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A B S T R A C T

Autonomous surface vessels are becoming increasingly important for water monitoring. Their aim is to navigate
rivers and lakes with limited intervention of human operators, to collect real-time data about water parameters.
To reach this goal, these intelligent systems must interact with the environment and act according to the
situations they face. In this work we propose a framework based on the integration of recent time-series
clustering/segmentation methods and cluster validity indices, for detecting, modeling and evaluating aquatic
drone states. The approach is completely data-driven and unsupervised. It takes unlabeled multivariate time
series of sensor traces and returns both a set of statistically significant state-models (generated by different
mathematical approaches) and a related segmentation of the dataset. We test the approach on a real dataset
containing data of six campaigns, two in rivers and four in lakes, in different countries for about 5.6 h of
navigation. Results show that the methodology is able to recognize known states and to discover unknown
states, enabling novelty detection. The approach is therefore an easy-to-use tool for discovering and interpreting
significant states in sensor data, that enables improved data analysis and drone autonomy.

1. Introduction

Autonomous robots have recently had a strong impact in the transi-
tion from manual (passive) to autonomous (active) water monitoring.
These intelligent systems, used also in several other application do-
mains, such as surveillance and monitoring (Farinelli et al., 2012), are
able to autonomously collect large amounts of data, providing crucial
support to human operations. Aquatic drones involved in autonomous
monitoring of catchments navigate rivers and lakes acquiring real-
time data about water parameters, such as pH and dissolved oxygen.
While human operators are usually involved in such data collection
activities, direct tele-operation of the drones is often not an option
for an entire mission, hence autonomous navigation is required. Nav-
igation strategies usually aim at maximizing the information content
of acquired data (Bottarelli et al., 2016, 2019), while adapting to the
conditions of the environment. Although data are very noisy in this
context, applications require minimal number of sensors to reduce the
costs.

A key factor for the success of autonomous data acquisition cam-
paigns is mission awareness (Endsley, 1995), which is composed of
three main elements: knowledge of mission objectives, internal self-
situational awareness, and external self-situational awareness. In this
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work we specifically focus on the problem of detecting, modeling and
interpreting aquatic drone states with data-driven methods, an aspect
of self-situational awareness. By state we mean an abstract, compact
and informative descriptor of key properties of the drone-environment
system. In particular, we aim at developing interpretable models of drone
states from traces of sensor data acquired during water-monitoring
campaigns, by means of machine learning and artificial intelligence
methods (Hastie et al., 2001; Bishop, 2006; Russell and Norvig, 2009).
Generating such a set of drone state-models is important for two
reasons, namely, it supports offline data analysis by improving the
extraction of knowledge from large sensor traces, and it enhances the
autonomy of the drone by providing key information for online decision
making (Kaelbling and Lozano-Perez, 2013; Asperti et al., 2019).

Automatic detection of aquatic drone states from sensor data can be
performed by supervised or unsupervised methods. Supervised methods
are typically more accurate than unsupervised methods but they need
labeled datasets, usually hard, expensive and sometimes impossible to
collect in real monitoring campaigns. Ad-hoc experiments could be
performed to generate labelings, but they usually consider only subsets
of situations that the drone faces during real campaigns. On the other
hand, many data are usually available from past campaigns that can be
mined by unsupervised methods.
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This work focuses on unsupervised approaches, namely clustering
and time series segmentation, able to split multivariate time series into
groups of observations corresponding to system states and having
common properties that can be compactly represented by mathematical
models. The goal is to discover these states (and models) using data-
driven methods from sensor data of past campaigns. The literature (see
Section 2) proposes several methods for this purpose, characterized by
different assumptions and extracting different types of patterns. The
main difference between the works in the literature and our work is
that we propose a systematic framework for generating and evaluating
statistically significant state-models for aquatic drones, while the litera-
ture mainly proposes novel clustering methods or it compares standard
methods in different application domains.

We first investigated clustering and subspace clustering methods for
detecting aquatic drone states in Castellini et al. (2018b, 2019c). Here,
we extend those works using both classic (Bishop, 2006) and very re-
cent methods, including SubCMedians (Peignier et al., 2018), Toeplitz
Inverse Covariance-based Clustering (TICC) (Hallac et al., 2017) and
Inertial Hidden Markov Models (IHMM) (Montanez et al., 2015). The
proposed framework is tested on a large dataset with observations
from many campaigns. State-models are analyzed and interpreted in
terms of situations faced by the drones. The statistical significance of
state-models is computed by comparing their properties with those of
random clusters. Since different aspects of state-model performance
must be evaluated, we select a set of validity indices (Arbelaitz et al.,
2013) satisfying the requirements of our domain.

The main contributions of this paper are summarized in the follow-
ing:

• we propose an easy-to-use framework for systematically generat-
ing and evaluating significant state-models in multivariate time
series;

• we successfully apply the proposed framework to a real dataset
of sensor data collected by aquatic drones involved in water
monitoring;

• we present, analyze and interpret, with high level of detail,
both the discovered state-models and the application procedures
used to generate these models, which makes this manuscript
a valuable reference also for practitioners interested in analyz-
ing similar data and performing extensive cross-comparison of
methodologies;

• we present and make available the dataset used in this analysis.1

The rest of the manuscript is organized as follows. Section 2 pro-
vides an overview of the state-of-the-art on this research topic. Sec-
tion 3 introduces the aquatic drone architecture and the proposed
framework for state-model generation. In Section 4 we describe the
dataset and the labelings. Section 5 introduces clustering and segmen-
tation methods, and the procedures for the generation of random clus-
terings and segmentations. Section 6 defines some clustering validity
indices and performance measures. Section 7 illustrates the results and
some state-models generated by the proposed framework. Conclusions
and future directions are drawn in Section 8.

2. Related work

From the application point of view, strong similarities are present
with sensor-based human activity recognition (Chen et al., 2012; Dhi-
man and Vishwakarma, 2019), where sensors are used to acquire data
about human movements and machine learning methods are employed
to generate activity models and to predict human activities in novel
contexts. The main difference between our problem and human activity
recognition is that data collected by aquatic drones are very noisy,
since they come from several sources (not only accelerometers as in

1 The dataset will be submitted to Data in Brief upon acceptance of this
manuscript.

applications of human activity recognition) and are strongly influenced
by unstructured and diversified environments (e.g., rivers and lakes in
different parts of the world have disparate environmental properties).
Moreover, aquatic drones collect two kinds of data, some relating to
movement, others to water properties, and both sources of information
can be used to assess the drone state.

From a methodological viewpoint, the main theoretical connections
with our work concern clustering (Bishop, 2006) and time series seg-
mentation (Fu, 2011; Castellini et al., 2015). K-means, Gaussian mix-
ture models (GMM) and hierarchical clustering, have been recently
used to identify activities of both humans (Abdallah et al., 2012; Tra-
belsi et al., 2013; Kwon et al., 2014; Barták and Vomlelová, 2017) and
flying drones (Barták and Vomlelová, 2017) from sensor data. Hidden
Markov models (HMMs) have been applied (Kim et al., 2010; Trabelsi
et al., 2013; Barták and Vomlelová, 2017) and also extended (Fox et al.,
2008; Montanez et al., 2015) in the same context. Time series segmen-
tation (Hallac et al., 2016a, 2017; Chiu et al., 2003), change point
detection (Barnett and Onnela, 2016) and motif discovery methods,
have been employed to identify homogeneous intervals in sequential
time-dependent data. The last techniques have been very recently
applied also to problems related to driver identification (Hallac et al.,
2016b) and state representation of modern automobiles (Hallac et al.,
2018).

In previous works we tested standard clustering methods on single
campaigns (Castellini et al., 2018a,b) and introduced the usage of
subspace clustering for generating sparse state-models (Castellini et al.,
2019c,a). What differentiates this paper from our previous work and
the approaches in the literature mentioned above is that here we
propose a systematic framework for generating statistically significant
state-models using very recent techniques and, most important, for
evaluating them by several internal and external validity indices. More-
over, we test the proposed framework on a large real dataset in the
application domain of autonomous water monitoring and we analyze
the statistical properties of detected states. Furthermore, we select some
validity indices (Arbelaitz et al., 2013; Moshtaghi et al., 2019) and used
them to evaluate and rank the state-models generated by five clustering
techniques.

3. System overview

In this section we describe the two main elements of our sys-
tem, namely the aquatic drone architecture and the framework for
state-model generation.

3.1. Data acquisition system: autonomous aquatic drones

Data acquisition campaigns are performed by Lutra mono hull
boats (see Fig. 1) produced by Platypus2 and customized in the EU
Horizon 2020 INTCATCH project3 to accomplish water monitoring of
catchments. Localization and orientation are provided by an on-board
smartphone which gathers information from GPS, compass and gyro-
scope. Sensor management and sensor data transmission to the cloud is
performed by a Go-Sys BlueBox4 control unit connected to an Arduino
e-board. Operators can define desired paths by setting waypoints in
a map on a tablet, to perform autonomous navigation, or they can
manually drive the drone using an RC controller. Drones are equipped
with sensors for GPS position, water temperature, dissolved oxygen and
electrical conductivity, commands to propellers and battery voltage.
Sensor traces are stored in log files on the smartphone or transmitted
to the cloud by a Go-Sys BlueBox. Log files are preprocessed using
Platypus Python libraries to obtain a matrix of time series having one
sensor signal in each row and time instants in columns. Since different
sensors have different sampling frequencies the alignment of sensor
traces was obtained via interpolation and re-sampling, with sampling
frequency of 1 Hz.

2 http://senseplatypus.com.
3 http://www.intcatch.eu.
4 https://www.go-sys.de/en/bluebox/.
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Fig. 1. Overview of the drone architecture.

3.2. Framework for state-model generation and evaluation

The framework proposed in this work is outlined in Fig. 2. The input
dataset is a matrix of multivariate time series with engineered features
(see Section 4), which contains sensor readings from multiple cam-
paigns. Data are processed by five clustering and segmentation methods,
namely, k-means (KM), Toeplitz Inverse Covariance-based Clustering
(TICC), Hidden Markov Models (HMM), Inertial Hidden Markov Models
(IHMM), and SubCMedians (SCM). They generate clusterings depend-
ing on parameter settings. Multiple instances of random clustering (RC)
and random segmentation (RS) are also generated. They are used as
baselines to evaluate the significance of the state-models generated by
real clustering algorithms (see Section 5).

Clusterings and related clusters are then evaluated by means of
performance measures (see Section 6). They have different semantics and
can favor different kinds of patterns (i.e., states) in the data (e.g., the sil-
houette is maximized if clusters are both compact and distant from each
other, while spread considers only the cluster compactness). Perfor-
mance measures enable to rank clusterings and clusters, and to identify
the best state-models. After computing performance, we also determine
cluster (clustering) p-values using random partitioning as baselines.
Only clusters (clusterings) with low p-values are considered statistically
significant. The last step of the proposed framework involves the analy-
sis and interpretation of significant state-models (performed in Section 7).
Since each state-model is generated by a clustering method, evaluated
by some performance measures, and interpreted as a situation, the
framework enables different kinds of analyses involving combinations
of these properties. For instance, we analyze the statistical properties

Fig. 2. Overview of the proposed framework for state-model generation and evaluation.

of significant state-models, compare the capability of different methods
to discover specific situations, and compare the capability of different
performance measures to rank situations. State-model analysis is sup-
ported by a Python tool called eXplainable Modeling5 (Castellini et al.,
2019d) that integrates several data visualization and statistical tools.

4. Dataset

We analyze sensor traces generated in six independent campaigns
(also called experiments in the following). Table 1 shows the name,
number of samples, duration and type of catchment (i.e., river or lake)
of each campaign. Since our goal is to generate a unique set of state-
models, we concatenated the traces of all the campaigns, obtaining a
single dataset (called CONCAT ) with 20 187 observations and about
5.6 h of navigation, since the sampling frequency is 1 Hz. Variables
available in the raw dataset are time, latitude, longitude, altitude,
speed, electrical conductivity, dissolved oxygen, temperature, battery
voltage, heading, acceleration, command to propeller 0 and command
to propeller 1 (the boat has two propellers). Using only these variables
we obtain experiment-dependent state-models because of the strong
differences in environmental parameters among different campaigns.
To avoid this problem we generate new variables by feature extraction.
In particular, we compute moving means and standard deviations over a
sliding windows of 10 s, and variations between couples of consecutive
observations. The list of 27 variables in the final dataset is reported
in Table 2. Z-score standardization was performed on each variable to
improve the performance of clustering and segmentation methods.

Mathematical notation. In the following, we use notation 𝑋 =
{𝑥1, 𝑥2, … 𝑥𝑛} to represent the dataset, where 𝑛 is the number of ob-
servations (i.e., 𝑛 = 20 187 in our dataset), each observation 𝑥𝑖 ∈ 𝑋 has
𝐷 variables (i.e., 𝐷 = 27 in our dataset). Each variable is represented
by a number ranging from 1 to D, and the set of all variables is denoted
 = {1,… , 𝐷}.

5 https://github.com/XModeling/XM.
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Fig. 3. Geo-localization of monitoring campaigns and manual labeling of situations ‘‘drone into the water’’ (blue) and ‘‘drone out of the water’’ (red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of data acquisition campaigns in the dataset.

Id Campaign name Samples Duration Lake/River

1 ESP2 2814 47′ R
2 ESP5 3601 60′ R
3 ESP4 2374 39′ L
4 GARDA3 2451 40′ L
5 ITA1 7243 121′ L
6 ITA6 1704 28′ L

– CONCAT 20 187 335′ –

Table 2
List of variables extracted from the dataset and used for clustering/segmentation.

Symbol Description

𝑠, 𝑣, 𝑎 Instantaneous speed, voltage, acceleration
𝑚0 , 𝑚1 Instantaneous signal to propeller 0 and 1
�̄�, �̄�, �̄� Moving average mean of speed, voltage, acceleration
𝑚0 , 𝑚1 Moving average mean of signal to propeller 0 and 1
�̂�, �̂�, �̂� Moving average std of speed, voltage, acceleration
𝑒𝑐, 𝑑𝑜, �̂� Moving average std of electrical conductivity, dissolved oxygen,

temperature
𝑚0 , 𝑚1 Moving average std of signal to propeller 0 and 1
ℎ̂ Moving average std of heading
�̃�, 𝑎, 𝑣 Variation of speed, voltage, acceleration
𝑚0 , 𝑚1 Variation of signal to propeller 0 and 1
𝑒𝑐, 𝑑𝑜, ℎ̃ Variation of electrical conductivity, dissolved oxygen, temperature

4.1. Known drone states

Some drone states are easy to identify by observing the drone
paths in geographical maps but hard to detect from sensor traces,
hence recognizing them is not a trivial task for clustering methods.
We use these states to test the ability of different methods to detect
real situations. The states that we manually label are: drone into the
water (IW), drone out of the water (OW), upstream navigation (US),
downstream navigation (DS), no water stream (NS), manual drive
(MD), autonomous drive (AD), and turning (T). Fig. 3 shows the labeled
paths of states IW (cyan) and OW (red).

4.2. Dimensionality reduction analysis

We use t-Distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton, 2008) to see if known situations cor-
respond to implicit structures in the data. t-SNE allows the implicit
structure in the data to influence the way in which subset of data points
are gathered, hence it reveals structures at different scales. In Fig. 4a,
for instance, colors represent experiments (e.g., ESP2) and in Fig. 4c
they represent situations in/out water. Projections are informative, they
show grouping of observations and correspondence between groups and
situations (colors). For instance, the coloring related to in/out water

Table 3
Learning parameters of all clustering methods tested.

Method Parameter Values

KM 𝑘 {5, 10, 15, 20, 25, 30}
# repeats 50

SCM NbExtClust {2, 3, 4, 5, 6, 10, 15, 20, 25, 30}
# repeats 10

TICC

𝑘 {5, 10, 15, 20, 25, 30}
𝜆 {0.1, 0.5, 0.7, 1.0}
𝛽 {0, 50, 100, 150, 200}
𝑤 { 1, 3 }
# repeats 1

HMM 𝑘 {5, 10, 15, 20, 25}
# repeats 50

IHMM
𝑘 {2, 4, 6,… , 38, 40}
𝜁 {0, 5, 10,… , 65, 70}
# repeats 1

RC 𝑘 {5, 10, 15, 20, 25, 30}
# repeats 200

RS 𝑘 {5, 10, 15, 20, 25, 30}
# repeats 200

(Fig. 4c) identifies well separated clusters, as expected, although more
than one dense region is present for each label.

5. Clustering and time series segmentation methods

We generate our state-models by five clustering or time series
segmentation methods, namely, k-means, SubCMedians, TICC, HMMs
and IHMMs. The main difference between clustering and time se-
ries segmentation is that clustering does not consider time proximity
between observations, while time series segmentation considers it,
generating groups of adjacent observations (called segments) having
common properties. Here we briefly introduce the methodologies and
their peculiarities. The sets of parameters used in the training phase,
for each method, are also described (see Table 3). Since all methods
are unsupervised, the real number of clusters is unknown, hence we
test several combinations of methods and parameters and leave the
selection of the best state-models to subsequent statistical analysis.
Finally, we describe the procedures for generating random clusterings
and segmentations.

5.1. K-means (KM)

K-means6 is an iterative descent clustering method (Bishop, 2006)
which aims at minimizing the objective function 𝐽 =

∑𝑛
𝑖=1

∑𝑘
𝑐=1 𝑟𝑖𝑐‖𝑥𝑖−

6 https://scikit-learn.org/.
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Fig. 4. t-SNE projections. Points represent data observations and colors correspond to known situations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

𝜇𝑐‖2, where 𝑟𝑖𝑐 ∈ {0, 1} is a binary indicator of point-cluster member-
ship, 𝑥𝑖 is a data point, 𝜇𝑐 is the centroid of cluster 𝑐, 𝑛 is the number
of data points and 𝑘 the number of clusters. Each clustering is a set of
centroids that minimizes 𝐽 . We use Euclidean distance ‖ ⋅ ‖2, number
of clusters 𝑘 listed in Table 3, and for each clustering, we re-initialized
the algorithm 100 times and selected the best clustering, since initial
conditions influence the solution. We compute 50 clusterings (# repeats
in Table 3) for each 𝑘.

5.2. SubCMedians (SCM)

SubCMedians is a recent center-based subspace clustering tech-
nique (Peignier et al., 2018). This algorithm is based on a K-medians
paradigm and it aims at clustering data points around suitable can-
didate centers 𝑚𝑖 ∈ , where centers are defined in different sub-
spaces (i.e., subsets of variables) 𝑖 ⊆ . In our work, each sub-
space cluster represents a putative state of the aquatic drone. For-
mally, the goal of SCM is to build a set of centers , so as to
minimize the Sum of Absolute Errors between the dataset and the
centers 𝑆𝐴𝐸(𝑋,) =

∑

𝑥∈𝑋 𝐴𝐸(𝑥,), and such that 𝑆𝑖𝑧𝑒() ≤
𝑆𝐷𝑚𝑎𝑥, where 𝑆𝑖𝑧𝑒() =

∑

𝑖 |𝑖|, and 𝑆𝐷𝑚𝑎𝑥 is a parameter denoting
the maximum Sum of Dimensions used in  to describe all its centers.
The Absolute Error 𝐴𝐸(𝑥,) represents the distance between each
point 𝑥 ∈ 𝑋 and its closest center 𝑚𝑖 ∈ , and it is computed as
𝐴𝐸(𝑥,) = 𝑚𝑖𝑛𝑚𝑖∈𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑖), where 𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑖) =

∑

𝑑∈𝑖
|𝑥𝑑 − 𝑚𝑖,𝑑 | +

∑

𝑑∈⧵𝑖
|𝑥𝑑 − 𝜇𝑑 | is an extension of the Manhattan distance, with

𝑚𝑖,𝑑 the coordinate of 𝑚𝑖 along variable 𝑑, and 𝜇𝑑 the mean of the
coordinates of all points in 𝑋 along 𝑑.

The algorithm7 has three main parameters, namely 𝑆𝐷𝑚𝑎𝑥 (de-
scribed above), the sample size 𝑁 (the algorithm considers only 𝑁
randomly chosen observations at each iteration) and the number of
iterations 𝑁𝑏𝐼𝑡𝑒𝑟 of the training process. The number of centers is
not fixed in advance. In Peignier et al. (2018), guidelines are pro-
vided to compute all parameters from a single meta-parameter called
𝑁𝑏𝐸𝑥𝑝𝐶𝑙𝑢𝑠𝑡 and representing the expected number of clusters. The
actual number of clusters is then computed during training. Table 3
shows the values of 𝑁𝑏𝐸𝑥𝑝𝐶𝑙𝑢𝑠𝑡 that we test and the number of
repetitions of each test. The algorithm needs less than one minute
to compute a clustering on an Intel(R) Core(TM) i7-6700HQ CPU @
2.60 GHz with 8 GB of RAM.

7 https://sergiopeignier.github.io/.

5.3. Toeplitz Inverse Covariance-Based Clustering (TICC)

TICC clusters are modeled as sparse Gaussian inverse covariance
(Toeplitz) matrices representing dependencies between variables. In
particular, off-diagonal elements represent partial correlations and on-
diagonal elements the inverse of variable variances (i.e., variable com-
pactness) inside the cluster. Formally, TICC computes a set of 𝑘 Toeplitz
matrices 𝛩 = {𝛩1,… , 𝛩𝑘} and a clustering (i.e., assignment of observa-
tions to clusters) 𝑃 = {𝑃1,… , 𝑃𝑘} that solve the following optimization
problem (Hallac et al., 2017):

argmin
𝛩∈ ,𝑃

𝑘
∑

𝑗=1

[

sparsity
⏞⏞⏞⏞⏞
‖

‖

‖

𝜆◦𝛩𝑗
‖

‖

‖1
+

∑

𝑌𝑖∈𝑃𝑗

(

log likelihood
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝓁𝓁(𝑌𝑖, 𝛩𝑗 ) +

temporal consistency
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽1{𝑌𝑖−1 ∉ 𝑃𝑗}

)]

where  is the set of symmetric block Toeplitz matrices, ‖

‖

‖

𝜆◦𝛩𝑗
‖

‖

‖1
is

an 𝓁1-norm penalty of the Hadamard product aiming to sparsify the
inverse covariance matrices, 𝜆 is a matrix of regularization parameters
that we set to a single value 𝜆 ∈ R to simplify parameter setting,
𝑌𝑖 is a concatenation of observations 𝑥𝑖−𝑤+1,… , 𝑥𝑖, 𝑤 ∈ R, 𝓁𝓁(𝑌𝑖, 𝛩𝑗 )
is the log-likelihood that observation 𝑌𝑖 belongs to cluster 𝛩𝑗 , 𝛽 is a
regularization parameter for temporal consistency, and 1{𝑌𝑖−1 ∉ 𝑃𝑗} is
an indicator function checking if neighboring observations are assigned
to same cluster.

The algorithm8 uses four parameters, namely, 𝜆 that controls
Toeplitz matrix sparsity, 𝛽 that controls temporal consistency in clus-
ters, the windows size 𝑤 used to generate matrix 𝑌 from the dataset
𝑋, and the number of clusters 𝑘. The parameter values and the number
of repetitions we test are displayed in Table 3. We set the maximum
number of iterations to 100. For time reasons, tests using 𝑤 = 3 are
performed only with 𝜆 = 1.0 and 𝛽 = 0.0. On an Intel(R) Core(TM) i7-
6700HQ CPU @ 2.60 GHz with 8 GB of RAM the algorithm takes from
1 to 30 min to compute a clustering with 𝑤 = 1 (longer time is taken
with smaller 𝜆s and 𝛽s) and between 40 min and 1.5 h with 𝑤 = 3.

5.4. Hidden Markov Models (HMM)

Hidden Markov models (Rabiner, 1989; Bishop, 2006) are prob-
abilistic models which describe Markovian stochastic processes. Ob-
servation models are set to single component multivariate Gaussian
distributions (with one dimension for each observed variable). The

8 https://github.com/davidhallac/TICC.
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initial state distribution is set to uniform over the set of hidden states,
the initial transition matrix is set to a random stochastic matrix, initial
means are computed by k-means and initial covariance matrices are
set according to the obtained k-means clusters. The maximum number
of iterations for the EM algorithm9 is set to 100. The Viterbi algo-
rithm (Bishop, 2006) is used to generate the most likely sequence
of hidden states (i.e., drone states) given the observed sequence of
sensor readings. We generated models having number of hidden states
(i.e., clusters) listed in Table 3. The learning algorithm was not able
to generate clusterings with 30 or more clusters which are instead
available for all other methods.

5.5. Inertial Hidden Markov Models (IHMM)

IHMMs (Montanez et al., 2015) are a regularization-based extension
of HMMs in which the transition matrix is biased towards the inertial
property, namely, it has increased self-transition (i.e., on-diagonal)
values to better adapt to naturally ‘‘long lasting’’ activities observed in
several contexts, such as human activity recognition. The basic idea is
to introduce prior knowledge, in the form of a supplementary learning
parameter 𝜁 , related to the expected duration of activities, so that the
HMM tends to reduce state transitions and, consequently, to generate
long segments along the time axis instead of fragmenting adjacent
observations in several states. The observation model of each state is
represented by the parameters of a multivariate Gaussian distribution.
IHMMs are trained by standard EM algorithm, where the transition
matrix update is modified to consider parameter 𝜁 . In our tests we set
parameters 𝑘 and 𝜁 as shown in Table 3. The algorithm10 needs between
30 s and 100 min (longer time is needed when more hidden states are
used) to compute a single clustering on an Intel(R) Core(TM) i7-6700
CPU @ 3.40 GHz with 16 GB of RAM.

5.6. Random clustering (RC)

Random clusterings are generated by assigning to each observation
in the dataset a uniformly random number from 1 to 𝑘 (the number of
clusters). The obtained vector of labels (i.e., numbers from 1 to 𝑘) is
used as a clustering, hence observations assigned to the same label are
put together in the same group. We generate 200 random clusterings for
each 𝑘 ∈ {5, 10, 15, 20, 25, 30} (see Table 3) and use them to compute the
statistical significance of clusterings and clusters generated by standard
methods.

5.7. Random segmentation (RS)

Random segmentations are generated by selecting 𝑘 − 1 different
random splitting points between 2 and 𝑛 − 1, and then assigning
label 1 to the observations before the first splitting point, label 2 to
observations between the first and the second splitting point, and so on,
until the last interval of observations (between the last splitting point
and the last observation) which was assigned to label 𝑘. In this way we
generate 𝑘 segments of random length, in which each segment is related
to a single cluster. As for RC we generate 200 random segmentations
for each 𝑘 ∈ {5, 10, 15, 20, 25, 30} (see Table 3).

6. Performance measures

A key element for evaluating state-models generated by different
clustering methods are performance measures. Since different aspects
of the performance must be evaluated, here we propose an ensemble
of indices that satisfy the requirements of our and possibly other
application domains. Selected indices can be split into three categories,
namely, measures for evaluating clusterings, measures for evaluating

9 https://scikit-learn.org/.
10 https://github.com/george-montanez/InertialRegularizedHMM.

single clusters (i.e., state-models in our context), and measures for
evaluating state-model variables. The first and second categories can
be further divided into external and internal. The former uses a ground
truth to evaluate the clustering/cluster, while the latter does not require
any labeling. Since the goal of the proposed framework is to provide
quality state-models from unlabeled data, we focus our analysis on
internal performance measures, however, some external measures are
presented to assess the capability of clustering methods to detect known
situations. For each internal and external measure we specify if it can
be applied at clustering level, at cluster level or both. The measures
are then used in Section 7 to evaluate, rank, select and interpret state-
models generated by different methods. Symbol ↑ (↓) is used to identify
measures that must be maximized (minimized). In all indices below the
notation 𝑑𝑒(𝑥𝑖, 𝑥𝑗 ) is used to represent the Euclidean distance between
observations 𝑥𝑖 and 𝑥𝑗 . We notice that the performance indices here
used focus on cluster and clustering goodness, not on their predic-
tion capabilities. We do not split our dataset in training and test set,
compute models on training set and evaluate them on test set (a way
to evaluate prediction capabilities of state-models). The problem we
tackle here comes before the prediction problem, in fact we generate
state-models that could be eventually processed to learn prediction
models. An advantage of this approach is a lower time complexity
(computing prediction performance on test sets needs time consuming
cross-validation) which allows us to select optimal state-model among
a large set of clusters generated by several combinations of clustering
methods and parameter settings.

6.1. Internal measures

Silhouette ( , ↑). The silhouette (Rousseeuw, 1987; Arbelaitz et al.,
2013) is an internal measure that contrasts the average distance to
elements in the same cluster with the average distance to elements
in other clusters. Cluster cohesion is measured based on the distance
between all the points in the same cluster, the separation between
clusters is based on the nearest neighbor distance. The silhouette of
a single observation 𝑥𝑖 assigned to a cluster 𝑧𝑐 is defined as:

(𝑥𝑐𝑖 ) =
𝑏(𝑥𝑖, 𝑧𝑐 ) − 𝑎(𝑥𝑖, 𝑧𝑐 )

max{𝑎(𝑥𝑖, 𝑧𝑐 ), 𝑏(𝑥𝑖, 𝑧𝑐 )}

where 𝑎(𝑥𝑖, 𝑧𝑐 ) is the average distance of 𝑥𝑖 from the other observations
in cluster 𝑧𝑐 and 𝑏(𝑥𝑖, 𝑧𝑐 ) is the minimum average distance between 𝑥𝑖
and the observations in clusters 𝑧𝑙 ≠ 𝑧𝑐 . Silhouette can be computed
for a specific cluster 𝑧𝑐 , as (𝑧𝑐 ) = 1∕|𝑧𝑐 |

∑

𝑥𝑖∈𝑧𝑐 (𝑥𝑖), or for an
entire clustering 𝑍, as (𝑍) = 1∕𝑛

∑

𝑧𝑐∈𝑍
∑

𝑥𝑖∈𝑧𝑐 (𝑥𝑖). Its values range
from −1 to 1 where high values indicate points belonging to perfectly
compact and separated clusters and low values indicate clustering with
mixed clusters.

Davies–Bouldin index (, ↓). Davies–Bouldin index (Davies and
Bouldin, 1979; Arbelaitz et al., 2013) estimates the cohesion as the dis-
tance from the observations in a cluster to its centroid (computationally
faster than computing distances between all pairs of observations in
the cluster, as in silhouette) and the separation based on the distance
between centroids (also faster than silhouette). The cohesion is divided
by the separation, hence the index must be minimized. The index
formula is

(𝑍) = 1∕𝑘
∑

𝑧𝑐∈𝑍
𝑚𝑎𝑥𝑧𝑙≠𝑧𝑐

{

𝐶(𝑧𝑐 ) + 𝐶(𝑧𝑙)
𝑑𝑒(𝑧𝑐 , 𝑧𝑙)

}

,

where 𝑧𝑐 is the centroid of cluster 𝑧𝑐 and 𝐶(𝑧𝑐 ) is the estimated cohesion
of cluster 𝑧𝑐 , 𝐶(𝑧𝑐 ) = 1∕|𝑧𝑐 | ⋅

∑

𝑥𝑖∈𝑧𝑐 𝑑𝑒(𝑥𝑖, 𝑧𝑐 ).
Calinski–Harabasz index (, ↑). Calinski–Harabasz index (Cal-

iński and Harabasz, 1974; Arbelaitz et al., 2013) estimates cluster
cohesion from the distances between cluster points and related cluster
centroids. The separation is estimated from the distance between the
centroids and the global centroid of the dataset �̄�. The separation term
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is finally divided by the cohesion term, hence this index is ratio-based
and must be maximized. Formally,

(𝑍) = 𝑛 − 𝑘
𝑘 − 1

∑

𝑧𝑐∈𝑍 |𝑧𝑐 |𝑑𝑒(𝑧𝑐 , �̄�)
∑

𝑧𝑐∈𝑍
∑

𝑥𝑖∈𝑧𝑐 𝑑𝑒(𝑥𝑖, 𝑧𝑐 )

where 𝑧𝑐 is the number of observations in cluster 𝑧𝑐 , 𝑧𝑐 is the centroid
of 𝑧𝑐 .

Spread (, ↓). The spread of a cluster is a measure of cluster cohe-
sion (Kelley et al., 1996). Given a cluster 𝑧𝑐 containing |𝑧𝑐 | observations
the spread is given by

(𝑧𝑐 ) =
(
∑

𝑥𝑖∈𝑧𝑐
∑

𝑥𝑗∈𝑧𝑐 ,𝑗>𝑖 𝑑𝑒(𝑥𝑖, 𝑥𝑗 ))

|𝑧𝑐 |(|𝑧𝑐 | − 1)∕2
.

The measure can be extended to clusterings by averaging cluster
spreads as (𝑍) =

∑𝑘
𝑐=1 (𝑧𝑐 )

𝑘 .
Weighted spread (, ↓). Since clusters with small number of obser-

vations are more likely to be more compact, and consequently to have
smaller spread than large clusters, we computed a weighted version of
the cluster spread, in which the spread is divided by the percentage of
observations in the cluster, namely,

(𝑧𝑐 ) = ((𝑧𝑐 )∕|𝑧𝑐 |) ⋅ 𝑛.

The extension to clusterings is obtained as a sum of weighted cluster
spread, that is (𝑍) =

∑

𝑧𝑐∈𝑍 (𝑧𝑐 ).
NMRCLUST penalty ( , ↓). In Kelley et al. (1996) an internal

measure is proposed to compare clusterings having different number of
clusters and possibly being generated by different methods. The index
is computed for a clustering 𝑍 as (𝑍) = (𝑍) + 𝑘, where the first
term is the sum of the normalized average spread of the clustering

(𝑍) =
(

𝑛 − 2
𝑚𝑎𝑥𝑖((𝑍𝑖)) − 𝑚𝑖𝑛𝑖((𝑍𝑖))

)

((𝑍) − 𝑚𝑖𝑛𝑖((𝑍𝑖))) + 1,

where 𝑚𝑎𝑥𝑖((𝑍𝑖)) and 𝑚𝑖𝑛𝑖((𝑍𝑖)) are the maximum and minimum
values of the average spread of all available clusterings, and the second
term is the number of clusters in 𝑍, which is used to compensate
the change of normalized average spread among clusterings having
different number of clusters.

6.2. External measures

Purity ( , ↑). The purity of a clustering 𝑍 with respect to a labeling
𝐿 is a measure of the extent to which clusters contain a single class. It
is computed by the formula  (𝑍) = 1

𝑛
∑𝑘

𝑐=1 max𝑙∈𝐿 |𝑧𝑐 ∩ 𝑙|, where 𝑍 is
a clustering, 𝑛 is the total number of observations, 𝑘 is the number of
clusters, 𝑧𝑐 is the 𝑐th cluster, 𝐿 is the set of classes (i.e., observations
with specific labels). Purity close to 1∕|𝐿| represents fragmented clus-
terings, while purities close to 1 identify clusterings with almost only
one label for each cluster.

Precision ( , ↑). The precision of a cluster 𝑧𝑐 with respect to a label
class 𝑙 is a measure of the extent to which the cluster contains the label
class. It is computed as 𝑙(𝑧𝑐 ) =

|𝑧𝑐∩𝑙|
|𝑧𝑐 |

, where |𝑧𝑐 ∩ 𝑙| is the number of
observations in the intersection between cluster 𝑧𝑐 and label class 𝑙,
and |𝑧𝑐 | is the number of observations in the cluster 𝑧𝑐 . Values close
to 1 are obtained when all the observations in the cluster correspond
to label class 𝑙, values close to 0 are obtained when no observation in
𝑧𝑐 corresponds to class label 𝑙. We use this measure to find clusters
having good match with known states. For instance, to find clusters
corresponding to drone turning we search clusters 𝑧𝑐 having 𝑇 (𝑧𝑐 ) ≥
0.5, where 𝑇 is the precision for drone turning.

6.3. Measures for model variables

Symmetrical uncertainty ( , ↑). Symmetrical uncertainty (Hong
et al., 2008) is a measure of relevance of a variable 𝑣𝑑 , 𝑑 ∈ {1,… , 𝐷}
with respect to a clustering 𝑍 and can be computed as

 (𝑣𝑑 , 𝑍) = 2
(

𝐼𝐺(𝑣𝑑 | 𝑍)
𝐻(𝑣𝑑 ) +𝐻(𝑍)

)

where 𝐻(𝑍) is the entropy of the clustering labels and 𝐼𝐺(𝑣𝑑 | 𝑍)
is the information gain that is computed as 𝐼𝐺(𝑣𝑑 | 𝑍) = 𝐻(𝑣𝑑 ) −
𝐻(𝑣𝑑 | 𝑍), and 𝐻(𝑣𝑑 ) is the entropy of variable 𝑣𝑑 and 𝐻(𝑣𝑑 | 𝑍) is
the conditional entropy of 𝑣𝑑 given 𝑍. A value 1 of  indicates that
the variable 𝑣𝑑 is completely related to clustering 𝑍 while a value 0
means that the variable 𝑣𝑑 is absolutely irrelevant since it does not
share any information with clustering 𝑍. It happens for instance, if 𝑣𝑑
is a uniformly distributed random variable.

6.4. Statistical significance of clusterings and clusters

For each internal and external measure defined above it is possible
to compute the statistical significance, based on 𝑝-value, of a clustering
𝑍 with respect to the random clustering RC and the random segmen-
tation RS described in Sections 5.6 and 5.7, respectively. The 𝑝-value
of a clustering 𝑍 with respect to a performance measure 𝐼 is computed
as the percentage of random clusterings (random segmentations) that
outperform clustering 𝑍 in terms performance measure 𝐼 . The same
approach can be used to compute the statistical significance of single
clusters. Only clusters/clusterings with percentage less than 0.05 are
considered statistically significant.

7. Results and discussion

We generate 1076 clusterings of our dataset using the five clustering
methods described in Section 5 with different parameter settings for
each method (see Table 3): 126 clusterings are generated by TICC,
300 by IHMM, 100 by SCM, 300 by KM and 250 by HMM. The total
number of clusters generated in this way is 19 320 (i.e., 2205 clusters
produced by TICC, 5739 by IHMM, 2376 by SCM, 5250 by KM and
3750 by HMM). To evaluate the statistical significance of clusterings
and clusters we compute 200 random clusterings (RC) and 200 random
segmentations (RS) for each 𝑘 ∈ {10, 15, 20, 25, 30}, a total of 1200
random segmentations (21 000 random segments) and 1200 random
clusterings (21 000 random clusters), and we use them to compute
clustering and cluster p-values with respect to different performance
measures. We rank both single clusters and entire clusterings according
to their performance, and compute their statistical significance with
respect to the random clusterings/segmentations. In this way, we select
a subset of clusterings and clusters having clear evidence of being non-
random and to represent drone states. In the following, we first perform
an analysis of single cluster and then of entire clusterings. We always
compare clusters (clusterings) having the same parameter 𝑘 since all
performance measures considered are influenced by this parameter.
Specific focus is put on 𝑘 = 10 and 𝑘 = 20, two levels of granularity
(i.e., abstraction) of interest to discover macroscopic states (e.g., in wa-
ter) and microscopic states (e.g., turning). We notice that the extraction
of statistically significant state-models is often better achieved using
cluster validity indices than clustering performance indices, because
good (e.g., compact and separated) clusters are sometimes present
also in clusterings having average/low performance, which would not
be selected using only clustering performance indices. This happens,
for instance, when a high number of clusters is used, which favors
the identification of small patterns but also generates non-significant
clusters that reduce the overall performance of the clustering, even in
the presence of good clusters. This motivates our choice to analyze
deeper single clusters than complete clusterings, although the analysis
of clusterings is an important tool for identifying, for instance, the
number of clusters in the dataset.

7.1. Analysis of single clusters

Clusters are first ranked according to performance measures of
Section 6. We consider only statistically significant clusters, having 𝑝-
value less than 0.05 for at least one performance measure. A summary
of properties and performance of investigated clusters is reported in Ta-
ble 4. Fig. 5 shows the results for two internal measures, i.e., silhouette

7
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Fig. 5. Performance of single clusters. Left: X-axes are number of states 𝑘 in the clustering, y-axes are values of cluster performance, colors are clustering methods, light blue
dashed lines represent 5th and 95th percentiles for RS, yellow dashed lines 5th and 95th percentiles for RC. Right: statistically significant clusters sorted by performance. (a)
Cluster silhouette: significant if above the upper dashed lines. (b) Cluster weighted spread: significant if below the lower dashed lines; only the 5th percentile line is visible for RS
because the figure is zoomed on the lower part of the 𝑦-axis. (c) Cluster precision for drone turns: significant if above the upper dashed lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

() and weighted spread (), and one external measure, i.e., precision
in detecting drone turns (𝑇 ). For each performance measure, we show
on the left a scatter plot displaying all the 61 320 clusters (19 320
generated by clustering methods, 21 000 by RC and 21 000 by RS)
where each point is a cluster, the 𝑥-axis is the number of states 𝑘 in
the clustering, and the 𝑦-axis is the performance of the cluster. On the
right, we display clusters having a specific range of 𝑘 and 𝑝-value less
than 0.05 for RS. Below, we propose an analysis of few of these clusters,
showing that they have a clear interpretation in terms of drone states.
Further analysis is reported in supplementary material.

Ranking by cluster silhouette. Fig. 5a shows cluster silhouette and
the ranking by silhouette of clusters with 𝑘 between 9 and 11. The

cyan and yellow dashed lines, on the left, characterize the 5th and the
95th percentile with respect to RS and RC, respectively. Clusters located
above these lines are statistically significant. Focusing on 𝑘 between 9
and 11 (see the blue box on the left of Fig. 5a) we find 249 clusters,
of which 27 generated by TICC, 21 by IHMM, 9 by SCM, 100 by KM
and 92 by HMM. These clusters are ranked by silhouette on the right
of Fig. 5a where the point color depends on clustering techniques and
point size on cluster size.

Clusters 𝐶1 and 𝐶2 have the highest silhouette, respectively 0.76
and 0.68, and are generated by IHMM. As displayed in Table 4, they
have a very small number of observations, namely three per cluster
(see column ), they do not correspond to a turn (𝑇 = 0.00), but

8
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Table 4
Performance measures and main properties of ten selected clusters. Id is the cluster identifier, clustering method the technique by which the cluster was generated, selection method
the performance measure by which it was selected (only clusters having 𝑝-value less than 0.05 for that measure were considered), parameters are the clustering parameters used to
generate the cluster,  is the number of observations in the cluster,  is the cluster silhouette,  its weighted spread, 𝑇 the cluster precision for drone turns, 𝐼𝑊 the precision
for state ‘‘in water’’ (notice that the precision for the state ‘‘out of water’’ can be calculable as 1 − 𝐼𝑊 ), 𝑀𝐷 the precision for state ‘‘manual drive’’ (precision of autonomous
drive is 1 − 𝑀𝐷), 𝑈𝑆 is the precision for state ‘‘upstream navigation’’, 𝐷𝑆 is the precision for state ‘‘downstream navigation’’, 𝑁𝑆 is the precision for state ‘‘no-stream’’, and
p-val is the 𝑝-value for RS related to the index in the selection method.

Id Clustering
method

Selection
method

Parameters    𝑇 𝐼𝑊 𝑀𝐷 𝑈𝑆 𝐷𝑆 𝑁𝑆 p-val

𝐶1 IHMM  (1st) 𝑘 = 10, 𝜁 = 30 3 0.76 21 816.9 0.00 1.00 1.00 0.00 0.00 1.00 0.00
𝐶2 IHMM  (2nd) 𝑘 = 10, 𝜁 = 30 3 0.68 29 516.8 0.00 1.00 1.00 0.00 0.00 1.00 0.001
𝐶3 KM  (3rd) 𝑘 = 10 33 0.57 5143.7 0.00 0.64 1.00 0.00 0.00 1.00 0.0025
𝐶4 HMM  (53th) 𝑘 = 10 33 0.57 5143.7 0.00 0.64 1.00 0.00 0.00 1.00 0.0025
𝐶5 SCM  (86th) 𝑁𝑏𝐸𝑥𝑝𝐶𝑙𝑢𝑠𝑡 = 3 6774 0.49 17.8 0.02 0.99 0.08 0.00 0.01 0.99 0.005

𝐶6 TICC  (246th) 𝑘 = 10, 𝜆 = 1.0, 1007 0.21 132.9 0.12 1.00 0.86 0.77 0.00 0.23 0.047
𝛽 = 0.0, 𝑤 = 3.0

𝐶7 TICC  (3th) 𝑘 = 20, 𝜆 = 1.0, 8111 0.35 5.32 0.02 0.98 0.16 0.00 0.03 0.97 0.0005
𝛽 = 50.0, 𝑤 = 1.0

𝐶8 TICC  (160th) 𝑘 = 20, 𝜆 = 0.1, 4172 −0.024 18.59 0.01 0.22 0.89 0.00 0.00 1.00 0.0305
𝛽 = 200.0, 𝑤 = 1.0

𝐶9 TICC 𝑇 (13th) 𝑘 = 20, 𝜆 = 0.5, 317 −0.174 766.20 0.75 1.00 1.00 0.41 0.00 0.59 0.0045
𝛽 = 100.0, 𝑤 = 1.0

𝐶10 SCM 𝑇 (287th) 𝑁𝑏𝐸𝑥𝑝𝐶𝑙𝑢𝑠𝑡 = 6 1905 −0.19 68.87 0.39 1.00 0.92 0.10 0.17 0.73 0.027

they correspond to locations in which the drone was into the water
(𝐼𝑊 = 1.00), manually driven (𝑀𝐷 = 1.00) and navigating outside
strong streams (𝑁𝑆 = 0.00). Note that information about precision
comes from manual labeling. It is used for result validation and not
provided to the (unsupervised) clustering learning process.

We discovered that these clusters identify a real pattern in experi-
ment ESP4 which can be traced back to a specific (possibly anomalous)
situation. The boxplot of variable 𝑒𝑐 in Fig. 6a shows that clusters 𝐶1
and 𝐶2 have much higher standard deviation of electrical conductivity
than other clusters. Then, the boxplot of variable 𝑒𝑐, in the same figure,
points out that in 𝐶1 the variation of 𝑒𝑐 is positive (increment) and in
𝐶2 it is negative (decrement). The third and fourth boxplots instead say
the two clusters have also high standard deviation of temperature and
voltage. The geolocalization in Fig. 6b shows that cluster 𝐶2 precedes
cluster 𝐶1. All these information, together, suggest that this pair of
clusters could be associated to a location where the drone was sud-
denly extracted from and put back into the water. The location of the
clusters is in the middle of a lake, hence the situation could be due to
manual intervention of an operator from a boat, anomalous conditions
(e.g., obstacles or waves), or sensor faults. It is important to detect
such situations to improve data analysis and avoid misinterpretations
of sensor readings.

Other key information about this state is provided by the parameters
of the IHMM representing the state-models. Fig. 6c shows the heatmaps
of variable means for each cluster (on the left) and the transition matrix
(on the right). Cluster 𝐶1 has strongly positive means for 𝑒𝑐 and 𝑒𝑐 (see
dark green cells in the first column of the means matrix) and cluster
𝐶2 has strongly positive mean for 𝑒𝑐 and strongly negative mean for 𝑒𝑐
(second column of the means matrix). Moreover, the switch between
cluster 𝐶2 and cluster 𝐶1 is represented by the high parameter in the
highlighted cell of the transition matrix (on the right). We reported
other analysis on clusters 𝐶3 to 𝐶6 in the supplementary material.

Ranking by cluster weighted spread. This ranking of clusters is
displayed in Fig. 5b. On the right we show the significant clusters with
𝑘 between 19 and 21. We found 199 significant clusters, of which 42
generated by TICC, 29 by IHMM, 3 by SCM, 75 by KM and 50 by HMM.
Cluster 𝐶7 has almost the best performance in the ranking (two other
clusters perform better but they contain only one observation). It was
generated by TICC, contains 8111 observations, has weighted spread
5.32 and silhouette 0.35. This cluster corresponds to observations in
which the drone was into the water (i.e., 𝐼𝑊 = 0.98), autonomously
driven (i.e., 𝑀𝐷 = 0.16), not in strong streams (i.e., 𝑁𝑆 = 0.97)
and not turning (i.e., 𝑇 = 0.02). Interestingly enough, this cluster

contains almost the same points of cluster 𝐶5, which was generated
by SubCMedians and selected from the silhouette ranking. This shows
that different clustering methods (i.e., SubCMedians and TICC in this
case) were able to discover the same state of the drone although using
different state representations (i.e., centroids and Toeplitz matrices).
Cluster 𝐶8 is analyzed in the supplementary material.

Ranking by cluster precision for drone turning. The third rank-
ing we analyze is based on the precision to detect drone turns. A
scatter plot of clusters arranged by 𝑘 (x-axis) and precision to detect
drone turns 𝑇 (y-axis) is displayed on the left of Fig. 5c. We focus, in
particular, on 𝑘 between 19 and 21. These clusters are 609 in total, of
which 101 generated by TICC, 36 by IHMM, 17 by SCM, 212 by KM and
243 by HMM. The best 15 clusters, having 𝑇 ≥ 0.69, are all generated
by TICC or IHMM that seem to have the best capability to detect drone
turns.

Cluster 𝐶9 is the first ‘‘large’’ cluster in the ranking (317 observa-
tions) and it is generated by TICC. Its precision on drone turns 𝑇 is
0.75, meaning that the 75% of its observations in the cluster correspond
to real turn, according to our manual labeling. According to Table 4 this
cluster corresponds to observations taken into the water (i.e., 𝐼𝑊 =
1.00) during manual drive (i.e., 𝑀𝐷 = 1.00), partially in upstream
navigation and partially with no stream (i.e., 𝑈𝑆 = 0.41 and 𝑁𝑆 =
0.59). Among the main statistical properties of variables characterizing
this clusters there are high standard deviation of signal to propellers
𝑚0 (and 𝑚1), and high standard deviation of voltage �̂�, as shown in the
two boxplots of Fig. 7a. The geolocalization of this cluster confirms its
correspondence to curves in the drone path, as shown in Fig. 7b that
displays five locations belonging to three campaigns (i.e., ESP2, ESP5
and ITA6). We observe that the cluster really characterizes the turning
pattern in the data. Fig. 7c shows the on-diagonal elements (on the
left) and the off-diagonal elements (on the right) of the Toeplitz matrix
representing this state. Cluster 𝐶10 is analyzed in the supplementary
material.

7.2. Analysis of clusterings

Here we perform a second kind of analysis based on clustering
significance (the previous one was on cluster significance). We evaluate
our clusterings, computed by different methods and different parameter
settings, according to four internal measures, namely silhouette (),
Davis–Bouldin index (), weighted spread (), and Calinski–Harabaz
index (). Results are summarized in Fig. 8, which has a similar
structure to Fig. 5. Scatter plots, on the left, contain one point for
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Fig. 6. Clusters 𝐶1 and 𝐶2. (a) Box plots of variables 𝑒𝑐, 𝑒𝑐, �̂� , �̂�. (b) Maps of cluster locations. (c) State-model parameters (variable means and transition matrix).

each clustering. The 𝑥-axis represents the number of clusters 𝑘 in the
clustering and the 𝑦-axis the performance measure of interest. Point
colors correspond to different clustering methods. On the right hand
side some selections of significant clusterings, with specific 𝑘 and 𝑝-
value less than or equal to 0.05, are displayed by ascending/descending
performance.

Clustering silhouette is displayed in Fig. 8a. As expected the best
silhouette is achieved by clustering with small number of clusters
(e.g., 𝑘 = 2 for IHMM, 𝑘 = 5 for k-means and TICC, 𝑘 = 6 for SCM). The
average clustering silhouette however increases from 𝑘 = 10 to 𝑘 = 25
and then it decreases for 𝑘 > 25, showing a peak around 𝑘 = 25 for
all methodologies. This is interesting because it suggests a best number
of clusters (around 25) for this dataset. Moreover, silhouette of SCM
and IHMM with 𝑘 > 30 sharply degrades to zero or less than zero.
Surprisingly, the best silhouette is achieved by k-means for all 𝑘 (see
pink points in the chart). Then TICC reaches the second best silhouette

performance, followed by SubCMedians and IHMM that has similar
average performance to HMM but better performance considering the
best parameter settings. The silhouette of non-random clusterings is
almost always higher than silhouette of random segmentations. This be-
havior is very different from that observed for clusters, wherein several
superpositions were present. Ranking by silhouette of clusterings with 𝑘
between 9 and 11 (on the right of Fig. 8a) shows that the best clustering
was generated by SCM and has a silhouette of 0.17. It is followed by
k-means (about 0.15) and TICC (about 0.14), then there is a big jump
to reach the best IHMM clustering, having silhouette 0.08, and HMM
with silhouette 0.07.

The Davis–Bouldin index, in Fig. 8b, is again dominated by k-means
(see the pink points in the chart) that shows, as for silhouette, an
optimum (i.e., a minimum for Davis–Bouldin index) in 𝑘 between 20
and 25. The performance of the other methods (considering the best
models for each technique while 𝑘 varies between 5 and 30) are quite

10
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Fig. 7. Clusters 𝐶9. (a) Box plot of variables 𝑚0, �̂�. (b) Maps showing cluster locations. (c) State-model parameters (on-diagonal and off-diagonal elements of Toeplitz matrices).

constants over 𝑘, with best performance achieved mainly by TICC, SCM
and IHMM depending on 𝑘. Not considering small 𝑘, TICC has its best
performance in 𝑘 = 25, IHMM and HMM in 𝑘 = 20, SCM in 𝑘 = 39
(with small differences with other 𝑘). All points are below the cyan and
yellow points of RS and RC (yellow points are not displayed because
of too high values). Weighted spread and Calinski–Harabaz indices are
analyzed in supplementary material.

A final comment is focused on clustering p-values. Differently from
clusters, clusterings are almost all statistically significant with respect
to RC and RS. This holds for all the four internal performance measures
analyzed in this section, as displayed in Fig. 8, where the points related
to non-random clusterings are almost always out of the areas delimited
by the 5th and 95th percentile lines (yellow and cyan dashed lines).
This is possibly due to the fact that randomly generate clusterings with
performance similar to that of state-of-the-art clustering algorithms is
more difficult than randomly generate single clusters with performance
similar to that generated by state-of-the-art methods.

8. Conclusions and future work

The framework proposed in this work allows to identify significant
states of aquatic drones involved in water monitoring by means of
diverse unsupervised clustering and segmentation methodologies. The
analysis of the models of these states, namely, centroids, Toeplitz
matrices, and multivariate Gaussian distributions (depending on the
methodology that generated them), allows us to discover the statistical
properties that characterize some of these states and, consequently, to

provide interpretations for the related models. This result has direct
consequences on the analysis of the data acquired by the drones since
we can now label the dataset by discovered states, obtaining a compact
semantic-based way to represent each campaign. This could have strong
impact on water monitoring projects involving the citizenship in col-
lecting evidence about water healthiness (following the citizen science
approach), since unskilled people need support in data interpretation.

From a more general point of view, the proposed framework repre-
sents an easy-to-use tool for discovering significant states in multivari-
ate time series datasets and for comparing the capabilities of different
clustering techniques. It only needs a dataset and a set of parameter
settings for each methodology, and produces several rankings of cluster-
ings/clusters with associated significance levels, allowing to compare
the performance of different methods to identify states in specific
application domains (and related datasets). The choice of a cluster-
ing/segmentation method for real datasets is a challenging activity and
our approach could provide valuable support in this direction.

Future activities will aim to release an easy-to-use software for sup-
porting the proposed framework. Then we want to merge the clusters
discovered by different methods using different levels of granularity
(i.e., parameter 𝑘) into a hierarchical (voting) structure, so that each
observation could be part of several clusters of different abstraction
levels (e.g., drone into the water, turning and moving upstream). An-
other goal is to focus on specific situations of interest, such as anomalies
and dangerous states (e.g., high waves). We are planning specific field
tests to this purpose. Finally, we want to integrate our state recognition
method into online sequential decision making algorithms, such as
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Fig. 8. Performance of clusterings. Left: 𝑥-axis is the number of states 𝑘, 𝑦-axis is the performance value, colors are clustering methods. Each point is a clustering. Right: significant
clusterings sorted by performance. (a) silhouette, (b) Davis–Bouldin index. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

those based on Partially Observed Markov Decision Processes (known
as POMDPs) that we started to develop in Castellini et al. (2019b). This
direction could improve drone autonomy by supporting the generation
of policies based on improved system states.

CRediT authorship contribution statement

Alberto Castellini: Conceptualization, Methodology, Writing - re-
view & editing, Investigation, Validation, Software. Manuele Bicego:
Writing - review & editing, Formal analysis. Francesco Masillo: Soft-
ware, Visualization. Maddalena Zuccotto: Software, Visualization.
Alessandro Farinelli: Supervision, Project administration, Funding
acquisition, Conceptualization, Writing - review & editing.

Acknowledgments

This work is partially funded by the European Union’s Horizon 2020
research and innovation program under grant agreement No 689341
and partially supported by the project "Dipartimenti di Eccellenza
2018-2022", funded by the Italian Ministry of Education, Universities
and Research (MIUR). This work reflects only the authors’ view and
the EASME is not responsible for any use that may be made of the
information it contains.
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Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.engappai.2020.103499. The document con-
tains results and discussions not displayed in this manuscript for space
reasons. In particular, supplementary material contains analysis about:

• ranking by cluster silhouette (clusters 𝐶3 to 𝐶6 in Fig. 5)
• ranking by cluster weighted spread (cluster 𝐶8 in Fig. 5)
• ranking by cluster precision for drone turning (cluster 𝐶10 in

Fig. 5)
• ranking by clustering weighted spread and Calinski-Harabaz in-

dex (extending ranking by clustering in Fig. 8)
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