
Dissimilarity Random Forest Clustering

Manuele Bicego

Computer Science Dept., University of Verona, Verona, Italy
Email: manuele.bicego@univr.it

Abstract—In this paper we present DisRFC (Dissimilarity
Random Forest Clustering), a novel Random Forest Clustering
approach which, contrarily to current methods which require
in input a vectorial representation, works only with dissimilar-
ities, thus being applicable also to all those problems where a
vectorial representation is not available but a descriptive dis-
similarity measure can be computed. In the DisRFC approach
objects to be clustered are first modelled with a novel RF
variant called Unsupervised Dissimilarity Random Forest (UD-
RF), which functioning mechanisms are both unsupervised and
based on dissimilarities. The trained UD-RF is then used to
project objects in a binary vectorial space, where effective K-
means procedures can be used to obtain the final clustering. In
the paper we present different variants of DisRFC, thoroughly
and positively evaluated using 10 different problems.

Keywords-Random Forest clustering, Rényi divergence, Un-
supervised Random Forest, Ensemble clustering

I. INTRODUCTION

Random Forests (RFs) [1], [2] represent a renowned

pattern recognition and data mining tool, largely and suc-

cessfully applied in many different contexts. Generally

speaking, Random Forests have have been mostly studied for

regression and classification, representing in these contexts

state-of-the-art approaches. In alternative scenarios, such as

clustering, the usefulness of RFs has not been completely

investigated, even if some excellent approaches appeared.

In particular, more than early works on clustering with trees

[3], RF-clustering approaches can be mainly divided into

two groups: in the first, RFs (or RF-inspired schemes) are

employed to directly derive the clustering [4], [5], [6], while

in the second RFs are used to derive a similarity measure to

be used as input to a distance-based clustering algorithm [1],

[7], [8]. One common limit of all these approaches is that

they are designed to work with vectorial representations, i.e.

objects to be clustered should be represented with a vector of

features. However, there are many applications in which it is

difficult to derive a set of discriminative features, and objects

are more naturally described with non vectorial representa-

tions, such as strings, sequences, graphs, sets and so on: in

these cases classic RF-clustering schemes can not be applied,

and novel methods should be devised. It is important to note

that, in the classification context, the interest in deriving

RF variants able to deal with non vectorial objects has

drastically increased in recent years: the most promising and

recent methods are based on RFs in which all mechanisms

are based on dissimilarities1 computed among non vectorial

objects [9], [10], [11], [12]: this represents a very reasonable

and general option, since, for these problems, it is very often

easier to derive a dissimilarity measure than to extract a

set of features [13] – consider for example the powerful

distances for strings, sequences or graphs that have been

developed in the past.

In this paper we present DisRFC (Dissimilarity Random
Forest Clustering), a novel RF-clustering scheme which is

entirely based on dissimilarities, thus being applicable also

to all those problems where a vectorial representation is

not available but a descriptive dissimilarity measure can

be computed. The proposed approach is based on two

ingredients: the first is a novel variant of RF, called Un-
supervised Dissimilarity Random Forest (UD-RF), in which

all mechanisms are entirely unsupervised and based on
dissimilarities. We introduced three learning strategies to

train a UD-RF, one based on random mechanisms (like

in Extremely Randomized Trees [14]), one on Hausdorff

distance [15], and one on the Rényi divergence measure

[16]. The second ingredient exploits the fact that each tree

induces a hierarchical partition of the objects, and tackles

the problem of finding the final clustering as a clustering

ensemble task. In particular, exploiting and extending recent

theoretical advances in K-means based consensus clustering

[17], [18], we develop four fast and effective K-means style

clustering schemes which operate in a binary space defined,

for all objects of the problem, from the trained UD-RF.

All the different variants of the proposed approach have

been thoroughly evaluated using 10 different problems

involving non vectorial objects; a comparative analysis

with classic and advanced dissimilarity based clustering

approaches confirms that DisRFC can represent a promising

approach to clustering.

II. THE PROPOSED APPROACH: DISRFC

The proposed DisRFC (Dissimilarity Random Forest

Clustering) approach is based on two steps: i) given dissimi-

larities between input objects, an Unsupervised Dissimilarity

RF (UD-RF) is trained; ii) subsequently, the clustering is

obtained by combining the information contained in the dif-

ferent trees of the trained UD-RF via a Consensus Clustering

approach.

1We will use, along the manuscript, the terms “dissimilarity” and
“distance” in an interchangeable way.

936

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00105

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

A. Unsupervised Dissimilarity Random Forests

The Unsupervised Dissimilarity Random Forest (UD-RF)

represents an ensemble of Unsupervised Dissimilarity Trees

(UD-T), each one trained using a different random subset

of the objects of the problem. Let us introduce the UD-T: it

is a complete binary tree, which can be built starting from

dissimilarities between the objects of a set O. For simplicity,

let us assume that we have in input the whole matrix of

pairwise dissimilarities D = [dis(oi, oh)] (∀oi, oh ∈ O),
where dis(oi, oh) represents the dissimilarity between object

oi and object oh. It is important to note that we do not need

to make any assumption on the nature of this dissimilarity,

which can be even non Euclidean. In the proposed UD-T,

the traversal mechanism is borrowed from Proximity Forests

[12], one of the dissimilarity-based forests introduced in the

classification field. In particular, a node nj of a UD-T is

defined by two prototypes oLj and oRj , associated to the

left and the right branches, respectively: an object o follows

the left path if it is more similar to the left prototype (i.e

dis(o, oLj) < dis(o, oRj)), the right path otherwise. Let us

call Sj the set of objects reaching node nj , and SL
j (SR

j)

the set of nodes going through the left (right) branch of node

nj .

The UD-T is trained starting from a set of objects: we start

from the root (which contains all objects), define a split and

create two children nodes, containing the points nearest to

the left and to the right prototypes, respectively; then we

continue with the splitting procedure until a node can not

be split further, or until the tree has reached a predefined

maximum depth. To choose the pair of prototypes which

determine the split inside a node, we propose three possible

schemes, of increasing complexity. Please remember that, in

the clustering case, no labels are available2.

“Rand”: in this first scheme the two prototypes in a node

nj are randomly chosen among the objects reaching node

nj (i.e. oLj , o
R
j ∈ Sj), similarly to what is done in Extremely

Randomized Trees for classification [14].

“HausD”: this second scheme is based on the idea that a

good split should produce two sets of objects which are

well separated, in order to get a better partition of the

space. Here, to measure the separation between SL
j and

SR
j we use the Hausdorff distance [15], a classic measure

to compare sets of objects, which – crucially – can be

computed starting only from pairwise distances. Given two

sets X = {x1, · · ·xN} and Y = {y1 · · · yM}, and a distance

measure dis(x, y) between objects, the Hausdorff distance

between X and Y is defined as:

HD(X,Y) = max
i∈[1···N]

min
j∈[1···M]

dis(xi, yj) (1)

2Some approaches for RF-clustering like [7], [8] circumvented the
problem by sampling a negative class from the vector space – here this
solution can not be adopted since we have only dissimilarities.

In our “HausD” training strategy, at each node nj the best

pair is the one which maximizes the Symmetrized Hausdorff

distance between SL
j and SR

j , defined as:

SHD(SL
j , S

R
j) =

1

2

(
HD(SL

j , S
R
j) +HD(SR

j , SL
j)

)
(2)

Clearly, analysing all possible pairs would be computation-

ally too demanding, therefore we use a classic RF trick: we

randomly selected a small number of random pairs, choosing

the one which maximizes eq. (2).

“RényiD”: this scheme is based on the idea that a good split

should produce two sets of points which convey different
information. To quantify this, we can exploit Information

Theory measures, as extensively done in many other RF

training schemes [1], [2]. In particular, in the “RényiD”

training scheme we search for the pair of objects leading

the largest Rényi divergence [16] between SL
j and SR

j .

The Rényi divergence represents an information theoretic

measure which generalises the Kullback-Leibler divergence

between probability distributions; to estimate it we use the

recent method proposed in [16], which is particularly suited

for our case for different reasons: i) it is non parametric,

i.e. it does not make any assumption on the underlying

distribution; ii) it belongs to the class of by-pass estimators
[19], i.e. it does not need to directly estimate the density

(thus avoiding all the problems typically involved in density

estimation, like the computation of the partition function);

iii) it is based on nearest neighbor ratios, thus relying only

on dissimilarities; iv) it produces reliable estimates also with

non Euclidean distances, thus being suitable for our scenario.

More in details, given two sets X = {x1, · · ·xN} and

Y = {y1 · · · yM}, the Rényi divergence is estimated as:

RD(X,Y) =
1

(α− 1)
log

[
ηα

M

M∑
i=1

(
Ni

Mi + 1

)α
]

(3)

where α is the parameter of the Rényi divergence, η =
M/N , Ni (Mi) represents the number K-nearest neighbors

of yi in {X ∪Y } belonging to X (Y) – for all the technical

details see [16]. Given this definition, in the “RényiD”

training strategy the best pair is the one which maximizes the

Symmetrized Rényi divergence between SL
j and SR

j , defined

as:

SRD(SL
j , S

R
j) =

1

2

(
RD(SL

j , S
R
j) +RD(SR

j , SL
j)

)
(4)

Also in this case, to maintain the computational load to a

reasonable level, we choose the best pair among a small

number of randomly selected pairs.

B. Ensemble clustering with UD-RF

Given the trained UD-RF, which provides a description

of the objects of the problem, the second step is aimed at

obtaining the final clustering. We start from an idea already

introduced in early RF-clustering approaches [3], [4], [5]:

937

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

each tree can be considered as a partitioner, since it permits

to divide the input objects into different (hierarchical) clus-

ters, according to the path each object follows in the tree.

Assuming this perspective, we can get the final clustering

from a UD-RF by aggregating the partitions defined by

the different trees contained in it, i.e. by using approaches

of Consensus Clustering. More specifically, we propose a

scheme for combining the information contained in the

different trees which has its roots in the works of [20],

[17]. In such papers, authors show that it is possible to

solve the demanding combinatorial optimization problem of

maximizing the Category Utility Function – a widely known

criterion for consensus clustering [20] – via a classic K-

means algorithm in a specific feature space defined by the

partitions. This elegant idea has been further extended in

[18]: authors show that, under some conditions, many other

different criteria for consensus clustering can be seen from

this perspective, typically by changing the distance used

inside the K-means. Taking inspiration from these findings,

in our approach we embed the objects of the problem in

a space derived from the trained UD-RF, getting the final

result via clustering in such space.

Embedding with UD-RF. We define two possible embed-

dings, both based on the partitions induced by the trees:

in particular, the “OP” (One Partition) embedding uses a

single partition for each tree, whereas the “MP” (More

Partitions) embedding uses more than one partition, thus

better exploiting the whole hierarchy defined by the tree at

the price of increasing the dimensionality of the embedding.

In both cases the final embedding of an object o is obtained

by concatenating the T embeddings of o in the T trees.

Let us present the two embeddings for a single tree. Let

{n1, · · · , nN} be the nodes of the tree, P(o) the set of nodes

passed by the object o when falling down the tree (i.e. the

path), and �(o) the leaf reached by o. Given a depth value d,

we define Pd(o) as the set of nodes in the path of o which

depth is less than or equal to d, i.e. the path of o up to the

depth d:

Pd(o) = {nj ∈ P(o))|dep(nj) ≤ d}, (1 ≤ d ≤ dmax) (5)

where dep(nj) is the depth of node nj , and dmax is the

maximum depth of the tree. We also define cd(o) as the

deepest node in Pd(o):

cd(o) = arg max
n∈Pd(o)

dep(n) (6)

Now, we can define a cluster at depth d as a set containing

all the points reaching the same node at depth d, i.e. objects

with the same cd(o). Please note that the definition given in

[4], [5], [21], in which clusters were defined as containing

objects falling in the same leaf, is a special case of our

definition, which also permits to decide at which depth to

consider the partition – useful for example if we want to fix

the number of clusters.

We are now ready to define the two embeddings. Given

the set of objects O, and given a depth d, let {c̃1d, · · · c̃Kd

d }
be the set of Kd unique cd(o) for all o ∈ O, and let Cd be

the associated partition:

Cd = {C1d , · · · CKd

d }, Ckd = {oj ∈ O|cd(oj) = c̃kd} (7)

The OP embedding (One Partition) of an object o, at depth

d, is defined as:

EOPd(o) =
[
eOPd
1 (o), eOPd

2 (o), · · · eOPd

Kd

]
(8)

where eOPd
j (o) is 1 if cd(o) = c̃jd, i.e. EOPd(o) is a

vector with all zeros except in the position of the node

reached by o at depth d. It is easy to show that the OP

embedding corresponds exactly to the encoding defined in

[20], [17], [18] when assuming that the input partitions are

those defined by Cd (one for each tree of the forest).

The MP embedding (More Partitions) is a generalization

of the OP embedding, and exploits the fact that a tree

does not realize a single partition, but a whole hierarchy

of partitions. In particular we propose to consider more than

one partition: by considering a set of H depths {d1, · · · dH},
the MP embedding is obtained by concatenating the OP

embeddings for each depth in {d1, · · · dH}. This permits

to exploit the information at different levels of granularity,

i.e. from partitions with few clusters up to more detailed

groupings. Please note that also the MP embedding can be

seen from the perspective of [20], [17], [18]: actually, we

simply have more input partitions, with different number of

clusters; since the findings of [20], [17], [18] do not require

a fixed number of clusters, we are still guaranteed to have

a proper embedding.

Clustering. Following [20], [17], [18] the final clustering

can be obtained by running a K-means in the properly

defined embedding space. Here we investigated two different

clustering schemes based on this paradigm: the first (“KM-

SED”), uses K-means with squared Euclidean distances, and

corresponds to the method proposed in [17]; the second

(“KM-KL”) uses K-means with the KL divergence, and cor-

responds to the optimization of a Shannon-entropy derived

consensus clustering criterion [18]. We also generalizes the

approach, by using, in the embedding space, two variants

of K-means which are classically used for categorical clus-

tering: the K-medoids algorithm [22] with the Hamming

distance (“K-medoids”) and the K-modes algorithm [23]

(“K-modes”); even if lacking the theoretical guarantee of

optimizing a consensus clustering criterion, they share the

same idea of clustering in the embedding space – in practical

scenarios they may represent good alternatives (see the

experimental session).

III. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation. As

commonly done in clustering, the evaluation is performed

938

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

Table I
DATASETS EMPLOYED IN THE EMPIRICAL EVALUATION (N : OBJECTS,

K : CLUSTERS, MIN/MAX: SMALLEST AND LARGEST CLUSTER).

Problem Description N K Min/Max
CatCortex Connections between cat’s

cortical areas
65 4 10/19

Protein Evolutionary distances of
protein sequences

213 4 30/72

CoilDelft Spectral distances between
graphs of 4 COIL objects

288 4 72/72

ChickenPieces Weighted Edit distances be-
tween 2D objects contours

446 5 61/117

FlowCyto L1 norms between flow-
cytometer histograms

612 3 131/335

WoodyPlants Shape dissimilarities be-
tween plant leaves

791 14 51/66

Delftgestures DTW distances between
video gesture signs

1500 20 75/75

Zongker Deform. template matching
distances between digits

2000 10 200/200

TwoPendigits Edit distance between con-
tour sequences of two digits

2287 2 1143/1144

Prodom Structural alignments be-
tween protein domains

2604 4 271/1051

using supervised datasets: after removing labels, we deter-

mine the clusters, comparing them with the original classes.

We quantified the quality of the results with a classical

measure, the adjusted Rand index (ARI – [24]). In our

experiments we used 10 problems3, briefly summarized in

Table I. Each problem comes as a dissimilarity matrix, which

contains the pairwise dissimilarity between all objects of the

problem: please note that in all cases (except FlowCyto) the

input objects are described with non vectorial representations

(such as strings, graphs, sequences or 3D structures).

For what concerns the proposed approach, we evaluated

all possible variants, i.e. all possible combinations of the

training procedures (“Rand”, “HausD”, and “RényiD”), em-

beddings (“OP” and “MP”), and clustering (“KM-SED”,

“KM-KL”, “K-medoids” and “K-modes”). We used forests

with 100 and 200 trees, training each tree with a rather

small number of objects (128 in all our experiments except

CatCortex – where we used 65). Each tree was completely

grown until a node contains less than 10 points. For the

“Rand” training strategy, the splitting pair inside a node is

randomly chosen among all possible pairs composed by the

training objects reaching that node – we discarded invalid

pairs, i.e. pairs which do not permit to split data of the node

in two non empty sets; for the “HausD” and the “RényiD”

strategies, the selected pair is the one, among 20 valid

random pairs, which maximizes eq. (2) and (4), respectively.

3All available from http://37steps.com/distools/. For
ChickenPieces we used the version with NORM = 40 and COST = 120; for
FlowCyto we used the first version; for TwoPendigits we selected the first
and the third digits from the Pendigits dataset; finally, Zongker and Prodom
were converted from similarities to dissimilarities using the distools
routine dissimt(S,’sim2dis’).

To compute the Rényi divergence we set α = 0.999 and

K =
√
n (as suggested in [16]), where n is the number

of the objects in the training set. For what concerns the

embeddings, for “OP” we used the partition defined by

the leaves, i.e. d = dmax in eq. (8); for “MP” we used

the partition defined by the leaves plus two other partitions

equally spaced in the hierarchy (i.e. H = 3): this permits to

better exploit the information contained in the different trees

still maintaining a reasonable dimension of the embedding

space. Finally, for all K-means-like clustering schemes, we

performed 20 random initializations of the labelling, keeping

the clustering which minimizes the objective function. For

each dataset and each configuration (training, embedding,

clustering), we repeated the experiments 30 times.

A. Results

In order to have a direct comparison between the different

aspects of the DisRFC approach, we present in Table II only

a set of summarizing results, useful to compare the different

options relative to each of the three steps (training, embed-

ding, clustering). In particular, for each step, we compute

the average of the ARI values of the different alternatives

by varying all other aspects: for example, when analysing the

embedding, we compute the average of all results obtained

with OP (and MP) for all different parameters, all trainings,

all clusterings, and all 30 runs, thus resulting, for each

dataset, in 720 values (2 parametrizations × 3 training × 4

clustering × 30 repetitions). In the table, for each aspect and

each dataset, we highlight in bold the best result. We also

perform an unpaired t-test (significance level 0.05) between

the ARI values of the best option and those of the second

best: in the table, an asterisk indicates when their difference

is not statistically significant.

Looking at the results, for the training we can infer

that the RényiD variant represents the best option, with

many datasets in which the average ARI is higher than

that of the other two options – in some (Protein, CoilDelft

and Prodom), this difference is remarkably high. In few

cases (WoodyPlants, Delftgestures and Zongker) the RényiD

variant is worst than the others: interestingly, these problems

are all characterized by a large number of clusters (14, 20

and 10); probably, these clusters can not be organized in

a hierarchy, and with more accurate hierarchies (as those

derived by using the RényiD scheme) this misalignment

becomes more relevant. It is also interesting to observe that

the Rand version works almost everywhere reasonably well,

confirming the findings obtained in other scenarios [14].

Regarding the embedding, in most of the cases OP and MP

are more or less equivalent, except in the TwoPendigits case,

where MP drastically outperforms OP. Finally, concerning

the clustering schemes, KM-SED and K-modes represent

almost always the best option.

From all these results we distilled some guidelines, to be

used to practically choose a variant for a given problem: i)

939

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

Table II
ANALYSIS OF DIFFERENT ASPECTS OF THE PROPOSED APPROACH. “TOTAL” IS THE NUMBER OF EXPERIMENTS OVER WHICH THE AVERAGE IS TAKEN.

Training (Total: 480) Embedding (Total: 720) Clustering (Total: 360)
Problem Rand HausD RényiD OP MP KM-SED KM-KL K-medoids K-modes
CatCortex 0.6189 0.6362 0.6670 0.6408∗ 0.6406 0.7338 0.2615 0.7719 0.7956
Protein 0.6268 0.5595 0.8592 0.6258 0.7379 0.7380 0.4313 0.7462 0.8119
CoilDelft 0.0930 0.0865 0.1601 0.1150∗ 0.1115 0.1490 0.0619 0.1105 0.1315
ChickenPieces 0.3114 0.2805 0.3351 0.3118 0.3062 0.3250 0.2910 0.3127 0.3074
FlowCyto 0.0792 0.0634 0.0557 0.0658 0.0664∗ 0.0717 0.0768 0.0520 0.0637
WoodyPlants 0.5363 0.5277 0.4514 0.5108 0.4995 0.5301 0.4247 0.5352∗ 0.5306
Delftgestures 0.7099 0.7120∗ 0.6225 0.6951 0.6678 0.7500 0.5089 0.7515∗ 0.7155
Zongker 0.7312∗ 0.7197 0.6765 0.7219 0.6964 0.7473 0.5780 0.7406 0.7707
TwoPendigits 0.9110 0.8631 0.9696 0.8658 0.9633 0.9791 0.9707 0.7263 0.9821∗
Prodom 0.1507 0.1064 0.3061 0.1998 0.1757 0.1808 0.1843 0.1735 0.2123
Average 0.4768 0.4555 0.5103 0.4753 0.4865 0.5205 0.3789 0.4921 0.5321∗

when the dataset is large enough (e.g. large than 128), and

the number of clusters is low (e.g. less than 10), we suggest

to use the RényiD training procedure; in the other cases we

suggest to use the Rand one; ii) as embedding, we suggest

the OP one for easy problems (i.e. problems with an average

ARI larger than 0.5), and to leave the more computationally

demanding MP option for complex problems; iii) finally,

as clustering scheme we suggest to use KM-SED, since

more theoretically sound than K-modes. We will use these

guidelines in the comparative analysis of the next section.

B. Comparison with alternatives

In this section we compare the performances of the

proposed approach with those obtained using some other

distance-based clustering schemes. In particular we consid-

ered both simple and advanced schemes, as briefly described

in the following (we also report a link to the implementation

we used – the details can be found there). We used: i) HC-
SL the Single Link, ii) HC-CL the Complete Link and iii)

HC-AvL the Average Link variants of the agglomerative hi-

erarchical scheme (as implemented in the Matlab linkage
function); iv) DK-Cen and v) DK-Med, two dissimilarity

versions of K-means (as implemented in the Matlab Cluster-

Tools package4); vi) kNN-MS, a KNN-mode seeking scheme

based on distances [25] (again in the implementation on the

Matlab ClusterTools package); vii) SpectClus, the Spectral

Clustering method, using the Ng-Jordan-Weiss normalized

version [26] (we used a web implementation5); viii) AffProp,

the Affinity-Propagation algorithm (we used the authors

version which allows setting the number of clusters6); ix)

DomSet, the Dominant Set Clustering [27] (as implemented

in the DominantSetLibrary7, leaving all parameters as de-

fault).

4http://37steps.com/software/
5https://github.com/areslp/matlab/blob/master/spectral clustering/ Spec-

tralClustering.m
6See http://www.psi.toronto.edu
7https://github.com/xwasco/DominantSetLibrary

All the results are shown in Table III, together with the

results of the proposed approach. In particular, for DisRFC,

for each variant and each dataset, among the 30 repetitions

we kept the result which leaded to the lowest value of the

optimization function of the last step (ensemble clustering).

The column titled “DisRFC” reports the result of the best

variant obtained by the proposed approach in each dataset.

We can observe that the DisRFC approach outperforms all

competitors, with improvements which are remarkable in

some cases (0.2169 of improvement in Protein, 0.1020 in

Zongker, 0.3121 in Prodom). In the last column (“DisRFC

(Guideln)”) we report results obtained using the variant

of DisRFC derived from the guidelines presented in the

previous section. As can be seen, also in this case the results

are satisfactory, with “DisRFC (Guideln)” outperforming

all the competitors in 7 cases out of 10. In two cases, it

represents the second top performing method (outperformed

by Dominant Set Clustering in the ChickenPieces and by

kNN mode seeking in the TwoPendigits problem). In the

last case, FlowCyto, it is outperformed by 3 techniques (K-

medoids, KNN mode seeking and Affinity Propagation):

however, this represents the most difficult problem, with

very low ARI values, and probably a more careful tuning

of parameters is needed to get better results (e.g. the best

variant uses the HausD training and the MP embedding).

IV. CONCLUSIONS

In this paper we introduced DisRFC, a novel RF-

clustering method which functioning mechanisms are all

based on dissimilarity operations, thus being suitable when

objects to be clustered do not have a proper vectorial

representation, but a descriptive dissimilarity measure can

be defined. We presented and positively evaluated different

variants of the proposed approach, also providing some

guidelines useful to choose the best variant according to the

characteristics of the problem.

REFERENCES

[1] L. Breiman, “Random forests,” Mach. Learn., 45: 5–32, 2001.

940

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

Table III
COMPARISON WITH ALTERNATIVE APPROACHES. SEE THE TEXT FOR THE ACRONYMS.

Problem HC-SL HC-CL HC-AvL DK-Cent DK-Med kNN-MS SpectClus AffProp DomSet DisRFC DisRFC
(Guideln)

CatCortex 0.0160 0.1038 0.8734 0.1021 0.3587 0.1798 0.7313 0.3643 0.2610 0.9107 0.8758
Protein 0.0710 0.1654 0.1430 0.0000 0.7605 0.5061 0.5429 0.7612 0.5940 0.9781 0.9345
CoilDelft 0.0000 0.1126 0.0000 0.0133 0.0997 0.0922 0.1003 0.0843 0.0160 0.1748 0.1746
ChickenPieces 0.0187 0.3224 0.2318 0.1956 0.3086 0.3346 0.0224 0.3085 0.3725 0.4204 0.3409
FlowCyto -0.0063 -0.0380 -0.0016 0.0217 0.0589 0.0840 0.0462 0.0656 0.0182 0.1280 0.0462
WoodyPlants -0.0001 0.4972 0.2560 0.3062 0.5631 0.2707 0.5859 0.5801 0.1915 0.5912 0.5912
Delftgestures 0.1129 0.4233 0.1867 0.2630 0.7624 0.5443 0.2094 0.7466 0.2801 0.8317 0.8280
Zongker 0.0000 0.4142 0.0003 0.0000 0.0000 0.1170 0.7285 0.1993 0.0423 0.8305 0.8003
TwoPendigits 0.0000 0.0000 0.0000 0.0864 0.9861 0.9983 -0.0003 0.9861 0.0000 1.0000 0.9895
Prodom 0.0026 0.0373 0.0362 0.0000 0.1281 0.1295 0.0080 0.1281 0.0270 0.4416 0.3697

[2] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning,”
Foundations and Trends in Computer Graphics and Vision,
7(2-3):81–227, 2012.

[3] H. Blockeel, L. D. Raedt, and J. Ramon, “Top-down induction
of clustering trees,” in ICML, 1998, pp. 55–63.

[4] F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative
visual codebooks using randomized clustering forests,” in
NIPS, 2006, pp. 985–992.

[5] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton
forests for image categorization and segmentation,” in CVPR,
2008.

[6] M. Bicego, “K-random forests: a K-means style algorithm for
random forest clustering,” in IJCNN, 2019, pp. 1–8

[7] T. Shi and S. Horvath, “Unsupervised learning with random
forest predictors,” J. of Comp. and Graph. Stat., 15(1): 118–
138, 2006.

[8] X. Zhu, C. Loy, and S. Gong, “Constructing robust affinity
graphs for spectral clustering,” in CVPR, 2014, pp. 1450–
1457.

[9] S. Balakrishnan and D. Madigan, “Decision trees for func-
tional variables,” in ICDM, 2006, pp. 798–802.

[10] A. Douzal-Chouakria and C. Amblard, “Classification trees
for time series,” Patt. Rec., 45(3): 1076–1091, 2012.

[11] S. Sathe and C. Aggarwal, “Similarity forests,” in KDD, 2017,
pp. 395–403.

[12] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi,
B. Goethals, F. Petitjean, and G. Webb, “Proximity forest:
an effective and scalable distance-based classifier for time
series,” Data Mining and Knowl. Disc., 33: 607–635, 2019.

[13] E. Pekalska and R. Duin, The Dissimilarity Representation for
Pattern Recognition: Foundations And Applications. World
Scientific, 2005.

[14] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Mach. Learn., 63(1): 3–42, 2006.

[15] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Com-
paring images using the hausdorff distance,” TPAMI, 15: 850–
863, 1993.

[16] M. Noshad, K. Moon, S. Sekeh, and A.-O. Hero, “Direct
estimation of information divergence using nearest neighbor
ratios,” in ISIT, 2017, pp. 903–907.

[17] A. Topchy, A. Jain, and W. Punch, “Combining multiple weak
clusterings,” in ICDM, 2003, pp. 331–338.

[18] J. Wu, H. Liu, H. Xiong, J. Cao, and J. Chen, “K-means-
based consensus clustering: A unified view,” TKDE, 27(1):
155–169, 2015.

[19] D. Pál, B. Póczos, and C. Szepesvári, “Estimation of rényi
entropy and mutual information based on generalized nearest-
neighbor graphs,” in NIPS, 2010, pp. 1849–1857.

[20] B. Mirkin, “Reinterpreting the category utility function,”
Mach. Learn., 45(2): 219–228, 2001.

[21] F. Perbet, B. Stenger, and A. Maki, “Random forest clustering
and application to video segmentation,” in BMVC, 2009, pp.
1–10.

[22] X. Jin and J. Han, “K-medoids clustering,” in Enc. of Machine
Learning, C. Sammut and G. Webb, Eds. Springer, 2011.

[23] Z. Huang, “Extensions to the k-means algorithm for clustering
large data sets with categorical values,” Data Mining and
Know. Disc,, 2: 283–304, 1998.

[24] L. Hubert and P. Arabie, “Comparing partitions,” J. of Clas-
sification, pp. 193–218, 1985.

[25] R. Duin, A. Fred, M. Loog, and E. Pekalska, “Mode seeking
clustering by KNN and mean shift evaluated,” in S+SSPR,
2012, pp. 51–59.

[26] U. von Luxburg, “A tutorial on spectral clustering,” Statistics
and Computing, vol. 17, no. 4, pp. 395–416, 2007.

[27] M. Pavan and M. Pelillo, “Dominant sets and pairwise clus-
tering,” TPAMI, 29(1): 167–172, 2006.

941

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on February 17,2021 at 14:58:33 UTC from IEEE Xplore. Restrictions apply.

