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Abstract—In this paper we study the poorly investigated
problem of learning Random Forests for distance-based Random
Forest clustering. We studied both classic schemes as well as
alternative approaches, novel in this context. In particular, we
investigated the suitability of Gaussian Density Forests [1],
Random Forests specifically designed for density estimation.
Further, we introduce a novel variant of Random Forest, based
on an effective non parametric by-pass estimator of the Rényi
entropy, which can be useful when the parametric assumption
is too strict. An empirical evaluation involving different datasets
and different RF-clustering strategies confirms that the learning
step is crucial for RF-clustering. We also present a set of practical
guidelines useful to determine the most suitable variant of RF-
clustering according to the problem under examination.

I. INTRODUCTION

Random Forests (RFs) [2], [1] represent a widely known
pattern recognition tool, whose usefulness has been largely
shown in many different fields. From a general perspective,
Random Forest approaches have been almost always stud-
ied for regression and classification: in these contexts they
represent state-of-the-art approaches, able to compete with
the most effective and established approaches like SVM or
Neural Networks. In other pattern recognition scenarios, such
as clustering, RFs have received less attention: even if some
excellent RF-based approaches have been proposed, their ex-
ploitation in the clustering scenario is far from been as mature
as in classification/regression. Among the different approaches
proposed to RF-clustering, a particularly important trend –
called distance-based RF clustering [2], [3], [4], [5] – follows
the idea of exploiting the capabilities of RF in describing data
to derive a meaningful similarity measure between points, to
be exploited in a classic distance-based clustering algorithm,
like hierarchical clustering or spectral clustering [6]. In these
approaches, the first step is to learn a Random Forest, which
is then used to derive the similarity: the main problem, here, is
that labels are not available, and classic supervised strategies
cannot be used. Even if crucial – proper RFs are fundamental
to derive good similarities for clustering– this step has received
poor attention by researchers, whose efforts have been mainly
devoted to the definition of the similarity. This paper is aimed
at filling this gap, and deals with the problem of learning
proper Random Forests for distance-based RF clustering.

In literature, the most common approach consists in training
a standard classification forest which discriminates between
the original data and a synthetically generated negative class
[3], [4]. Typically, the negative class is obtained by sampling

points from the product of empirical marginal distributions
of the observed data: in this way the dependency structure
of the original data is removed. Other options, less investi-
gated, rely on exploiting Extremely Randomized Trees [7],
which can be built without labels, since they are based on
random splits. For example, in [5], a general purpose – i.e.
not specifically designed for clustering – RF-based similarity
measure has been introduced, defined on the basis of Isolation
Forests [8], a particular type of Random Forests designed for
one-class classification which describe data using Extremely
Randomized Trees.

In this paper we thoroughly study this problem of learning
the Random Forest for distance-based RF clustering, and
analyse and compare classic as well as alternative approaches.
In particular, we investigated four strategies. The first strat-
egy is the standard “sampling-negatives + classification RF”,
described above, which represents the baseline. The second
strategy is based on Extremely Randomized Trees [7]: even
if this strategy has been already employed, its utility in this
context has not been sufficiently assessed, especially within
an explicit comparison with the classic scheme. The third
investigated strategy is based on Density Forests, i.e. Random
Forests which perform density estimation [1], [9]; these tools,
never used in this context, seem to be particularly suited,
for two different reasons: i) they can be trained without
labels, ii) they can provide a rich description of the data.
Here we investigate the Gaussian variant introduced in [1],
which assumes Gaussianity in each node. The last investigated
strategy starts from the following two observations: i) Density
Forests may suffer from classic and known problems of density
estimation procedures (e.g. computation of partition function);
ii) with parametric methods, we can get bad estimates if
data do not follow the model assumption – the Gaussianity
in each node in this case. We therefore introduced a novel
variant, which we call Rényi Random Forest, in which, inside
each tree, each split is decided on the basis of an effective
non parametric estimation of Rényi entropy belonging to the
class of bypass entropy-estimators [10]. The approach does
not directly estimate the density, thus avoiding problems in
density estimation, and is non parametric, thus working well
when parametric assumptions do not hold.

These four strategies have been empirically tested with
different datasets, different forest parametrizations, different
RF-based distances and different distance-based clustering
algorithms. Results show that the learning of forests is crucial
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in RF clustering, and that results obtained with the standard
approach can be almost always improved with alternative
strategies. The empirical analysis permitted also to derive a set
of practical guidelines, useful to determine the most suitable
variant according to the problem at hand.

Summarizing, the main contributions of the manuscript are:
• we investigated the problem of learning the Random

Forest in Random Forest clustering: this was missing in
the literature, since every approach just uses one scheme;

• we investigated the use of Gaussian Density forests in a
context in which they were never used;

• we introduced a novel learning scheme, based on Rényi
entropy estimators, specifically designed for this task;

• we provided an empirical comparison of the 4 different
learning schemes, analysing different aspects, such as
different Forest parametrizations, distances and clustering
algorithms. This permitted also to derive a set of guide-
lines useful to choose, given a particular problem, the
most suitable parametrization and configuration for RF-
clustering.

The remainder of the paper is organized as follows: in Sect.
II the needed background on Random Forests and Random
Forest clustering is provided; the different learning schemes
are presented in Sect. III; Sect. IV contains the experimental
evaluation; finally, Sect. V concludes the paper.

II. BACKGROUND

A. Trees and Forests

In the more general formulation, given a problem in a d-
dimensional space, a decision tree is a complete binary tree
T in which each internal node j is associated to a threshold
θj and a feature fj ; the two edges connecting the node to
its children are associated with the two possible results of
performing the binary test defined by the pair (θj , fj): an
object x = [x1, .., xd] follows the left path if xfj < θj ,
the right path otherwise. Trees can be learnt by exploiting
a training set S, which is used to determine, at each node j,
the optimal pair (θj , fj). Typically, this is done by finding the
pair (θ∗j , f

∗
j ) which maximizes the information gain I(θj ,fj),

θ∗j , f
∗
j = arg max

θj ,fj
I(θj ,fj) (1)

The information gain is often defined in terms of the entropy
of the training points which arrive at node j; given Sj , the set
of objects of the training set S reaching a particular node j,
the information gain is defined as:

I(θj ,fj) = njH(Sj)−
∑

i∈{L,R}

nijH(Sij) (2)

where H(·) represents an entropy measure, SLj , S
R
j are the

set of objects of Sj which go through the left and the right
paths, respectively, as obtained with the splitting pair (θj , fj)
(we remove (θj , fj) from SLj and SRj for readability). The
variables nj , nLj and nRj denote the cardinality of Sj , SLj
and SRj , respectively. For classification, the entropy H(S)

measures the purity of the classes. Other solutions are possible,
as seen in the following.

Random Forests [2], [1] realize a robust ensemble of
decision trees, exploiting a randomization mechanism in the
learning of the different trees. The randomization level may
vary a lot, ranging from the simplest exploitation of different
random subset of samples to build each tree up to the extreme
case of designing completely random trees, i.e. the so-called
Extremely Randomized Trees [7]. The different trees are then
aggregated to get the final model. Breiman in [2] shows
that this aggregation exhibits different interesting theoretical
properties – he derives an upper bound on the generalization
error, in terms of the strengths of individual trees and their
correlation. The different Forests used in this paper will be
presented in Sect. III.

B. Random Forest clustering

As stated in the introduction, Random Forests have not been
largely investigated for clustering, and their potentialities in
this context have not been completely exploited. Here we focus
of a specific class of RF clustering approaches, called distance-
based RF-clustering [2], [3], [4], [5], which exploit the de-
scription capabilities of Random Forests to derive a similarity
measure, to be used with a distance-based clustering algorithm
such as Spectral Clustering or Hierarchical Clustering. These
approaches are based on three steps:
1. Learning of the Forest. A RF is trained on the points
to be clustered. Clearly, the main issue is that labels are not
available.
2. Deriving pairwise similarities from the Forest. The
trained RF is used to derive a similarity measure between
points: in the simplest approach, introduced in [2], [3], the idea
is to consider that two objects are similar if they end up in the
same leaf of a given tree, since they have answered in the same
way to all tests in their path. Given the forest, the similarity
measure is thus represented by the number of times – over
the whole set of trees – that two objects end up in the same
leaf. Despite its simplicity, this similarity has shown to be
very useful in many different clustering applications [11], [12],
[13]. This reasoning can be extended in different ways, leading
to more complex measures such as [4], [5]: more details can
be found in the experimental session.
3. Clustering via a distance-based approach. Given the
similarity measure, any distance-based clustering algorithm
can be used, such as Hierarchical Clustering or Spectral
Clustering [6].

In this paper we focus our attention on the first step, by
analysing some different schemes, described in the following
section.

III. THE LEARNING SCHEMES

We investigated four different approaches: the first two have
been already employed in the RF-clustering domain; the third
is taken from the density estimation field but is new in the
context of RF-clustering; finally the last represents a novel
scheme, specifically designed for this task.
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A. Classification Random Forests

The first option, which represents the baseline, is to use the
classic Random Forest for classification, trained with randomly
generated negative points [3], [4]. Standard classification deci-
sion trees, such as CART or C4.5 [14], are employed, trained
with two classes: the positive class, which contains the points
to be clustered, and a synthetically generated negative class,
of the same size of the positive one. The negative class is
obtained by random sampling from the product of empirical
marginal distributions of the observed data: in this way the
dependency between features is removed.

B. Extremely Randomized Random Forests

The second option is to use Extremely Randomized Trees
[7], a class of trees which includes different levels of random-
ization in the random forests building: for example, we can
randomly choose the feature on which to perform the split,
or we can select it from a random subset; the effects of the
possible randomization levels have been largely investigated
by Geurts and colleagues in [7]. Here we employed the most
extreme version, in which, at each node, the feature to be
used to perform the split is chosen randomly, together with the
splitting threshold. This version seems suitable in this context,
since it does not need any supervision – i.e. no labels.

C. Gaussian Density Random Forests

Since the goal is to provide a description of the data, a
possibility we investigate here is to employ Random Forests
which perform density estimation [1], [9], which can be trained
without labels. This possibility has never been investigated in
the distance-based RF-clustering context. In particular here we
considered the Density Forests introduced in [1], in which each
tree provides a hierarchical description of the data, assuming
that every node is distributed as a Gaussian. This assumption
is useful: actually, in the learning of a tree, the best split at
every node is the one which maximizes the Entropy gain: for
Gaussians, the entropy can be explicitly computed, given the
covariance which can be estimated with the points falling in
that node. One needed clarification: obviously, density forests
can be also directly exploited to get the final clustering, e.g.
via mode seeking; in such cases, however, we have to face
with known problems in density estimation. For example,
we have to compute a proper partition function, in order to
ensure probabilistic normalization: even if good numerical
approximations exist [15], a closed form solution can not be
derived. In our case, however, we do not have this issue, since
we do not need to compute the density, but only the entropy
gain, to be used when building the trees.

Going into details, the learning of a tree in this Gaussian
Density Forests is performed again by choosing, at each node
j, the pair (θj , fj) which maximizes the information gain
defined in eq. (2). In this case, the assumption is to have a
multivariate Gaussian distribution at every node: therefore the
entropy H(S) is defined as the entropy of the d-dimensional
Gaussian

H(S) =
1

2
log((2πe)d det(ΣS)) (3)

where ΣS is the covariance matrix of the set of points in S,
and det(·) indicates the determinant of a matrix.

In this regard, the Gibbs theorem ensures that Gaussian
variables have the maximum entropy among all the variables
with equal variance. This fact is exploited in [16] to use the
Gaussian hypothesis as an upper bound of those related to
the (unknown) empirical distribution. In this paper, the Gibbs
theorem allows us to define Gaussianity as a first level of
statistical refinement.

Thus, under the Gaussian hypothesis, the information gain
in eq. (2) reduces to:

IG(θj ,fj) = nj log(det(ΣSj ))−
∑

i∈{L,R}

nij log(det(ΣSi
j
)) (4)

D. Rényi Random Forests

Gaussian Density Forests may be very adequate, since they
provide effective Entropy estimation also in the parts of the
trees where few points are present. However, there may be
situations in which the Gaussianity assumption is too strict:
to face these cases, here we propose a novel class of Random
Forests, based on decision trees in which, similarly to Gaussian
density forests of [1], each split is found by optimizing the
entropy gain. However, differently than [1], we do not make
any assumption on the shape of the data, and use a non
parametric bypass entropy estimator of the Rényi entropy [10].
This method starts from the following observation: to get a non
parametric estimate of the entropy, the simplest way is to get
the density via non parametric approaches such as Parzen’s
windows, and then to estimate the entropy from the density –
the so called plug-in estimators. However, when the number
of features is somehow large, direct plug-in estimators cannot
be used, suffering from the curse of dimensionality. In these
cases, better estimates of the Entropy can be obtained using the
so-called bypass estimators [16], which only rely on samples
and do not need the density estimation to get the entropy.
In our case, since we only need the entropy to choose the
best split, these approaches seem to be very promising. Here
we adopted the bypass entropy estimator proposed in [10],
which – instead of estimating the classic Shannon Entropy,
which estimation may suffer from some problems, see [10] –
proposes a method to estimate the more general Rényi entropy.
The Rényi entropy, for a random variable x taking values in
<d, is defined as:

Hα(x) =
1

1− α
log

∫
<d

p(x)αdx (5)

The definition is given for α 6= 1, while the limit H1 =
limα→1Hα represents the Shannon entropy. Given a set of n
points X, in [10] the estimation starts by building a generalized
Nearest Neighbor graph of the samples in X. In such graph,
the nodes V represent the samples, whereas the edges E are
defined on the basis of a set of integers K, and contains, for
every node, only the connections to its K neighbors – e.g.,
if K = [1, 3, 7], each node has a connection only with its
first, third and seventh nearest neighbors. Proximities between
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nodes are computed using Euclidean distances between cor-
responding samples. Given the graph, the estimator Ĥα(x) is
computed as:

Ĥα(X) =
1

1− α
log

Lp(X)

γn1−p/d
(6)

where p = d(1− α) and

Lp(X) =
∑

(x,y)∈E

‖x− y‖p

Finally, γ is a constant which can be estimated by generating
a large sample G of M points in [0, 1]d and setting

γ =
Lp(G)

M1−p/d

Typically [16], α is set to be as nearest to 1 as possible, in
order to approach the Shannon Entropy. Even if some heuristic
schemes to find the proper value of α have been proposed [16],
in our experiments we fixed its value to 0.999999.

In our novel Rényi tree, we propose to use this entropy
to estimate the best split to be chosen inside a node. In
particular, we plug equation (6) into equation (2); after some
mathematical manipulations, we have that the best split at each
node j is the one which maximizes:

IR(θj ,fj) =nj

[
log(Lp(Sj))− (1− p

d
) log(nj)

]
−

∑
i∈{L,R}

nij

[
log(Lp(S

i
j))− (1− p

d
) log(nij)

]
(7)

This entropy estimation, being non parametric, may permit
better splits when distributions inside a node are not Gaussian.
This is confirmed in our experimental evaluation. Just to
provide an intuition here, please consider the data distribution
in Fig. 1(top), and suppose that the optimal split should be
chosen along the x-axis. As can be observed there are two
clouds of points, each one composed by two parts: a denser
left part together with a less dense right part. When estimating
the best split using the Gaussian Entropy, the less dense part
of the left group is considered as the left tail of the right
group: the split is therefore chosen in the middle of the left
distribution (vertical red dashed line). This is consistent with
the maximum entropy of Gaussian variables. On the contrary,
in the non parametric density estimation of the Rényi entropy
we do not assume any underlying distribution, and a more
reasonable split can be found (vertical blue dotted line). Thus,
Rényi entropy acts as a statistical refinement of Gaussianity
when needed.

IV. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation: after
introducing the experimental details in section IV-A, we will
present results and comments in IV-B. Subsequently, in section
IV-C, we present some general guidelines useful to select
proper versions and parameters for Random Forest Clustering.
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Fig. 1. Example of splitting.

A. Experimental Details

Training details. In the classic scheme with classification
Random Forests (“Class-RF”), we used the Gini criterion to
decide the best split. When learning each tree, the splitting
process is stopped only when a node contains one element
or only objects with the same label. For randomized Random
Forests (“Random-RF”) we stop the growing of the tree when
reaching the max depth of 50 or when a node contains one ele-
ment. For the Gaussian Density Random Forest (“GaussDens-
RF”), for a proper estimation of the covariance matrix we
stop the growing of the tree when a node contains less than
10 objects. We used full covariances, which, as typically done,
are regularized by adding to the diagonal a small value (10−7).
Finally, for Random Forests based on Rényi entropy (“Rényi-
RF”), we used K = {3}, again stopping the growing of the
tree when a node contains less than 10 objects.

In all cases every tree of every forest is built by randomly
selecting 80% of dataset and by selecting the best split among
50% or 100% of the features. In our experiments we used
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forests with 50 and 100 trees. For every configuration (number
of trees - features), Random Forests have been trained 20
times, each one representing the starting point from which
to compute the similarities.

Distances. We used four different distance measures. The
“Shi” distance represents the first version of a Random Forest-
based distance used for clustering, as defined in [2], [3]. As
explained in section II, this measure is obtained by defining the
similarity between x and y as the number of trees where x and
y fall in the same leaf, divided by the total number of trees;
the dissimilarity is obtained as the squared root of 1 minus the
similarity. Then, we also used two measures introduced in [4]:
the first (“Zhu2”) represents the second variant1 introduced in
[4], which extends the approach in [2], [3] by defining the
similarity as proportional to the averaged length of the path
two objects have in common in their traversal down to the
leaves. The third analysed measure (“Zhu3”, the third variant
introduced in [4]) weights every node in the common path
– the weight of a node is computed as the inverse of the
number of points which reach such node. Finally, we consider
the distance defined in [5] (“Ting”), another Random Forest-
based similarity which defines the distance between two points
x and y as the ratio of points of the training set reaching the
LCA (Lowest Common Ancestor) of x and y.

Clustering schemes and evaluation. Given the similar-
ity/dissimilarity, clustering is performed with three different
methods: i) Spectral Clustering [6], a typical choice in more
recent RF-clustering works (e.g., [4]), using the Ng-Jordan-
Weiss normalized version [6], and repeating the inner k-means
20 times2; ii) Affinity Propagation [17], a widely known
distance-based clustering approach3, and iii) a Hierarchical
Clustering scheme (the Ward-Link variant, Matlab implemen-
tation). We evaluate the clustering procedures with supervised
datasets, removing labels and comparing the obtained clusters
to the original labelling using the classical adjusted Rand index
(ARI – [18]) index – the higher the better. We tested the
different learning schemes, parametrizations, measures, and
clustering schemes using the 8 classic datasets described in
table I, all available from the UCI Machine learning repository.

B. Results

The set of experiments encompasses a wide range of as-
pects: for every dataset and every learning scheme, we have
different RF parametrizations (number of trees and features
subsampling), different RF-measures, and different clustering
algorithms. Considering that these last two aspects are the most
interesting for RF clustering, we present in table II results
aggregated for the four distances and the three clustering
procedures, for every dataset (rows) and every learning scheme

1The first variant in [4] coincides with Shi.
2https://github.com/areslp/matlab/blob/master/spectral clustering/ Spectral-

Clustering.m
3The version we used allows setting the number of clusters, see

http://www.psi.toronto.edu

TABLE I
DETAILS OF THE DATASETS EMPLOYED FOR TESTING.

Name #objects #features #cluster #obj per cluster
Iris 150 4 3 50,50,50
Wine 178 13 3 59,71,48
Glass 214 9 4 70,76,17,51
BTissue 106 9 6 21,15,18,16,14,22
Heart 297 13 2 160,137
Lung 32 54 3 9,13,10
Parkinsons 195 22 2 48,147
Auto-mpg 398 6 2 229,169

(column): for each entry of each table, the best (in average)
parametrization of the Random Forest has been chosen (an
analysis of Random Forest parametrization is reported in
section IV-C). Reported numbers are averages over the 20
repetitions. A bold value in a line indicates that the accuracy of
the corresponding learning scheme is better than all the other
learning schemes, on the given dataset, with a statistically
significant level according to a classic t-test with 0.05 of
significance level.

Different information can be evinced from the results. The
first, and most important, is that the classic learning scheme
(Class-RF) is hardly the best solution: in the 96 results reported
in the table, only in two occasions it outperformed the alterna-
tives with a statistical significance. This confirms the intuition
behind this paper, i.e. that Random Forest clustering can
really benefit from alternative learning schemes. The second
observation is that Random Forests based on data entropy
(GaussDens-RF and Rényi-RF) seem to be a really valid option
in this context: in 52 cases over 96 they are significantly
better than the alternatives; Random-RF were the best in 16
cases, whereas in the remaining 20 there are no statistically
significant differences in the accuracies. However, it seems
evident that the optimal learning scheme drastically depends
on the dataset employed. In Section IV-C we will try to derive
some general guidelines useful to choose the optimal version
in a given case. For what concerns the distance, Zhu2, Zhu3
and Ting distances work equally well, with Zhu3 partially
showing slightly superior results (37 over 96). Interestingly,
there are different cases in which the Shi distance works very
well, being better than the alternatives in 25 cases over 96. In
the others, its behaviour is drastically worst than those of the
alternatives. Finally, the Spectral Clustering algorithm seems
to be the most adequate clustering scheme (59 over 128) –
this confirms the intuitions in [4].

C. Guidelines for Random Forests clustering

In this section we propose some guidelines useful to choose
the most suitable version: first, we provide suggestions for the
best parametrization of the Forest, the best distance and the
best clustering method; after this, we discuss guidelines for
choosing, according to the given case, the most suitable RF
learning scheme, which was the core of this paper.

Choice of the parametrization. For what concerns the first
point, in Table III we present a comparative analysis of
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TABLE II
RESULTS

Spectral Clustering
Shi Zhu2

Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.5270 0.3536 0.8423 0.7354 0.7166 0.7390 0.8894 0.6768
Wine 0.8561 0.8914 0.8667 0.4251 0.7871 0.8834 0.8234 0.4075
glass 0.1522 0.1781 0.2119 0.2358 0.1997 0.2237 0.1361 0.3069
BTissue 0.3977 0.3877 0.4304 0.1993 0.3778 0.3801 0.4365 0.3075
heart 0.2835 0.2706 0.2816 0.1581 0.2354 0.3796 0.1583 0.0195
Lung 0.1327 0.1863 0.1670 0.1793 0.1009 0.1842 0.1478 0.1708
Parkinsons 0.1619 0.1836 0.1771 0.3868 0.1695 0.1547 0.0964 0.0447
Auto-mpg 0.1202 0.2090 0.4651 0.1910 0.4080 0.4806 0.4177 0.5224

Zhu3 Ting
Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.7357 0.7680 0.8929 0.7207 0.6979 0.7177 0.8894 0.6183
Wine 0.8588 0.8973 0.8363 0.4297 0.6416 0.8690 0.8173 0.3993
glass 0.2100 0.2387 0.1360 0.3120 0.1913 0.2272 0.1689 0.3029
BTissue 0.4037 0.4237 0.4360 0.2502 0.3471 0.3924 0.4375 0.3203
heart 0.2904 0.3433 0.2612 0.0454 0.1781 0.3797 0.1318 0.0197
Lung 0.1372 0.1970 0.1855 0.1726 0.1065 0.1834 0.1845 0.1706
Parkinsons 0.1701 0.1810 0.1068 0.0447 0.1685 0.1549 0.0940 0.0449
Auto-mpg 0.3971 0.3212 0.4617 0.4360 0.3854 0.4823 0.3307 0.5224

Affinity Propagation
Shi Zhu2

Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.5535 0.1399 0.5584 0.6137 0.6844 0.7251 0.8845 0.5956
Wine 0.7350 0.1472 0.8183 0.3286 0.6839 0.8153 0.8427 0.4660
glass 0.2119 0.1691 0.1631 0.1726 0.2033 0.2275 0.1386 0.2983
BTissue 0.3794 0.1813 0.4464 0.1987 0.3861 0.4030 0.4459 0.2657
heart 0.2673 0.3280 0.3171 0.0406 0.2679 0.3765 0.2714 0.0252
Lung 0.0976 0.0804 0.1853 0.1661 0.0833 0.1117 0.2212 0.1900
Parkinsons 0.1777 0.0370 0.0279 0.0505 0.1718 0.1655 0.1060 0.0447
Auto-mpg 0.2568 0.2794 0.2738 0.3906 0.3879 0.4436 0.3904 0.5224

Zhu3 Ting
Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.6770 0.7113 0.8787 0.6313 0.6699 0.7157 0.8940 0.5846
Wine 0.7054 0.7626 0.8700 0.4769 0.6004 0.7842 0.8049 0.4165
glass 0.1928 0.2345 0.1374 0.2977 0.1806 0.2216 0.1673 0.2975
BTissue 0.3798 0.4037 0.4536 0.2394 0.3690 0.4018 0.4460 0.3148
heart 0.3050 0.3603 0.3199 0.0451 0.2344 0.3732 0.2017 0.0281
Lung 0.1278 0.1037 0.2212 0.1927 0.0863 0.1152 0.2212 0.1611
Parkinsons 0.1896 0.1681 0.1546 0.0419 0.1684 0.1609 0.0816 0.0447
Auto-mpg 0.4128 0.3885 0.3480 0.5224 0.3795 0.4775 0.3694 0.5224

Hierachical Clustering
Shi Zhu2

Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.4356 0.3402 0.7236 0.6993 0.6872 0.7426 0.8965 0.6246
Wine 0.8416 0.8140 0.6951 0.3395 0.7791 0.8957 0.6443 0.3947
glass 0.1337 0.0919 0.2045 0.1627 0.1896 0.1986 0.1504 0.3253
BTissue 0.3820 0.3454 0.4209 0.1968 0.4002 0.3762 0.4334 0.2525
heart 0.0895 0.1816 0.1241 0.0327 0.1199 0.2088 0.0690 0.0210
Lung 0.1362 0.1755 0.2212 0.1991 0.1203 0.1780 0.2213 0.1851
Parkinsons 0.1785 0.1655 0.1777 0.1519 0.1547 0.1795 0.0816 0.0447
Auto-mpg 0.0961 0.1388 0.3190 0.0857 0.3800 0.4121 0.2657 0.5224

Zhu3 Ting
Problem Class-RF Random-RF GaussDens-RF Rényi-RF Class-RF Random-RF GaussDens-RF Rényi-RF
Iris 0.6816 0.7227 0.9019 0.6328 0.6592 0.7325 0.8857 0.5604
Wine 0.8330 0.8802 0.6801 0.3944 0.5869 0.8649 0.6444 0.3949
glass 0.1683 0.1235 0.1689 0.3152 0.1702 0.2445 0.1689 0.3219
BTissue 0.4119 0.4061 0.4336 0.2172 0.3857 0.3774 0.4458 0.3158
heart 0.1622 0.1931 0.0703 0.0218 0.1185 0.2007 0.0690 0.0196
Lung 0.1122 0.1785 0.2213 0.1969 0.1149 0.1694 0.2213 0.1888
Parkinsons 0.1673 0.1975 0.0892 0.0447 0.1785 0.1540 0.0816 0.0447
Auto-mpg 0.2948 0.1748 0.3134 0.3677 0.3478 0.4245 0.2657 0.5224
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the different options relative to each considered aspect (RF
parametrization, distance, and clustering): for each aspect
we compute the average of the ARI values of the different
alternatives by varying all other aspects: for example, when
analysing the distance (Table III(b)), we compute the average
of all results obtained with Shi, Zhu2, Zhu3 and Ting, for
all different RF-parametrizations, training schemes, clustering
methods, and repetitions, thus resulting, for each dataset, in
960 values (4 parametrizations × 4 trainings × 3 clusterings
× 20 repetitions). In the table, for each dataset, a bold value,
if present, indicates the best option which has a statistical
significant difference with respect to the others, according
to an unpaired t-test with significance 0.05. More than one
bold value represent equivalent options which are significantly
better than non-bold values.

By analysing the Table different information can be derived:
first, we can observe that the subsampling of the features is
almost always beneficial (except in one case), leading to better
performances. This is somehow expected, since it permits to
increase the diversity in the trees composing the forest, this
being crucial for proper generalization. For what concerns the
number of trees, apparently there is no significant differences:
our suggestion is to use 50 trees, since this permits faster
computations. Regarding the distance, it can be observed
that Zhu2, Zhu3, and Ting are almost always performing all
reasonably well, with two exceptions: the Wine dataset, when
the Ting distance is drastically worst that the other two, and
the Auto-mpg, where the worst is Zhu3. For this reasons,
our suggestion is to use the Zhu2 distance, which has also
the larger average accuracy. Finally, for clustering the most
reasonable choice seems to be to use the Spectral Clustering: in
many cases it is better than the alternative, and when this does
not happen, it represents the second best choice. Summarizing,
here is our first set of guidelines: train forests with a reduced
number of trees (50 may be enough), perform subsampling of
features, extract the Zhu2 distance and get the final result via
Spectral Clustering.

Choice of the learning scheme. For what concerns the
learning scheme, if we focus our attention to the upper right
part of Table II (Spectral Clustering and Zhu2 distance) we
can observe that there is not a single best learning scheme,
but that this varies according to the dataset. Considering the
characteristics of the problems listed in Table I, we can ob-
serve that entropy-based methods (GaussDens-RF and Rényi-
RF) are more adequate when input datasets are of reduced
dimensionality (Iris, Gauss, BTissue and Auto-mpg). This is
reasonable, since with low dimensional data entropy estima-
tion can be easier. For datasets of higher dimensionality (Wine,
Heart, Lung, Parkinsons) it seems more adequate to use the
Random scheme, which does not need any estimation, being
based on random choices: the only exception is the Parkinsons
dataset, in which however the Random training represents
the second best choice. For the entropy-based methods, it
is however needed to decide if using Gaussian Entropy or
Rényi entropy; to do that we can use the intuition which

leaded us to the introduction of the latter: when the Gaussian
assumption does not hold, then the use of Rényi-RF should
be more reasonable. To confirm this, we restrict our attention
to the four low-dimensional datasets (Iris, Gauss, BTissue
and Auto-mpg), and we made a test for Gaussianity on the
clusters contained in such datasets. To test Gaussianity we used
the Royston’s Multivariate Normality Test [19]4: it represents
the multivariate extension of the well known Shapiro-Wilk
test [20], considered to be one of the best test of univariate
normality [21]. According to this test, for Glass and Auto-mpg
datasets all clusters are non-Gaussian, with a p-value below
the Matlab precision value. For Iris and BTissue, most of the
clusters are Gaussian, and the others have a p-value which
is near the acceptance threshold (0.01). To provide numbers,
after making the test for each cluster in a dataset we average
the obtained p-values – please note that the lower the p-value
the stronger is the rejection of the hypothesis of Gaussianity–
: they are 0.0509 (Iris), 1.11e-07 (Glass), 0.122 (BTissue), 0
(Auto-mpg). Looking at the averaged accuracies in Table II,
we can have a confirmation of our intuition: when clusters are
mainly Gaussian (Iris and BTissue), the GaussDens-RF is the
best choice, whereas in other cases it is better to use Rényi-
RF. A further step is needed, since clusters are not known in
advance: our proposal is to use the GaussDens-RF learning
strategy, which represents a fast and effective scheme, and to
test the Gaussianity of the obtained clusters: if all clusters are
non-Gaussian, then we should train the Forest with the Rényi-
RF, otherwise we can keep the forest trained with GaussDens-
RF.

Summary. Summarizing, here are the guidelines for Random
Forest Clustering: i) Number of Trees: 50; ii) Feature subsam-
pling: 50%; iii) Learning: if the problem is high dimensional
(e.g. dimensionality larger than 10), then use the Random-RF
training; in the other cases use the GaussDens-RF strategy,
and check the Gaussianity of the resulting clusters using the
Royston’s test; if all clusters are non-Gaussian, then train
the forest with Rényi-RF; iv) Distance: Zhu2; v) Clustering:
Spectral clustering. To confirm these guidelines, in Table IV
we report, for each dataset, the ARI obtained with these guide-
lines, together with the average ARI and the ARI obtained with
the best configuration: we can observe that the version with the
Guidelines performs adequately well, with values which are
always well above the average accuracy. Comparing with the
maximum value, we can observe that the differences are almost
always quite low, in the order of few points of percentage.
The only exception is the Parkinsons problem, for which
the difference is quite high. The motivations are still under
investigation, but we should consider that this represents a very
difficult case (the case with the lowest averaged accuracy),
and a finer parameter tuning can be necessary to get adequate
performances.

4We used the code of Trujillo-Ortiz et al., available at
https://it.mathworks.com/matlabcentral/fileexchange/17811-roystest

3457



TABLE III
ANALYSIS OF DIFFERENT ASPECTS: (A) RF NUMBER OF TREES AND FEATURE SAMPLING; (B) DISTANCE; (C) CLUSTERING METHOD. WITH “TOTAL” WE

INDICATE THE NUMBER OF EXPERIMENTS OVER WHICH THE AVERAGE IS TAKEN.

Trees and Feature sampling Distance Clustering method
(Total: 960) (Total: 960) (Total: 1280)

Problem 50-0.5 50-1 100-0.5 100-1 Shi Zhu2 Zhu3 Ting SC AP HC
Iris 0.6629 0.5668 0.6731 0.5664 0.3791 0.6988 0.7001 0.6912 0.6469 0.5961 0.6089
Wine 0.6521 0.4497 0.6680 0.4721 0.4956 0.5941 0.6133 0.5389 0.6126 0.5175 0.5514
glass 0.1802 0.1970 0.1804 0.1986 0.1554 0.2024 0.1934 0.2050 0.1982 0.1920 0.1769
BTissue 0.3556 0.3194 0.3572 0.3234 0.3083 0.3471 0.3502 0.3499 0.3503 0.3318 0.3346
heart 0.1704 0.1266 0.1811 0.1291 0.1448 0.1558 0.1663 0.1403 0.1750 0.1931 0.0873
Lung 0.1445 0.1342 0.1485 0.1450 0.1432 0.1410 0.1473 0.1407 0.1457 0.1310 0.1525
Parkinsons 0.1132 0.0836 0.1164 0.0879 0.0874 0.1054 0.1078 0.1006 0.1133 0.0909 0.0966
Auto-mpg 0.3312 0.2712 0.3334 0.2792 0.1605 0.3980 0.2599 0.3965 0.3155 0.3371 0.2587
Average 0.3263 0.2686 0.3323 0.2752 0.2343 0.3303 0.3173 0.3204 0.3197 0.2987 0.2833

(a) (b) (c)

TABLE IV
RESULTS OBTAINED WITH GUIDELINES.

Dataset Guidelines Average Best
Iris 0.8893 0.6173 0.9019 (Gauss,100,0.5,Zhu3,HC)
Wine 0.8426 0.5605 0.8973 (Rand,100,0.5,Zhu3,SC)
glass 0.2430 0.1890 0.3253 (Rényi,100,1,Zhu2,HC)
BTissue 0.4365 0.3389 0.4536 (Gauss,100,0.5,Zhu3,AP)
heart 0.3796 0.1518 0.3797 (Rand,100,0.5,Ting,SC)
Lung 0.1831 0.1430 0.2213 (Gauss,50,1,Zhu2,HC)
Parkinsons 0.1547 0.1003 0.3868 (Rényi,100,0.5,Shi, SC)
Auto-mpg 0.4919 0.3037 0.5224 (Rényi,50,1,Zhu2,SC)

V. CONCLUSIONS

In this paper we investigated the problem of learning a Ran-
dom Forest for distance-based Random Forest clustering. We
analysed four different schemes, based on classic classification
RF, extremely randomized RF, Gaussian Density Estimation
Forest and on a novel variant of RF, based on a non parametric
by-pass estimator of the Rényi entropy. A large empirical
evaluation confirmed that the proper learning of the Random
Forest is crucial in RF clustering, and that the classic scheme
can be very often improved by more advanced schemes.
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