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Università degli Studi di Verona

Dipartimento di Informatica
Strada le Grazie 15, Verona 37134, Italy

Mauricio Orozco-Alzate
Universidad Nacional de Colombia – Sede Manizales

Departamento de Informática y Computación
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Abstract—In this paper we investigate the exploitation of
non linear scaling of distances for advanced nearest neighbor
classification. Starting from the recently found relation between
the Hypersphere Classifier (HC) [1] and the Adaptive Nearest
Neighbor rule (ANN) [2], here we propose PowerHC, an improved
version of HC in which distances are normalized using a non
linear mapping; non linear scaling of data, whose usefulness
for feature spaces has been already assessed, has been hardly
investigated for distances. A thorough experimental evaluation,
involving 24 datasets and a challenging real world scenario
of seismic signal classification, confirms the suitability of the
proposed approach.

I. INTRODUCTION

In very recent years, there is a scientific trend which is
growing in importance in Pattern Recognition/Machine Learn-
ing/Artificial Intelligence, called in different ways, such as
explainable artificial intelligence [3], [4], interpretable or un-
derstandable machine learning [5], [6] and so on. Disregarding
the particular adjective that is used, the common motivation
in this trend —as pointed out by [7]— is giving importance
not just to the decision of a pattern recognition system (e.g.
the assigned class label for classification – the “what”) but
also to the reason of the decision (the “why”). The former
aspect is sought to build well performing PR systems (e.g.
accurate classifiers); the second allows to enhance our under-
standing about the phenomena as well as about the algorithms
themselves. From the perspective of this interpretability, an
excellent choice is represented by the nearest neighbor rule
(NN) [8]–[10]. This method implements an easy and human-
understandable rule: a test object is assigned to the class of the
training object which is most similar to it. More in general, the
K-nearest neighbor rule (KNN) assigns an object to the most
frequent class among the K objects of the training set which
are nearest to the testing object (i.e. K = 1 in the nearest
neighbor rule). Although this approach does not exploit density
estimation or function optimization procedures – it entirely
relies on the user defined distance measure –, its accuracy is
often very competitive with respect to alternatives, provided
that a suitable dissimilarity measure is chosen along with a
proper training set.

Over the years, numerous variants of the basic Nearest
Neighbor rule have been proposed. Some of them consist in
either reducing the size of the set of prototypes [11] or gener-
ating new ones [12]; others focus on proposing novel dissimi-

larity measures which well behave in high dimensional spaces
[13] or which are adaptive to particular local distributions.
Two relatively recent and very similar approaches, belonging
to the latter category, have been independently proposed: the
Hypersphere Classifier (HC) [1] and the Adaptive Nearest
Neighbor rule (ANN) [2]. HC and ANN are both based on the
rationale of correcting the distance between the query point x
and a prototype xi by using the concept of a hypersphere,
centered at xi, whose radius measures how “inside” a class
the prototype xi is. More precisely, the radius of a training
object xi is defined as the distance to the nearest prototype of
xi which belongs to a different class: a large radius indicates
that the other classes are far away from xi, thus xi can be
trusted more.

The corrections to the distance implemented by these two
techniques are rather different, one using a ratio, the other
a difference. Recently [14], it has been shown that the re-
lation between the two corrections is logarithmic: in other
words, it has been shown that applying the ANN rule is
equivalent to apply the HC rule on distances which are non
linearly normalized (with a logarithm). Generally speaking,
non linear normalization of data – as opposed to standard
linear normalization such as z-score standardization – consists
in applying a non linear mapping to every direction of the
data representation; it has been shown in many different
works that such scaling permits very often to highlight hidden
structures and to improve the classification accuracies [15]–
[20]. Moreover, it has been shown that this non linear scaling
can be also beneficial when applied to distances [21], [22].
Clearly, if the non linear scaling is monotonic, it has not effect
in those distance-based classifiers which only rely on rankings
(such as the KNN methods). However, if the classifier uses
more complex mechanisms, this non linear scaling can dras-
tically change the results – see [21], [22] for an analysis in
the dissimilarity-based representation. Finally, it is important
to note that non linear scaling of distances may emphasize
non linearities in the relation between objects: actually it is
often claimed [23]–[25] that the good recognition of complex
entities requires the consideration of non linear/non-Euclidean
relations among them.

Non linear scaling can be implemented with non linear
functions such as logarithm, sigmoid, power and others. Start-
ing from the observation that the ANN classifier is the HC
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classifier applied to distances which have been non linearly
scaled with a logarithm, it seems very promising to investigate
the effect of other non linear scalings, such as the power
transformation – the superiority of the power transformation
with respect to the logarithm, for particular feature spaces,
has been demonstrated in [18]. This paper is devoted to this,
and proposes a variant of the HC classifier, which we call
PowerHC, in which the distances are scaled with a power
transformation before applying the HC classifier. We show
with a large scope empirical evaluation, involving 24 standard
UCI-ML datasets, that this non linear scaling is rather benefi-
cial with respect to HC (no scaling), also in comparison with
the ANN classifier (i.e. the logarithm scaling). As a second
contribution, we evaluate the behaviour of these advanced
nearest neighbor schemes in a very recent and challenging
real world scenario, which involves classification of seismic
volcanic events [26]. In this context, the KNN rule has been
applied almost always in its basic version, with most of the
efforts put in defining the distance or the representation [27].
The analysis provided in this paper shows, on a very large
dataset involving more than one thousand of signals gathered
at the Nevado del Ruiz volcano in Colombia, that advanced
NN techniques can be very useful to classify seismic signals.

The rest of the paper is organized as follows. The original
formulations of ANN and HC are presented in Sec. II. Our
proposal —the PowerHC rule— is described in Sec. III.
The experimental results and comparison with the baseline
methods are shown in Sec. IV. Finally, our concluding
remarks are given in Sec. V.

II. THE ANN AND THE HC RULES

This section presents the two different variants of the Near-
est Neighbor rule from which we start our analysis, i.e. the
Hypersphere Classifier (HC – [1]) and the Adaptive Nearest
Neighbor rule (ANN – [2]).

A. The Hypersphere Classifier

The Hypersphere classifier was originally proposed in [1]:
one of its main original characteristics was its ability to
reduce the number of prototypes in the training set, to deal
with memory restrictions. Obviously, this method can also be
exploited without any constraint: actually, in this study, we do
not exploit the incremental nature of HC, relying on the basic
scheme. Before presenting the version which uses the radius,
let us present the version introduced in [1]: the first step is to
define as ρi the region of influence of a given training point
xi; once defined this ρi, the HC rule proposes to compute the
distance from a testing object x to the training point xi as
follows:

dHC(x,xi) = d(x,xi)− gρi, (1)

The idea is to give more importance to those training points
which have a large “region of influence”, i.e. points on which
we can trust more: this is accomplished by reducing their
distance to the testing object. The link with the radius can
be found in the way the region of influence ρi is defined:
actually ρi is 1/2 the radius of the largest hypersphere having

as center xi and not containing any training object belonging
to a different class. The radius ri of this hypersphere, which
represents the distance to the nearest training object of xi
belonging to a different class, can be formally defined as:

ri = min
xj∈OT (xi)

d(xi,xj) (2)

with

OT (xi) = {xk such that label(xk) 6= label(xi)} (3)

In Eq. (1), g is a free parameter, which has to be defined by
the user. In the definition of ρi, the idea is to define the region
of influence as half of the radius of the hypersphere in order
to avoid the overlap between hyperspheres of different classes.
However, in [1] authors suggested that the optimal value for
g would be 2: to simplify our notation, here we only consider
this setting, and rewrite Eq. (1) by using Eq. (2):

dHC(x,xi) = d(x,xi)− ri. (4)

Please note that Eq. (4) may produce negative distances in
those cases when the testing object is inside the hypersphere
associated to the training object xi; nevertheless, when using
nearest neighbor rules, which are based on ranking, this does
not represent a problem – the nearest neighbor rule simply
extracts the minimum of the distances to all training objects,
independently from the sign.

B. The Adaptive Nearest Neighbor Rule

Apparently, the proposers of the Hypersphere classifier were
not aware of a very similar technique which was presented
some years before: the Adaptive Nearest Neighbor Rule (ANN
– [2]). ANN exploits a reasoning similar to that of [1],
since corrects the distance of a testing point x to a training
object xi using the radius of the hypersphere associated to
that training object, where the hypersphere is defined exactly
as in the Hypersphere Classifier. Again, the goal is to give
more importance to training points which are well inside
their class, i.e. training points with large radius: to realize
that, given a testing object, its distances to training points
with large hyperspheres are diminished (thus making them
“more near”), whereas its distances to training points with
small hyperspheres are enlarged (thus making them “more
far away”). To get this effect the ANN technique proposes
to divide the distances between the testing object x and the
training object xi by the radius, as follows:

dANN (x,xi) =
d(x,xi)

ri
. (5)

Even if implementing the same idea, the behaviour of the
corrections in Eq. (5) and Eq. (4) is rather different, since the
penalization is much stronger in the former rule (ratio versus
difference). Please note that Eq. (5), differently than Eq. (4),
does not generate negative values. However, the distance might
diverge if ri → 0, leading to numerical inaccuracies. This
problem is solved in [2] by adding an arbitrarily small ε to the
radius. In general, the numerical problem is unlikely to occur
for real-world data satisfying the compactness hypothesis [28].
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III. THE POWERHC RULE

The proposed approach starts from the mathematical rela-
tion between ANN and HC which has been recently assessed
in [14]: the ANN rule can be seen as equivalent to the
application of the HC rule to the logarithm of the original
distances. In few words, if we take the logarithm of our input
distance d(x,xi), we get a novel distance d̃(x,xi):

d̃(x,xi) = log d(x,xi) (6)

Note that this operation has no effect on the KNN rule,
since the ranking does not change. However, in more complex
distance-based classifiers, this operation may have an impact.
If we apply the HC rule using this normalized distance d̃(x,xi)
we have (using again the notation that was introduced in
Eq. (3)):

d̃HC(x,xi) = d̃(x,xi)− r̃i, (7)

where r̃i is the radius using the normalized distance. It is easy
to see that

r̃i = log ri (8)

and that

d̃HC(x,xi) = log d(x,xi)− log ri = log dANN (x,xi) (9)

i.e. the application of the HC correction to the logarithm of
the original distances is equivalent to the application of the
logarithm to the ANN correction computed on the original
distances.

The PowerHC classifier starts from this relation, and substi-
tutes the logarithm scaling with the power transformation. This
transform has been widely used to normalize data, especially
in a slightly different variant called Box-Cox transform [29],
[30]: this transform, introduced in the 60s, was mainly used
to transform a set of points in order to make their distribution
approximately Gaussian. Recently, it has been also shown that
it can be useful also in classification contexts, especially when
used in parameter ranges which are very far from those optimal
for Gaussianity [20]. Its usefulness with distances, however,
has been poorly investigated – i.e. only for the particular case
of dissimilarity-based representation [21], [22].

The PowerHC rule starts by defining, for every object in
the training set xi, the power-radius pi, which represents the
radius computed using the power of the distances:

pi = min
xj∈OT (xi)

d(xi,xj)
ρ, ρ > 0 (10)

with OT (xi) as defined in Eq. (3). Given this radius, the
PowerHC method computes the new distance between a testing
point x and a prototype xi as:

dPHC(x,xi) = d(x,xi)
ρ − pi. (11)

Given this corrected distance, as in the case of ANN and HC,
the classification is then performed using the NN rule (or the
KNN rule).

Depending on the value of ρ, the power transformation can
have different effects on the distances, which can be divided

mainly in two classes (see Fig. 1). Suppose that the distance
takes values in [0, 1]: when using ρ < 1, the non linear
mapping is convex, and small distances are increased, whereas
large distances are reduced. The effect is that relations between
objects become more balanced, since points tend to have all
the same distance to the others. On the contrary, when ρ > 1,
the non linear mapping is concave: small distances become
even smaller, whereas large distances are increased: in this way
relations are driven to extreme (neighbor objects become even
closer). These two opposite effects may be beneficial or not,
depending on the distribution of the classes inside the problem
– this will be evident in the experimental section, where
we will show that some problems benefit from the concave
transformation, whereas for others the convex transformation
is more useful.
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Fig. 1. Effect of the power transformation

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We used a heterogeneous collection of datasets for the
experiments (see Table I), including those that were used in
[1], [2], [14]. The heterogeneity of this collection is aimed
at evaluating the PowerHC method under several conditions
of dimensionality, cardinality and number of classes. In all
these cases we used Euclidean distance between vectorial
representations.

Moreover, we tested the proposed scheme in a real world
challenging scenario, involving the classification of seismic-
volcanic signals into a number of predefined categories: this
problem is definitely challenging, since distinguishing among
the different categories of seismic signals is not easy even for
the most experienced analysts [26]. In this context, the nearest-
neighbor rule has been applied almost always in its basic
version, with most of the efforts put in defining the distance
or the representation: we will show that the application of
advanced nearest neighbor schemes may be beneficial for the
problem. In particular we used a rather large dataset of 1065
signals collected at the Nevado del Ruiz volcano in Colom-
bia, and pre-processed by the Observatorio Vulcanológico y
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Sismológico de Manizales, Colombia1; there are five different
seismic events, which represent the classes: volcano tectonic
(VT) events, long period (LP) events, tremors (TR), hybrid
(HB) events, and screw-like (TO) earthquakes. Signals are
characterized using spectrograms, using 1-second frames, a
128-point FFT, a 64-point Hamming window and an overlap
of 50%. From spectrograms we derived two problems: in the
first (volcano_Eucl), we derived a vectorial representation
by averaging the spectrograms, computing the distance using
again the Euclidean distance. In the second (volcano_DTW)
we directly used the spectrograms, characterizing their simi-
larity with the dynamic time warping (DTW) distance [31],
[32], a widely used not metric (dis)similarity measure able to
take into account the intrinsic temporal and sequential nature
of the seismic signals [27].

TABLE I
SUMMARY OF THE DATASETS PROPERTIES

Dataset # features # objects # classes
german-credit 20 1000 2
wine 13 178 3
pima 8 768 2
sonar 60 208 2
wdbc 30 569 2
soybean1 35 266 15
tic-tac-toe 9 958 2
chromo 8 1143 24
yeast 8 1484 10
vehicles 18 846 4
ecoli 7 336 8
malaysia 8 291 20
arrhythmia 278 420 12
imox 8 192 4
heart 13 297 2
x80 8 45 3
haberman 3 306 2
soybean2 35 136 4
ionosphere 34 351 2
iris 4 150 3
liver 6 345 2
glass 9 214 6
wpbc 32 194 2
spirals 2 194 2
volcano_Eucl 65 1065 5
volcano_DTW 65 × # frames 1065 5

In all problems, accuracies were evaluated by using a
repeated training and testing protocol. At each repetition, the
dataset was randomly split into two parts of approximately the
same size: 50% for training the classifier and the remaining
part for estimating the performance. We compute accuracies
under two scenarios: (i) when using the NN rule for the final
decision, (ii) when using the KNN rule. Averaged accuracies,
along with their corresponding standard errors, are shown in
Tables II and III, for NN and KNN, respectively. Notice that
all accuracies are presented as percentages in order to facilitate
the visualization of significant figures in both the accuracies
and their corresponding standard errors. In order to distinguish
the methods when applied under these scenarios, either NN
or KNN is used as a prefix for the name of the compared

1We thank John Makario Londoño-Bonilla and the Observatorio Vul-
canológico y Sismológico de Manizales, Colombia for providing the data.

methods. To have a more clear analysis of the differences
between PowerHC and both ANN and HC, we used a paired
t-test at a 5% of significance to test the accuracies. Our
null hypothesis is that “the performance of PowerHC and the
baseline method (either ANN or HC) is effectively the same”.
When the hypothesis is rejected —that is, when PowerHC and
the baseline are significantly different— in Tables II and III
we point with an arrow to the name of the method exhibiting
the highest performance (e.g., in table II, first line, column “B
vs D”, “Reject ↗” indicates that B (NN-ANN) and D (NN-
PowerHC) are different with a statistical significance, and that
the best method is D (NN-PowerHC)).

The most important parameter involved in our experiments
is the power ρ in PowerHC. We explored the effect of its
values in the range ρ ∈ {0.2, 0.4, . . . , 9.8, 10}; to completely
understand the potentialities of the proposed approach, for the
comparisons we selected for every experiment the parameter
values that yield the best classification results – we report such
values in the tables below. An analysis on how to select ρ in
an automatic way is reported in the final part of this section
(namely Sect. IV-D). Regarding the results with KNN, we
repeated the tests with K ∈ {1, 3, . . . , 27, 29}, reporting again
in Table III the best obtained result.

B. Comparison of NN-PowerHC vs NN-ANN and NN-HC

According to the acceptance or rejection of the t-tests,
results in Table II were grouped and marked with a symbol
preceding the name of the dataset. The first group, marked
with a F, corresponds to cases were NN-PowerHC is better
than both NN-ANN and NN-HC. Notice that, in this group
the best ρ for each dataset is always larger than or equal to
2.0; that is, in these cases, diminishing small distances and,
at the same time, increasing the large ones is beneficial. This
is somehow in contrast with other studies [17], [18], [22],
in which better results were obtained with the power less
than 1. Accuracy differences of NN-PowerHC with respect
to NN-ANN range from 0.78 to 5.51, which correspond to
yeast and arrhythmia, respectively. However, even though
the improvement for arrhythmia is the largest one, we must
take into account that, in that case, NN-ANN is worse than
NN. Similarly, improvements of NN-PowerHC with respect
to NN-HC range from 0.53 to 2.56, which correspond to the
same datasets.

The second and the third groups correspond to cases where
NN-PowerHC is better than one of the baseline methods but
equal to the other one. In particular, when NN-PowerHC is
better than NN-ANN but equal to NN-HC (symbol �), we
notice that improvements range from 0.28 for wdbc to 1.41
for volcano_DTW. In this group, it can be highlighted that the
best ρ values are around 1.55. The subsequent group, the one
marked with N, shows improvements of NN-PowerHC with
respect to NN-HC that range from 0.12 to 0.54 for vehicles
and iris. In contrast with the second group, in this one all
the best ρ values are smaller than 1.0; that is, homogenizing
the distances in this group (remember that the transformation
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TABLE II
ACCURACIES, AS PERCENTAGES, ALONG WITH STANDARD ERRORS FOR 50 REPETITIONS AND T-TESTS AT 5% OF SIGNIFICANCE FOR THE COMPARED

METHODS WHEN USING NN FOR DECISION. ARROWS POINT TO THE BEST METHOD WHEN DIFFERENCES ARE SIGNIFICANT.

Accuracies t-tests
`````````Dataset

Method A B C D B vs D C vs DNN NN-ANN NN-HC NN-PowerHC
F german-credit 68.72±0.29 71.32±0.29 71.58±0.29 72.59±0.28 (ρ = 6.2) Reject↗ Reject↗
F pima 69.70±0.33 72.43±0.32 72.70±0.32 73.54±0.32 (ρ = 6.0) Reject↗ Reject↗
F tic-tac-toe 79.52±0.26 80.86±0.25 83.04±0.24 84.36±0.23 (ρ = 5.8) Reject↗ Reject↗
F yeast 51.02±0.26 53.53±0.26 53.78±0.26 54.31±0.26 (ρ = 3.4) Reject↗ Reject↗
F arrhythmia 57.88±0.48 55.07±0.49 58.02±0.48 60.58±0.48 (ρ = 2.0) Reject↗ Reject↗
F heart 76.55±0.49 78.23±0.48 78.50±0.48 79.28±0.47 (ρ = 3.2) Reject↗ Reject↗
F haberman 66.32±0.54 68.70±0.53 68.70±0.53 69.70±0.53 (ρ = 9.6) Reject↗ Reject↗
� wdbc 95.06±0.18 96.16±0.16 96.36±0.16 96.44±0.16 (ρ = 1.6) Reject↗ Accept
� ecoli 81.79±0.42 83.52±0.40 84.14±0.40 84.30±0.40 (ρ = 1.8) Reject↗ Accept
� volcano_DTW 72.55±0.27 78.41±0.25 79.75±0.25 79.82±0.25 (ρ = 1.6) Reject↗ Accept
� glass 68.50±0.64 66.91±0.64 67.66±0.64 67.79±0.64 (ρ = 1.2) Reject↗ Accept
N sonar 83.44±0.52 84.82±0.50 84.49±0.50 84.85±0.50 (ρ = 0.2) Accept Reject↗
N iris 93.33±0.41 94.40±0.38 93.89±0.39 94.43±0.37 (ρ = 0.2) Accept Reject↗
N liver 61.45±0.52 61.40±0.52 61.06±0.52 61.40±0.52 (ρ = 0.6) Accept Reject↗
N vehicles 69.11±0.32 68.79±0.32 68.74±0.32 68.86±0.32 (ρ = 0.8) Accept Reject↗
N malaysia 70.64±0.53 69.05±0.54 68.72±0.54 69.08±0.54 (ρ = 0.2) Accept Reject↗
♦ ionosphere 85.21±0.38 93.36±0.27 93.19±0.27 93.36±0.27 (ρ = 0.2) Accept Accept
♦ wpbc 65.59±0.68 71.46±0.65 71.18±0.65 71.65±0.65 (ρ = 3.4) Accept Accept
♦ wine 95.00±0.33 95.93±0.30 96.00±0.29 96.05±0.29 (ρ = 0.6) Accept Accept
♦ chromo 55.34±0.29 55.24±0.29 55.28±0.29 55.35±0.29 (ρ = 0.8) Accept Accept
♦ volcano_Eucl 73.91±0.27 75.73±0.26 75.69±0.26 75.75±0.26 (ρ = 0.4) Accept Accept
♦ soybean1 85.16±0.44 84.24±0.45 84.41±0.44 84.59±0.44 (ρ = 1.6) Accept Accept
♦ imox 92.94±0.37 91.52±0.40 91.73±0.40 91.79±0.40 (ρ = 0.8) Accept Accept
♦ x80 94.38±0.68 88.29±0.95 88.29±0.95 88.95±0.92 (ρ = 3.6) Accept Accept
♦ soybean2 82.03±0.66 81.62±0.66 81.62±0.66 81.79±0.66 (ρ = 1.2) Accept Accept
M spirals 74.25±0.63 68.56±0.67 67.44±0.67 68.21±0.67 (ρ = 0.2) ↖Reject Reject↗

in this case is convex) enhances HC but the improvement is
not enough to reach the performance of NN.

In 9 out of 26 cases, there are no significant differences
between the performance of NN-PowerHC and the baseline
methods; see the group marked with ♦. Finally, the M singleton
composed by spirals is an atypical case in which none of
the advanced methods is better than NN. This dataset was
intentionally included in the collection of [14] for the sake of
illustrating a case where ANN and HC are counterproductive.
In fact, notice that even though NN-PowerHC improves over
NN-HC for spirals, its accuracy is significantly lower than
the one of NN-ANN and, in turn, both are far from the
performance of NN.

Finally, for what concerns the volcanic datasets, two obser-
vations should be done: i) PowerHC is again slightly better
than HC and ANN, but only when using the DTW distance,
ii) more importantly, advanced nearest neighbor techniques
largely improve the Nearest Neighbor rule, especially when
we use the non metric DTW distance.

C. Comparison of KNN-PowerHC vs KNN-ANN and KNN-
HC

The same marking conventions that were used in Table II are
also followed in the analysis of Table III. With respect to the
first group (F), we noticed that the best improvement obtained
by KNN-PowerHC over both KNN-ANN and KNN-HC still
corresponds to arrhythmia, but again, KNN-ANN is worse
in this dataset than KNN. The span of the best ρ values in this

group is large: from 1.8 to 9.6; however, as in the previous
case, they correspond to concave transformations.

When comparing Table III against the first group in Table
II, we can notice that pima and yeast were slightly degraded
from F to �. In the opposite relation, we can see that
ecoli, volcano_DTW, liver and x80 were upgraded to
the first group in Table III. The case of the latter dataset
is the most significant upgrade (from ♦ to F) but also, as
for arrhythmia, in x80 KNN-ANN is worse than KNN.
Moreover, x80 is similar to spirals in the sense that KNN
is, overall, the best option. Moving to the second and third
groups, glass, sonar, malaysia and iris were kept in
the same groups as in Table II. In contrast, for wdbc and
vehicles, KNN-PowerHC lost its advantage with respect
to the baseline that had when considering NN-PowerHC.
Notice that ionosphere accompanies now spirals in the
M group. However, in ionosphere, the improvement of all
the advanced methods is significant in comparison to KNN.

Finally, when considering volcano datasets, we can observe
that with PowerHC and DTW we obtain a remarkable 82.19%
of accuracy, which is largely higher than that obtained with
basic NN (72.55% with DTW or 73.91% with Euclidean
distance) or KNN (73.62 with DTW or 74.99% with Eu-
clidean distance). This suggests that non linear - non metric
characterization of relations may be fundamental in highly
complex real problems.
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TABLE III
ACCURACIES, AS PERCENTAGES, ALONG WITH STANDARD ERRORS FOR 50 REPETITIONS AND T-TESTS AT 5% OF SIGNIFICANCE FOR THE COMPARED

METHODS WHEN USING KNN FOR DECISION. ARROWS POINT TO THE BEST METHOD WHEN DIFFERENCES ARE SIGNIFICANT.

Accuracies t-tests
`````````Dataset

Method A B C D B vs D C vs D
KNN KNN-ANN KNN-HC KNN-PowerHC

F german-credit 73.82±0.28 72.75±0.28 73.22±0.28 74.22±0.28 (ρ = 8.8) Reject↗ Reject↗
F tic-tac-toe 83.37±0.24 82.66±0.24 83.04±0.24 84.36±0.23 (ρ = 5.8) Reject↗ Reject↗
F arrhythmia 63.00±0.47 61.57±0.47 64.98±0.47 68.89±0.45 (ρ = 1.8) Reject↗ Reject↗
F haberman 75.03±0.49 74.64±0.50 74.76±0.50 75.26±0.49 (ρ = 2.0) Reject↗ Reject↗
F liver 63.74±0.52 62.48±0.52 64.15±0.52 65.08±0.51 (ρ = 2.8) Reject↗ Reject↗
F volcano_DTW 73.62±0.27 78.78±0.25 80.95±0.24 82.19±0.23 (ρ = 2.2) Reject↗ Reject↗
F ecoli 86.64±0.37 84.80±0.39 85.60±0.38 86.20±0.38 (ρ = 3.4) Reject↗ Reject↗
F heart 83.26±0.43 81.01±0.45 82.12±0.44 83.07±0.43 (ρ = 9.6) Reject↗ Reject↗
F x80 94.38±0.68 88.29±0.95 88.29±0.95 90.57±0.86 (ρ = 2.8) Reject↗ Reject↗
� pima 74.90±0.31 75.52±0.31 75.88±0.31 75.90±0.31 (ρ = 0.8) Reject↗ Accept
� yeast 58.22±0.26 57.29±0.26 58.44±0.26 58.72±0.26 (ρ = 1.8) Reject↗ Accept
� glass 68.50±0.64 66.91±0.64 67.66±0.64 67.79±0.64 (ρ = 1.2) Reject↗ Accept
N sonar 83.44±0.52 84.82±0.50 84.49±0.50 84.85±0.50 (ρ = 0.2) Accept Reject↗
N malaysia 70.64±0.53 69.05±0.54 68.72±0.54 69.08±0.54 (ρ = 0.2) Accept Reject↗
N iris 95.25±0.35 94.40±0.38 93.89±0.39 94.43±0.37 (ρ = 0.2) Accept Reject↗
♦ wdbc 96.14±0.16 96.30±0.16 96.39±0.16 96.44±0.16 (ρ = 1.6) Accept Accept
♦ wpbc 76.33±0.61 76.37±0.61 76.31±0.61 76.41±0.61 (ρ = 8.2) Accept Accept
♦ chromo 55.34±0.29 55.24±0.29 55.28±0.29 55.35±0.29 (ρ = 0.8) Accept Accept
♦ volcano_Eucl 74.99±0.27 75.73±0.26 75.73±0.26 75.79±0.26 (ρ = 3.0) Accept Accept
♦ wine 96.91±0.26 95.93±0.30 96.00±0.29 96.05±0.29 (ρ = 0.6) Accept Accept
♦ soybean1 85.16±0.44 84.24±0.45 84.41±0.44 84.59±0.44 (ρ = 1.6) Accept Accept
♦ vehicles 69.90±0.32 68.79±0.32 68.74±0.32 69.3±0.32 (ρ = 9.8) Accept Accept
♦ imox 92.94±0.37 91.52±0.40 91.73±0.40 91.79±0.40 (ρ = 0.8) Accept Accept
♦ soybean2 82.03±0.66 81.62±0.66 81.62±0.66 81.79±0.66 (ρ = 1.2) Accept Accept
M ionosphere 85.21±0.38 94.02±0.25 93.43±0.26 93.92±0.25 (ρ = 0.2) ↖Reject Reject↗
M spirals 74.25±0.63 68.56±0.67 67.44±0.67 68.21±0.67 (ρ = 0.2) ↖Reject Reject↗

D. The tuning of ρ

As mentioned in Sec. IV-A, to inspect the whole poten-
tialities of the proposed PowerHC we select the optimal ρ,
i.e. the parameter leading to the optimal accuracy. Clearly, in
realistic scenarios, such parameter should be set in advance. In
this section we performed a comparison between the optimal
accuracy and that obtained with an automatic tuning approach
based on Cross validation (as done in [22]). In particular, the
optimal ρ is the one which minimizes the Leave One Error
of the Nearest Neighbor rule on the training set. In Fig. 2
we report the comparisons for NN-PowerHC (left) and KNN-
PowerHC (right).

Notice that the automatic method is only slightly worse than
the best value. For some datasets, the difference is more noto-
rious than for others as can be observed for arrhythmia and
malaysia; in contrast, in other cases the result is in practice
the same: see for instance ionosphere, iris and wdbc. No
particular difference, with respect to the tuning approach, is
observed between NN-PowerHC and KNN-PowerHC. Please
note that, once given the distances, this automatic selection
rule may be implemented in a very efficient way (three lines
of code), thus resulting in a viable approach to automatic
selection of ρ.

V. CONCLUSIONS

In this paper we investigated the suitability of non linear
scaling of distances to improve standard as well as advanced
Nearest Neighbor approaches. In particular we studied Pow-
erHC, a method which normalizes distances with a power

transformation prior to applying the HC classifier. The per-
formed experimental evaluation, conducted on a rather large
set of datasets, confirms the suitability of the proposed ap-
proach. Remarkably, we have shown that on a real world
challenging application related to the classification of volcano-
seismic signals, advanced nearest neighbor techniques – and
especially the PowerHC – can be very beneficial.
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