparison-based Random Forests [28]: this methodology
only requires triplet comparisons to be known, i.e. given
(x, y, z) we know if d(x, y) ≤ d(x, z) is true or not. The
authors propose two techniques, one for classification and the
other for regression. The former works by randomly choosing
in each node two pivot points, one per class–if possible–,
among all objects in the node. Subsequently two child nodes
are created: one contains the objects closer to the first pivot,
the other those closer to the second one. The technique for
regression differs only in the choice of the pivot points, which
is unsupervised, i.e. the constraint on the labels is absent.

Unfortunately, no Random Forest-based outlier detection
approach for non-vectorial data has been proposed. In the next
section we present our Proximity Isolation Forests.

III. PROXIMITY ISOLATION FORESTS

This approach is based on the following assumption: for
outlier detection it is not required to have feature vectors of the
objects, but a distance measure between objects is sufficient
to find the outliers.

A. Proximity Isolation Trees

A Proximity Isolation Tree (PIT), which we call P , is an
unsupervised top-down recursively built decision tree on a
dataset S. Let d(x, y) be the pairwise distance between objects
x and y and DS the distance matrix containing all pairwise
distances of the objects in S. We also define each internal node
n to have two children nodes nL and nR which are the left
and right child respectively. If n does not have any children
then it is a leaf. An object x traverses the tree starting from
the root until it reaches a leaf in a recursive way. We propose
two traversal modalities:

1) For each internal node n we have one prototype P and
a threshold θ. If d(x, P) ≤ θ then x −→ nL otherwise
x −→ nR.

2) For each internal node n we have two prototypes PL and
PR. If d(x, PL) ≤ d(x, PR) then x −→ nL otherwise
x −→ nR.

The inverse of the path length of x in P is its anomaly score
(analogously to [13], [14]). More precisely, the outlier score
is defined as:

s(x) = 2−h(x) (1)

where h(x) is the length of the path of x.
The tree P is built by splitting recursively each node n into

children nL and nR until a stopping criterion is met, i.e. a leaf

8022

is created. We have developed five different split criteria: two
of them only use one prototype with a threshold on the distance
value, while the other three use two prototypes, one per child
node. Using one prototype and a threshold ideally recalls the
iTree principle that, early in the tree building process, it is
more probable to choose a split that will separate an outlier.
Indeed in the proposed method the probability of choosing
a threshold on the distance value that will early isolate an
outlier is enhanced, since outliers are usually far from the rest
of the data. The inspiration for choosing two prototypes comes
instead from [28]–[30].
The first two criteria are random, directly inspired by the
Isolation Forests since randomness has proven to ensure very
good performances and isolation capabilities.

In detail, the criteria are:

1) R-1P: This criterion selects randomly one prototype P
among the objects in n. Then a threshold θ in the range
[min
x∈n

d(x, P),max
x∈n

d(x, P)] is picked randomly as well.
The children nodes nL and nR are created as follows:
nL = {x|x ∈ n ∧ d(x, P) ≤ θ} and nR = {x|x ∈
n ∧ d(x, P) > θ}. The splitting procedure thus assigns
the objects to the left or the right node depending on
whether or not the distance values are smaller or greater
than the picked threshold.

2) R-2P: This criterion selects randomly a pair of objects
as prototypes PL and PR among the objects in n.
The children nodes nL and nR are created as fol-
lows: nL = {x|x ∈ n ∧ d(x, PL) ≤ d(x, PR)} and
nR = {x|x ∈ n ∧ d(x, PR) < d(x, PL)}. The splitting
procedure thus assigns the objects to the node whose
representative prototype is closer.

The other three variants are based on the intuition that the
variance of a data distribution containing both inliers and
outliers is much different than the variance of a distribution of
only inliers. When we isolate outliers in a tree we expect to
observe a big reduction in variance. To encode that in a split
criterion, we first define some necessary concepts:

(i) The misclassification cost has been defined by Breiman
[7] as a way to find the split which best reduces the
misclassification rate. Given a node n we know that
objects go to node nL with probability pL = |nL|

|n| and

to nR with probability pR = |nL|
|n| . Given an impurity

function I computed over a node n and a split generating
nL and nR we define the misclassification cost as:

∆I(n, nL, nR) = I(n)− pLI(nL)− pRI(nR). (2)

The best split in a node n is the one which maximizes
the misclassification cost, i.e.

max
(nL,nR)

∆I(n, nL, nR) = I(n)− pLI(nL)− pRI(nR)

(3)
which is equivalent to minimizing:

min
(nL,nR)

I(nL, nR) = pLI(nL) + pRI(nR) (4)

since the term I(n) is constant for all splits of node
n. One common implementation in classification of this
theoretical measure is the Gini criterion [27], which aims
at finding the split which best separates the classes.

(ii) Since the methodology works with distance values and
not with data of which we can measure the variance, i.e.
we do not have features, we compute a related measure
that captures the sparseness of the distance values. We
call this measure scatter, in detail we give two different
definitions. Given a distance matrix D of size N × N
we define ScatterD as

SD(D) =
1

N2

N∑
i=1

N∑
j=1

d(i, j) (5)

which is the average dispersion of the average distance
values of all objects in D. The second variant, ScatterP,
requires also a prototype P and we define it as

SP (D, P) =
1

N

N∑
i=1

d(i, P) (6)

which is the average dispersion of the pairwise distance
of all objects with respect to a single object, called
prototype P.

Therefore we can use the two scatters from (ii) as impurity
function I in (i). The first optimization function employs SP
and is defined as:

ISD
(n, nL, nR) = pLSD(DL) + pRSD(DR) (7)

where DL and DR are the distance matrices defined over
the objects of nL and nR respectively. We are minimizing
the function since the maximization measures also the scatter
in n which is constant, being independent of the evaluated
prototypes, and therefore it can be removed. The second uses
SP as an impurity function and it is defined as:

∆ISP
(n, nL, nR, PL, PR) = (SP (Dn, PL) + SP (Dn, PR))

−pLSP (DL, PL)− pRSP (DR, PR)
(8)

where Dn is the distance matrix of the objects in node n.
This results in the following three split criteria:
3) O-1PSD This criterion randomly selects, if available,

r pairs (P, θ) where P ∈ n and θ ∈ {d(x, P)|x ∈ n}.
The number of pairs is fixed since evaluating all possible
pairs would be unfeasible and in order of O(|n|2)–and
we observed that after a certain amount performances do
not suffer. Each pair splits node n into different children
nodes nL and nR which are created in the same way as
done for R-1P. Each candidate split is evaluated using
Eq. 7 and the best pair (P, θ) is selected in the following
way:

(P, θ) = min
(P,θ)

ISD
(n, nL, nR). (9)

Therefore this criteria aims at finding the pair of
prototype-threshold which optimizes the scatter of the

8023

two distance matrices containing the pairwise distance
between all objects of nL and nR respectively.

4) O-2PSD: This criterion randomly selects, if available,
r pairs of prototypes PL and PR among the objects in
node n. Each pair splits node n into different children
nodes nL and nR which are created in the same way as
done for R-2P. Then each pair is evaluated using Eq. 7
and the best pair of prototypes is selected as follows:

(PL, PR) = min
(PL,PR)

ISD
(n, nL, nR) (10)

The comment is analogous to O-1PSD, the main differ-
ence stands in the use of two prototypes instead of only
one.

5) O-2PSP : This criterion randomly selects, if available,
r pairs of prototypes PL and PR among the objects in
node n. Each pair splits node n into different children
nodes nL and nR which are created in the same way as
done for R-2P. Then each pair is evaluated using Eq. 8
and the best pair of prototypes is selected as follows:

(PL, PR) = max
(PL,PR)

∆ISP
(n, nL, nR, PL, PR) (11)

In this case the amount of change of dispersion is
measured only for the distance vectors involving the
evaluated prototypes. Differently from the other two
variants this is a maximization problem, since the term
related to n is not constant, i.e. it changes whenever PL
or PR are different.

The definition of variant O-1PSP is not possible since an
object, including prototype P , ends up in only one of the
two children nodes. In detail either nL contains P , making
the computation of SP (DL, P) feasible, or P is in nR
allowing to compute SP (DR, P). Therefore since only one
of the two terms is defined, it is impossible to compute
ISP

(n, nL, nR, P, P), i.e O-1PSP cannot be defined.
The split procedure is recursive, until a stopping criteria is

met and the node n gets labelled as leaf. A leaf is created
when: (i) |n| = 1, i.e. there is only one object, (ii) maximum
depth has been reached, (iii) the objects are equal, i.e. if we
have x and y then Dn(x, ·) = Dn(y, ·).

B. Proximity Isolation Forests

A PIF F is an ensemble of PITs P . We decided to employ
PIF instead of PIT since in general ensemble classifiers have
been shown to be more accurate, i.e. they are more robust and
have better generalization capabilities, than single classifiers
[8].
Each tree P of a forest F is built using a random subsample
of the dataset given as input: in this way we ensure a certain
degree of diversity among the trees. Each tree is thus trained
independently and the results are aggregated at testing time.
The score of a testing object x is defined at forest level in the
following way

s(x) = 2−
1

|F|
∑

t∈F ht(x) (12)

where ht(x) is the path length in tree t –see [13], [14] for
details. This function assigns a higher anomaly score to points
which are found at smaller depths in the forest, reflecting the
fact that outliers are more likely to be isolated early in a tree.

C. Complexity

The complexity of the training phase of a PIT varies; if
the split criterion is random then it is O(|S|) where S is
the training set of the tree, which is equivalent to that of an
iTree [13], [14]. Instead, if the split criterion is optimized the
complexity is O(|S| · r) where r is the maximum number
of pairs of prototypes (or prototype and threshold) that are
evaluated in each node.
As to space complexity, in case of the optimized variants it
is O(|S|2): we have to memorize the distance matrix since
it is needed for the optimization procedure. When using the
random variants instead, the distances can be computed on the
fly, and the space complexity reduces to O(|S|), which is also
time-saving in case of very big S.
As to the testing phase the procedure is identical in terms of
complexity to that of Isolation Forests, i.e. it is O(|F|·|T | ·D)
where |T | is the size of testing set and D is the maximum
possible depth of the forest.

IV. RESULTS

This Section is divided into three parts. Firstly we describe
the datasets and the details of the experiments we carried
out, secondly we present a thorough analysis on the proposed
methodology and lastly we make a comparison with state-of-
the-art methodologies.

A. Experimental Details

All experiments were carried out on datasets of which only
the distance matrix containing the pairwise distances between
the objects is given. All datasets are part of the prdisdata
MATLAB package available at http://prtools.tudelft.nl/Guide/
37Pages/distools.html. Datasets are classification problems and
to transform them into one-class classification tasks, the fol-
lowing procedure was carried out: for each class the scatter
of its distance matrix has been computed and the class with
highest value has been chosen to be the outlier class. All
the remaining objects are assigned to the inlier class. The
applied technique is independent of the number of objects in
each class, which can lead to an high outlier percentage – an
extreme but acceptable case since the objects belonging to the
chosen outlier class are highly dissimilar. In addition datasets
with a high percentage of outliers have already been used to
solve outlier detection tasks [13].

In Table 1, datasets are described in terms of number of
objects, percentage of outliers and the type of distances. These
datasets cover a large range of situations: they differ in size
(the smallest one has 213 samples while the biggest 10992),
in the outlier percentage (from 3.92% up to 54.74%) and all
distance measures are different. The notation V# next to a
dataset name indicates the number of the version of the dataset
that was used, in case more than one was available.

8024

TABLE I
CHARACTERISTICS OF THE DATASETS

Dataset Nr. Objects % of Outliers Distance Type
DelftPedestrians 689 3.92% Cloud Dist.
DelftGestures 1500 5% Dynamic Time Warping
WoodyPlants 791 7.96% Shape Dist.
Pendigits 10992 9.60% Weighted Edit Dist.
Zongker 2000 10% Deformable Template Dist.
ChickenPieces (V1) 446 13.68% Weighted Edit 2D Shape Dist.
Protein 213 14.08% Evolutionary Dist.
Flowcyto (V1) 612 54.74% Histogram Dist.

After encoding each task as an outlier detection task,
different experiments were carried out. In detail, the following
parameters were varied:

1) Number of variants: 5 options, R-1P, R-2P, O-1PSD,
O-2PSD, and O-2PSP , as explained in Section III.

2) Number of trees in a forest T : 50, 100, 200, 500. 4
options.

3) Number of training samples used to build a forest S: 64,
128, 256, 512. 4 options. For clarification, in case the
number of samples available is greater than, for example
32, but less than 64, the experiment is carried out using
all available samples (i.e. no subsampling). Then, for a
greater number of samples such as 128, the experiment
is skipped.

4) Depths: d1 = S−1, d2 = log2(S). In general log2(S) is
very good but in [21] it has been shown that even if S−1
requires more time, it can lead to relevant improvements
for some datasets.

In case of the optimized variants the number of evaluations
r in each node was set to 20. Total (maximum) number of
experiments is 12800 considering also that each parametriza-
tion setting has been iterated 10 times. For each iteration 50%
of the objects is randomly assigned to the training set and
the other 50% to the testing set, with the only constraint that
maximum 5% of the training set can be composed of outliers.

B. Experimental Analyses

The first analysis compares the five variants and their
behaviour across different training sample sizes, forest sizes
and depths. Results are presented in Table II (a), (b) and (c)
respectively. The first thing to observe is that on average the
best variant is always O-2PSD, no matter the parametrization,
followed closely by R-2P and O-2PSP ; whereas the variants
which employ one prototype perform poorly on most datasets
independently of the parametrization settings.
Table II (a) shows the best AUC results in terms of depth and
forest size, while the split criterion and the training sample
size are fixed. The results are averaged across the iterations of
the chosen parametrizations. For Chickenpieces and Protein in
some cases the training sample size is too big, i.e. bigger than
the number of objects they are made of, and thus we used the
accuracy values of the experiments with the biggest possible
training sample size–the experiments in question are marked
with a ∗ next to the dataset name.

On average results tend to get better as the training sample size
increases, even though in some cases using too many samples,
i.e. S = 512, leads to decreasing performances. To assess
this, we compared all experiments having the same training
sample size to the same experiments having a different value
of S. To make the comparison we carried out a paired t-test,
which results here are not shown, and it confirmed that even
though for 4 datasets it is best to use 512 samples, only in
one case the difference with respect to using a smaller training
sample size is statistically significant. As to the variants, we
can observe that even though for some datasets there seems
to be a preferred variant that remains the same for almost
all training sample sizes, e.g. DelftGestures, that is not true
for all datasets, e.g. WoodyPlants. It must be also pointed out
that differences between the variants are in some cases very
small and in others quite striking. Lastly we can observe, as
previously mentioned, that the highest performance is achieved
on average when using the O-2PSD, no matter the training
sample size.
Table II (b) shows the best AUC results in terms of depth and
training sample size, while the split criterion and the forest
size are fixed. The results are averaged across the iterations of
the chosen parametrizations. We can infer that the performance
increases as T does, until a plateau is reached for T = 200
and the accuracy decreases for T = 500. To confirm that, we
performed a paired t-test for each dataset analogous to the
previous one but comparing the different forest sizes instead.
The test assessed that even though the biggest forest size
can lead in some cases to small improvements, these are
rarely statistically significant. We can also observe that some
datasets, as in Table II (a), prefer one variant over the other
independently of the forest size. Furthermore we can infer that
the datasets with the highest percentage of outliers perform
better with the random variant R-2P. This analysis as well
confirms that the best variant on average is O-2PSD followed
closely by R-2P.
Table II (c) shows the best AUC results in terms of forest and
training sample size, while the split criterion and the depth
are fixed. Results, analogously to Table II (a) and (b), are
averaged across 10 iterations. We can observe that on average
log2(S) performs better than S − 1, even though the latter
is a better choice for 2 datasets, justifying the use of both
parametrizations as mentioned in Subsection IV-A. We also
performed a paired t-test which compared for a dataset all

8025

TABLE II
BEHAVIOUR OF THE FIVE SPLIT VARIANTS IN TERMS OF AVERAGE AUC WHEN VARYING THE (A) FOREST SIZE (B) TRAINING SAMPLE SIZE (C) TREE

MAXIMUM DEPTH.

(a) (b)
S=64 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7910 0.7763 0.7748 0.7962 0.7306
DelftGestures 0.5033 0.9610 0.5001 0.9271 0.9534
WoodyPlants 0.5873 0.9176 0.6718 0.9318 0.9335
Pendigits 0.5000 0.6983 0.5000 0.7618 0.7381
Zongker 0.3234 0.7418 0.3991 0.7792 0.7264
Chickenpieces 0.5000 0.8520 0.5000 0.8492 0.8423
Protein 0.5048 0.9818 0.5079 0.9627 0.9459
Flowcyto 0.6867 0.7370 0.7259 0.7233 0.6967
Average 0.5496 0.8332 0.5724 0.8414 0.8209
S=128 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7913 0.7658 0.7688 0.7944 0.7287
DelftGestures 0.5041 0.9674 0.5002 0.9428 0.9648
WoodyPlants 0.6134 0.9259 0.6685 0.9307 0.9309
Pendigits 0.5000 0.7037 0.5000 0.7615 0.7465
Zongker 0.3000 0.7538 0.3301 0.7896 0.7425
Chickenpieces 0.5000 0.8517 0.5000 0.8457 0.8364
Protein* 0.5048 0.9874 0.4991 0.9851 0.9858
Flowcyto 0.6831 0.7397 0.7108 0.7174 0.6900
Average 0.5496 0.8369 0.5597 0.8459 0.8282
S=256 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7963 0.7543 0.7475 0.8057 0.7316
DelftGestures 0.5049 0.9772 0.5004 0.9598 0.9780
WoodyPlants 0.6444 0.9159 0.6569 0.9169 0.9222
Pendigits 0.5000 0.7005 0.5000 0.7530 0.7402
Zongker 0.3080 0.7720 0.3042 0.8116 0.7501
Chickenpieces* 0.5000 0.8289 0.5000 0.8323 0.8307
Protein* 0.5048 0.9874 0.4991 0.9851 0.9858
Flowcyto 0.6743 0.7371 0.6902 0.7135 0.6863
Average 0.5541 0.8342 0.5498 0.8472 0.8281
S=512 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7945 0.758 0.7409 0.7571 0.7574
DelftGestures 0.5055 0.9753 0.5001 0.9617 0.9779
WoodyPlants 0.6754 0.9090 0.6889 0.9139 0.9126
Pendigits 0.5000 0.6994 0.5000 0.7476 0.7368
Zongker 0.3088 0.7851 0.2710 0.8198 0.7659
Chickenpieces* 0.5000 0.8289 0.5000 0.8323 0.8307
Protein* 0.5048 0.9874 0.4991 0.9851 0.9858
Flowcyto 0.6763 0.7418 0.6844 0.7376 0.7415
Average 0.5582 0.8356 0.5481 0.8444 0.8386

T=50 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.8036 0.7833 0.7743 0.8028 0.7678
DelftGestures 0.5015 0.9743 0.5000 0.9640 0.9770
WoodyPlants 0.6937 0.9144 0.6973 0.9264 0.9290
Pendigits 0.5000 0.7030 0.5000 0.7611 0.7457
Zongker 0.3438 0.7649 0.4042 0.7919 0.7581
Chickenpieces 0.5000 0.8544 0.5000 0.8511 0.8432
Protein 0.5060 0.9844 0.5052 0.9776 0.9812
Flowcyto 0.6811 0.7433 0.7016 0.7301 0.7317
Average 0.5662 0.8403 0.5728 0.8506 0.8417
T=100 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7950 0.7763 0.7690 0.8015 0.7661
DelftGestures 0.5024 0.9713 0.5000 0.9613 0.9794
WoodyPlants 0.6749 0.9236 0.7109 0.9299 0.9312
Pendigits 0.5000 0.7061 0.5000 0.7629 0.7413
Zongker 0.3252 0.7713 0.3429 0.8041 0.7623
Chickenpieces 0.5000 0.8500 0.5000 0.8491 0.8458
Protein 0.5030 0.9847 0.4999 0.9826 0.9829
Flowcyto 0.6939 0.7416 0.7161 0.7296 0.7336
Average 0.5618 0.8406 0.5673 0.8526 0.8428
T=200 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7973 0.7705 0.7768 0.8033 0.7679
DelftGestures 0.5046 0.9769 0.5001 0.9600 0.9790
WoodyPlants 0.6611 0.9262 0.6911 0.9310 0.9296
Pendigits 0.5000 0.7046 0.5000 0.7595 0.7417
Zongker 0.3008 0.7812 0.3192 0.8199 0.7604
Chickenpieces 0.5000 0.8462 0.5000 0.8483 0.8446
Protein 0.5017 0.9843 0.4999 0.9840 0.9841
Flowcyto 0.6850 0.7418 0.7188 0.7330 0.7357
Average 0.5563 0.8415 0.5632 0.8549 0.8429
T=500 R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7918 0.7689 0.7729 0.8004 0.7615
DelftGestures 0.5071 0.9740 0.5004 0.9580 0.9782
WoodyPlants 0.6277 0.9251 0.6875 0.9342 0.9318
Pendigits 0.5000 0.7021 0.5000 0.7583 0.7398
Zongker 0.2886 0.7700 0.2870 0.8140 0.7599
Chickenpieces 0.5000 0.8440 0.5000 0.8482 0.8425
Protein 0.5017 0.9859 0.4970 0.9838 0.9842
Flowcyto 0.6887 0.7407 0.7230 0.7348 0.7355
Average 0.5507 0.8388 0.5585 0.8540 0.8417

(c)
D=S-1 D=log2(S)
R-1P R-2P O-1PSD O-2PSD O-2PSP R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.8060 0.7817 0.7864 0.8039 0.7746 0.7921 0.7843 0.7856 0.8099 0.7752
DelftGestures 0.5071 0.9791 0.5004 0.9651 0.9814 0.5071 0.9792 0.5004 0.9651 0.9791
WoodyPlants 0.6761 0.9267 0.7132 0.9357 0.9353 0.7048 0.9282 0.7224 0.9370 0.9364
Pendigits 0.5000 0.7098 0.5000 0.7655 0.7486 0.5000 0.7090 0.5000 0.7662 0.7484
Zongker 0.3119 0.7878 0.4102 0.8214 0.7671 0.3544 0.7862 0.4023 0.8243 0.7654
Chickenpieces 0.5000 0.8523 0.5000 0.8513 0.8449 0.5000 0.8567 0.5000 0.8545 0.8490
Protein 0.5060 0.9870 0.5091 0.9840 0.9844 0.5042 0.9870 0.5091 0.9845 0.9854
Flowcyto 0.6969 0.7459 0.7364 0.7365 0.7401 0.6982 0.7450 0.7355 0.7375 0.7410
Average 0.5630 0.8463 0.5819 0.8579 0.8470 0.5701 0.8470 0.5819 0.8599 0.8475

experiments with the two different depths as varying param-
eter: only for half the datasets the difference was statistically
significant. Nevertheless it is more convenient to use a smaller
depth because it allows to save time during both the training
and the testing phase. Lastly we can draw a similar conclusion
to that of Table II (b): datasets with the highest percentage of
outliers tend to perform better with the random variant R-2P
while almost all the remaining ones prefer O-2PSD.

The second analysis aims at understanding whether datasets
that prefer the same split variant have common characteristics.

Table III contains the average AUC computed across all
experiments for which the split variant is the same. If a
∗ is present, it means that the result is significantly better
than the worse counterparts, e.g. for WoodyPlants there is no
statistically significant difference in using O-2PSP instead of
O-2PSD, while using the latter instead of R-2P is statistically
different.
Confirming the analogous reasoning made about Table II, it
seems that datasets are grouped in terms of the best variant
based on the percentage of outliers they contain. Indeed for

8026

TABLE III
AVERAGE AUC ACROSS ALL EXPERIMENTS THAT USE THE SAME SPLIT CRITERION.

Variant
Dataset R-1P R-2P O-1PSD O-2PSD O-2PSP

DelftPedestrians 0.7771 0.7485* 0.7312 0.7730* 0.7215
DelftGestures 0.5020* 0.9620* 0.5000 0.9423* 0.9625
WoodyPlants 0.5493 0.9062* 0.6124* 0.9135* 0.9143
Pendigits 0.5000 0.6903* 0.5000 0.7463* 0.7289*
Zongker 0.2699 0.7381* 0.2805* 0.7748* 0.7318*
Chickenpieces 0.5000 0.8304* 0.5000 0.8334* 0.8269*
Protein 0.5024* 0.9799* 0.4966* 0.9703* 0.9603*
Flowcyto 0.6586* 0.7310* 0.6678* 0.7151* 0.6947*
Average 0.5367 0.8111 0.5400 0.8230 0.8069

datasets with less than 5% of outliers it is best to use the R-
1P criterion–even though it performs rather poorly on almost
all the other datasets–, then as the percentage increases the
preferred variant becomes O-2PSP followed by O-2PSD, and
finally for those datasets which have the highest percentage of
outliers the best variant is R-2P.

From the analyses above we can conclude that using S =
256–or the maximum training sample size available if the
dataset is too small–seems to be the best choice, along with
using T = 200, d = log2(S). Most importantly the variant
which performs best is O-2PSD, i.e. the one which optimizes
the split based on the scatter of the new matrices that the
split creates, a characteristic that we had hoped would help
in isolating outliers early in the tree. Another observation is
that also the random counterpart is highly performing, which
is rather interesting since no optimization process is carried
out. These assertions do not hold when only one prototype is
used.

C. State of The Art

In this Subection we present the results of Proximity Iso-
lation Forests when compared to state-of-the-art approaches
for outlier detection based on distance or density. NNd [31]
is a methodology based on Nearest Neighbor. It is based on
computing a ratio that assesses whether the nearest neighbor
of a testing object is closer to its nearest neighbor in the
training set and if that is the case then the testing object is
more likely to be an outlier. KNNd is a variant of NNd and it
simply replaces the nearest neighbor with the kth one. KNNd-
Av is a variant of KNNd where instead of just considering
the kth neighbor, the average is computed over the first kth

neighbors. LOF stands for Local Outlier Factor [32] which
assigns to each object a continuous score that reflects its
probability to be an outlier; the main concept is that an object
has a more or less dense neighborhood, but if the one of its
neighbor is much denser, then it is more probable that the
former point is an outlier. The density is defined based on
a k-neighborhood. LOF-Range is a similar technique, but it
simply assigns as score to an object the maximum LOF value
in a range. Lastly K-Centers is a clustering method which is
used for outlier detection in the sense that, as explained in
[31], points that are outliers will be probably more distant to
the assigned cluster with respect to the remainder of the data.

The methodology cannot be used if the distance matrix is not
symmetric. After several preliminary tests not shown here, we
decided that setting k = 5 for KNNd, KNNd-Av and LOF was
a reasonable choice for all datasets; instead for LOF-Range
we to set the range from k = 2 to k = 10. Finally as to K-
Centers we decided that a good choice for all datasets was to
set the number of clusters to k = 3.

The results reported in Table IV are the average AUC across
10 iterations. For PIF we report the results corresponding to
the following setting of the parameters: T = 200, d = log2(S),
S = 256, Variant = O-2PSD. This setting has been inferred
from the experimental analyses presented in Subsection IV-B:
it can be considered as a guideline to follow when applying
PIF. For the sake of completeness we also report between
parenthesis the best achievable result with PIF for each dataset,
i.e. there is no fixed parameter.

In general we can observe that results are much better when
using the proposed methodology with respect to the state-
of-the-art methodologies, independently of the dataset. More
importantly using the guidelines to set the parameters of PIF
allows to achieve very good performances: the difference with
respect to the best possible AUC is very small and does not
lead to any additional advantage when comparing with state-
of-the-art methods, confirming the robustness and goodness of
the chosen parametrization.

V. CONCLUSION

The paper proposes a RF-based methodology for outlier
detection that works with non-vectorial data for which a
distance measure is defined. The methodology, called Prox-
imity Isolation Forest, works in an unsupervised fashion: in
each tree prototypes are either chosen randomly or via an
optimization process. The main aim is to isolate early in a
tree outliers with respect to inliers, following the concept of
Isolation Forests, of which this work can be considered an
extension. The methodology has been tested on 8 non-vectorial
problems with good results for most of the variants. It is
also an excellent competitor to other distance and density-
based outlier detection methodologies. Future work comprises
of improving the split variants with only one prototype and
applying the methodology to real problems, such as to brain
connectomes of people with brain diseases.

8027

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS. FOR THE PROPOSED METHOD WE REPORT THE RESULTS OBTAINED WITH A SPECIFIC

PARAMETRIZATION. WE ALSO REPORT THE BEST RESULT BETWEEN PARENTHESIS.

Dataset NNd KNNd KNNd-Av LOF LOF-Range K-Centers PIF
DelftPedestrians 0.524 0.567 0.534 0.553 0.579 0.629 0.799 (0.799)
DelftGestures 0.419 0.440 0.388 0.547 0.579 0.643 0.955 (0.976)
WoodyPlants 0.451 0.390 0.383 0.659 0.639 0.714 0.910 (0.930)
Pendigits 0.505 0.490 0.497 0.492 0.466 0.600 0.745 (0.755)
Zongker 0.566 0.476 0.422 0.564 0.514 0.752 0.796 (0.811)
ChickenPieces 0.462 0.462 0.425 0.456 0.444 NaN 0.825 (0.846)
Protein 0.413 0.820 0.798 0.922 0.919 0.861 0.984 (0.985)
Flowcyto 0.498 0.448 0.462 0.619 0.623 0.629 0.708 (0.737)
Average 0.479 0.524 0.501 0.602 0.596 0.688 0.840 (0.855)

REFERENCES

[1] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[2] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” in IEEE Int. Conf. on Comput. Vis., 2007,
pp. 1–8.

[3] J. Xia, P. Ghamisi, N. Yokoya, and A. Iwasaki, “Random forest en-
sembles and extended multiextinction profiles for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp.
202–216, 2018.

[4] X. Chen and H. Ishwaran, “Random forests for genomic data analysis,”
Genomics, vol. 99, no. 6, pp. 323–329, 2012.

[5] M. Pal, “Random forest classifier for remote sensing classification,” Int.
J. of Remote Sens., vol. 26, no. 1, pp. 217–222, 2005.

[6] A. Subasi, E. Alickovic, and J. Kevric, “Diagnosis of chronic kidney
disease by using random forest,” in CMBEBIH 2017, A. Badnjevic, Ed.,
2017, pp. 589–594.

[7] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification
and Regression Trees, ser. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984.

[8] J. Kittler, “Combining classifiers: A theoretical framework,” Pattern
Analysis and Applications, vol. 1, no. 1, pp. 18–27, 1998.

[9] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
J. Mach. Lear. Res., vol. 15, no. 1, pp. 3133–3181, 2014.

[10] M. M. Moya, M. W. Koch, and L. D. Hostetler, “One-class classifier
networks for target recognition applications,” NASA STI/Recon Technical
Report N, vol. 93, 1993.

[11] C. Désir, S. Bernard, C. Petitjean, and L. Heutte, “One class random
forests,” Pattern Recogn., vol. 46, pp. 3490–3506, 2013.

[12] T. Shi and S. Horvath, “Unsupervised learning with random forest
predictors,” J. Comput. Graph. Stat., vol. 15, 2005.

[13] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 3:1–
3:39, 2012.

[14] ——, “Isolation forest,” in IEEE Int. Conf. on Data Min., 2008, pp.
413–422.

[15] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[16] A. F. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong,
“Systematic construction of anomaly detection benchmarks from real
data,” in Proc. ACM SIGKDD Workshop on Outl. Detect. and Desc.,
2013, pp. 16–21.

[17] N. Goix, N. Drougard, R. Brault, and M. Chiapino, “One class splitting
criteria for random forests,” in Proc. 9th Asian Conf. Mach. Lear., ser.
Proc. of Mach. Lear. Res., M.-L. Zhang and Y.-K. Noh, Eds., vol. 77,
2017, pp. 343–358.

[18] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random cut
forest based anomaly detection on streams,” in Proc. 33rd Int. Conf.
Mach. Lear., vol. 48, 2016, p. 2712–2721.

[19] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest,”
arXiv:1811.02141, 2018.

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “On detecting clustered anomalies
using sciforest,” in ECML PKDD, 2010, pp. 274–290.

[21] A. Mensi and M. Bicego, “A novel anomaly score for isolation forests,”
in Int. Conf. Image Anal. Process., 2019, pp. 152–163.

[22] A. Lourenço, H. Silva, C. Carreiras et al., “Outlier detection in non-
intrusive ecg biometric system,” in Int. Conf. Image Anal. Recogn., 2013,
pp. 43–52.

[23] M. El Azami, A. Hammers, J. Jung, N. Costes, R. Bouet, and C. Lar-
tizien, “Detection of lesions underlying intractable epilepsy on t1-
weighted mri as an outlier detection problem,” PloS one, vol. 11, no. 9,
p. e0161498, 2016.

[24] S. Shekhar, C.-T. Lu, and P. Zhang, “Detecting graph-based spatial
outliers: algorithms and applications (a summary of results),” in Proc.
7th ACM SIGKDD Int. Conf. on Knowl. Disc. Data Min., 2001, pp.
371–376.

[25] G. A. Susto, A. Beghi, and S. McLoone, “Anomaly detection through
on-line isolation forest: An application to plasma etching,” in Annu.
SEMI Adv. Semiconduct. Manuf. Conf., 2017.

[26] Z. Ding and M. Fei, “An anomaly detection approach based on isolation
forest algorithm for streaming data using sliding window,” IFAC Proc.
Vol., vol. 46, no. 20, 2013.

[27] C. Gini, “Variabilità e mutabilità,” Vamu, 1912.
[28] S. Haghiri, D. Garreau, and U. von Luxburg, “Comparison-based random

forests,” arXiv:1806.06616, 2018.
[29] S. Sathe and C. C. Aggarwal, “Similarity forests,” in Proc. 23rd ACM

SIGKDD Int. Conf. on Knowl. Disc. and Data Min., 2017, pp. 395–403.
[30] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals,

F. Petitjean, and G. I. Webb, “Proximity forest: an effective and scalable
distance-based classifier for time series,” Data Min. and Knowl. Disc.,
vol. 33, no. 3, pp. 607–635, 2019.

[31] D. Tax, “One-class classification; concept-learning in the absence of
counter-examples,” Ph.D. dissertation, Delft University of Technology,
2001.

[32] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proc. 2000 ACM SIGMOD Int. Conf.
Manag. Data, 2000, pp. 93–104.

8028

