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ABSTRACT
We propose a novel methodology based on subspace clustering for
detecting, modeling and interpreting aquatic drone states in the
context of autonomous water monitoring. It enables both more
informative and focused analysis of the large amounts of data col-
lected by the drone, and enhanced situation awareness, which can
be exploited by operators and drones to improve decision mak-
ing and autonomy. The approach is completely data-driven and
unsupervised. It takes unlabeled sensor traces from several water
monitoring missions and returns both a set of sparse drone state
models and a clustering of data samples according to these models.
We tested the methodology on a real dataset containing data of six
different missions, two rivers and four lakes in different countries,
for about 5.5 hours of navigation. Results show that the method-
ology is able to recognize known states “in/out of the water”, “up-
stream/downstream navigation” and “manual/autonomous drive”,
and to discover meaningful unknown states from their data-based
properties, enabling novelty detection.
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1 INTRODUCTION
Autonomous robots are nowadays used in various application do-
mains, such as, surveillance, monitoring and rescuing [12]. These
intelligent systems are able to collect large amounts of information,
providing crucial support to human operations. Aquatic drones are
increasingly used in this context for autonomous monitoring of
catchments, in which robotic boats must navigate rivers and lakes
to acquire real-time data concerning important water parameters,
such as dissolved oxygen and electrical conductivity. While human
operators are usually involved in such data collection activities, di-
rect tele-operation of the drones is often not an option for an entire
mission, hence autonomous navigation capabilities are required. In
particular, aquatic drones must maximize the information content
of data acquired during missions [6] while adapting to anomalous
conditions of internal devices and environment, using a minimal
number of sensors to reduce the cost of equipment.

A key factor for the success of autonomous data acquisition cam-
paigns ismission awareness [4, 11], which is composed of three main
elements: knowledge of mission objectives, internal self-situational
awareness, and external self-situational awareness. In this work
we specifically focus on the problem of detecting, modeling and
interpreting aquatic drone states from a data-driven point of view,
which is an aspect of self-situational awareness. In other words,
we aim at developing interpretable models of drone states from
traces of sensor data acquired during water-monitoring missions,
by means of statistical learning methods. Maintaining such a set of
drone state models is important for two reasons, first it can strongly
improve the autonomy of the drone by providing key information
to online decision making [2, 18], second it can support offline data
analysis by improving the extraction of knowledge from the large
dataset of available sensor traces.

As drone states in this work we intend classes of observations
having similar statistical/informational properties within the entire
dataset of sensor traces. Unsupervised methods, such as clustering
and time series segmentation, are ideal tools for detecting such
kind of patterns since they usually optimize internal performance
measures [15]. Using these tools, similar observations are grouped
together into clusters whose parameters represent the state models.
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Another advantage of such methods is that they avoid manual label-
ing of sensor traces which is often expansive, time consuming, and
even impracticable in some cases. Moreover, the data-driven models
generated by some of these methods provide abstract descriptions
of drone states that can be interpreted and validated by experts,
and incrementally updated as new data become available. Finally,
new states could also be discovered from sets of observations with
homogeneous and statistically coherent patterns, promoting the
process of novelty detection [30].

The literature provides several methods for clustering and seg-
menting multivariate time series which mainly differ from each
other in the assumptions they make on data or model properties.
Some of these techniques are also used in contexts similar to ours,
such as sensor-based human activity recognition [9, 21], in which
sensors are used to acquire data about human movements with the
aim to create computational activity models and infer human activ-
ities. To the best of our knowledge the main techniques used in this
field are: k-means [1, 3, 5, 21, 32], Gaussian mixture models (GMM)
[3, 5, 21, 32], hierarchical clustering [3, 5, 21], hidden Markov mod-
els (HMMs) [3, 13, 19, 26, 32], conditional random fields (CRFs) [33],
Markov random fields [14] and change-point detection methods
[22]. However, only a very few of them [3, 14] were applied to data
from drones or vehicles and none of them on aquatic drones. The
usefulness of some of these techniques in discovering activities in
the aquatic drone scenario was first investigated in [7, 8] where per-
formance of k-means, GMM, HMM and affinity propagation were
compared on a real dataset. Some peculiarities of aquatic drones
datasets make activity recognition in this context very challenging.
In particular, these kinds of data are very noisy, since they come
from several sources, and are strongly influenced by unstructured
and diversified environments (e.g., rivers and lakes in different parts
of the world). Moreover, aquatic drones collect data related to both
movement and water parameters, and both sources of information
can be used to assess the state of the drone.

In this work we use subspace clustering to improve the perfor-
mance of standard clustering methods in terms of both goodness of
fit (here measured by clustering silhouette) and cluster interpretabil-
ity. Subspace clustering is an adaptation of clustering for high di-
mensional data [28]. This approach is recognized as more general
than traditional clustering, since it tackles two different problems
simultaneously: detecting clusters in the dataset and searching a rel-
evant subspace for each cluster. Different approaches have been pro-
posed to address this problem, using different paradigms [31]. Three
major families of approaches have been identified in the literature.
The cell-based approach which searches hyper-rectangular clusters,
that contain more than a given number of objects. The density-
based approach aims at detecting arbitrarily shaped dense groups
of objects, separated from other groups by low density zones. The
clustering-oriented approach tends to form hyper-spherical shaped
clusters, using distance-based similarity measures, and some prop-
erties of the targeted clustering model (e.g., number of clusters).
The reader is referred for instance to [20, 27, 28, 31] for reviews and
comparisons of state-of-the-art methods and major categories, and
to [10, 23, 25, 29] for some recent subspace clustering algorithms
proposed so far in the literature.

We use, in particular, a recent center-based technique called Sub-
CMedians [29], on a dataset containing suitable variables extracted

from sensor traces of 6 concatenated missions. The methodology
generated 26 state models that we prove to contain information
about meaningful situations, such as upstream/downstream navi-
gation and manual/autonomous drive. Then we analyze some of
the models by means of a novel software tool called eXplainable
Modeling (XM) and interpret their parameters (i.e., cluster cen-
troids) and properties (e.g., geolocation and distributions), showing
that the analysis framework has enhanced capabilities in terms of
interpretability and novelty detection.

The main contributions of this paper to the state-of-the-art can
be summarized in the following points:

• we generated sparse models of aquatic drone states by sub-
space clustering and shown that they have improved goodness-
of-fit and interpretability with respect to those computed by
standard clustering methods;

• we proved the capability of the proposed methodology to
recognize meaningful states of the drone, whichmotivates its
usage in discovering unknown states (i.e., novelty detection).

The following of the manuscript presents the data acquisition
platform, the dataset, the subspace clustering methodology and
the XM tool in Section 2. The results and related performance are
analyzed in Section 3, and some conclusions and directions for
future work are described in Section 4.

2 MATERIAL AND METHODS
In this section we formalize the problem, describe the available
dataset and introduce the subspace clustering method employed to
generate the results.

2.1 System overview and problem definition
Data acquisition campaigns are performed by the aquatic drones
shown in Figure 1. Drones are equipped with sensors for GPS po-
sition, water properties (i.e., temperature, dissolved oxygen and
electrical conductivity), commands to propellers and battery volt-
age. Drone operators define paths by setting waypoints on a map
in a tablet (autonomous drive) or they manually drive the drone
using an RC controller. Sensor traces are stored in log files which
are preprocessed to obtain a matrix of multivariate time series (dis-
played in the center of Figure 1), where rows represent variables
(i.e., sensor signals) and columns represent time (in seconds). The
methodology proposed in this work aims at detecting different
drone states from that data matrix, and to generate interpretable
mathematical models of those states. States are represented by col-
ored square labels in the picture, since they involve subsets of time
points (columns) and subsets of variables (rows). Interpreting states
in terms of situations in which the drone finds itself is useful for
improving both data analysis and decision making.

2.2 Dataset
Sensor traces of six missions were analyzed. Table 1 shows their
duration, number of samples and type of catchment (i.e., river or
lake). We concatenated these traces, obtaining a single dataset with
20187 observations and about 5.6 hours of navigation (the sampling
interval is of 1 second). Variables available in the raw datasets were
time, latitude, longitude, altitude, speed, electrical conductivity, dis-
solved oxygen, temperature, battery voltage, heading, acceleration
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Figure 1: Main elements of the proposed situation assess-
ment system for autonomous water drones.

and command to propeller 0 and 1. Using only raw sensor data
for generating state models has the drawback to often generate
data-splitting due to naive differences in environmental parameters
among different missions. For instance, since the dissolved oxygen
assumes quite different values in different missions, the clustering
methodology tends to generate independent models for each mis-
sion. On the other hand, our aim is to discover cross-mission states,
namely states that are possibly observable in several missions. Fea-
ture extraction was employed to this end. We removed some of
raw-sensor variables and generated two kinds of new variables,
namely, moving means and standard deviations over a sliding win-
dows of 10 seconds and variations between couples of consecutive
observations. The list of 27 variables in the final (CONCAT) dataset
is reported in Table 2. As suggested in [29] Z-score standardization
was performed on each variable and the obtained CONCAT dataset
(see Table 1) was provided to the SubCMedians algorithm.

# Name Samples Duration Lake/River
1 ESP2 2814 47’ R
2 ESP5 3601 60’ R
3 ESP4 2374 39’ L
4 GARDA3 2451 40’ L
5 ITA1 7243 121’ L
6 ITA6 1704 28’ L
- CONCAT 20187 335’ -

Table 1: Analyzed datasets by mission.

2.3 Drone states
By drone states here we mean situations or activities whose aware-
ness can improve the autonomy of the drone or the process of anal-
ysis of the data that it collects. Since our approach is data-driven,

Symbol Description
s, v, a Instantaneous speed, voltage, acceleration
m0,m1 Instantaneous signal to propeller 0 and 1
s̄, v̄, ā Moving average mean of speed, voltage, acceleration
m̄0, m̄1 Moving average mean of signal to propeller 0 and 1
ŝ, v̂, â Moving average std of speed, voltage, acceleration

êc, d̂o, T̂
Moving average std of electrical conductivity,
dissolved oxygen, temperature

m̂0, m̂1 Moving average std of signal to propeller 0 and 1
ĥ Moving average std of heading

s̃, ã, ṽ Variation of speed, voltage, acceleration
m̃0, m̃1 Variation of signal to propeller 0 and 1

ẽc, d̃o, h̃
Variation of electrical conductivity,
dissolved oxygen, temperature

Table 2: Variables in dataset CONCAT.

we can detect only states that influence somehow the sensor traces.
In order to check if there is a real connection between meaningful
states and modifications of data properties, we manually labeled
our concatenated dataset according to seven simple but meaningful
drone states, namely, in water (IW), out water (OW), upstream nav-
igation (US), downstream navigation (DS), no water current (NS),
manual drive (MD), and autonomous drive (AD). Then we checked
if our methodology was able to identify such known states. To this
end we computed cluster purity, a performance measure defined in
Section 2.6, that evaluates the extent to which a cluster represents
a single drone state. The positive result on this test (see Figure 2.a)
proves the capability of our method to detect meaningful states
and supports our confidence in its capabilities of novelty detection,
which are also confirmed by results presented in Section 3.

2.4 Subspace clustering by SubCMedians
The methodology for drone state identification presented in this
work relies on a recent center-based subspace clustering technique
called SubCMedians [29]. This algorithm is based on a K-medians
paradigm [17] and it aims at clustering data points around suit-
able candidate centers, each one described in its own subspace. In
the context of the center-based subspace clustering paradigm, a
cluster center defined in a given subspace, represents informally
a “summary” of the cluster points, its subspace contains the most
informative variables for the given cluster, and the center coordi-
nates along such variables represent the coordinates of the cluster
points. In this work, each subspace cluster represents a potential
state of the aquatic drone.

The clustering problem tackled by SubCMedians can be stated
more formally as follows. Let a set of points X = {x1,x2, . . . }
denote a dataset, and each point x ∈ X is described in RD by D
variables (point coordinates). Here, each variable is represented
by a number ranging from 1 to D, and the set of all variables is
denoted D = {1, . . . ,D}. LetM denote the set of centers built by
SubCMedians, such that each centermi ∈ M is defined in its own
subspace (i.e., subset of variables) Di ⊆ D. The size of a model M,
is defined as the sum of the number of variables contained in the
subspaces of the model centers: Size(M) = ∑

i |Di |. This value is
intuitively interpreted as the "level of detail" of the model.
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In SubCMedians, the distance dist(x ,mi ) between a point x and
a centermi , is an extension of the Manhattan distance, that allows
to compare points defined in different subspaces: dist(x ,mi ) =∑
d ∈Di |xd −mi,d | +

∑
d ∈D\Di |xd − µd |, withmi,d the coordinate

ofmi along variabled , andwith µd themean of the coordinates of all
points in X along d . For a dimension d < Di , the intended meaning
is that, along d , the points of the cluster are simply distributed
around the barycenter of the full dataset. The distance between each
point x ∈ X and its closest centermi ∈ M is called the Absolute
Error AE(x ,M) =minmi ∈Mdist(x ,mi ). The goal of SubCMedians
is to build a set of centersM, so as to minimize the Sum of Absolute
Errors SAE(X ,M) = ∑

x ∈X AE(x ,M), and such that Size(M) ≤
SDmax , where SDmax is a parameter denoting the maximum Sum
of Dimensions used in M to describe all its centers (the number of
centers is not constrained).

In practice SubCMedians updates iteratively the coordinates
and the subspaces of its centers, using a stochastic hill climbing
technique. Moreover SubCMedians takes advantage of a weight-
based strategy to guide its local search towards most promising
subspace clusters, in order to minimize the Sum of Absolute Er-
rors, while satisfying the maximum model size constraint. The
algorithm has three main parameters, namely, SDmax , the sample
size N (the algorithm considers only N randomly chosen obser-
vations at each iteration) and the number of iterations NbIter . In
[29], the authors provide easy default parameter setting guidelines,
that allowed SubCMedians to obtain competitive results compared
to state-of-the-art algorithms on benchmark datasets. Following
these guidelines the user only needs to provide a suggested number
of clusters, termed NbExpClust , from which the other parameters
are computed. The actual number of clusters is then selected auto-
matically by the algorithm at runtime. We used NbExpClust =
10, since the expected number of clusters was around 10, and
slightly changed the standard parameter settings proposed in [29]
to SDmax = D × NbExpClust = 270, N = 50 × NbExpClust = 500
and NbIter = 20× SDmax ×NbExpClust = 54000. The algorithms
needs less than one minute to compute the clustering on a Intel
CORE i7 with 8GB of RAM. We run the algorithm 20 times and
then selected the result with the best clustering silhouette (this
performance measure is described in the next section). The pro-
cedure turned out to be sufficient to build a satisfactory subspace
clustering model, as shown in Section 3.

2.5 Standard clustering methods
The performance of SubCMedians is compared with that of the stan-
dard clustering methods k-means and Gaussian Mixture Models
(GMMs). In both cases we set the number of clusters to 26, namely
the number of clusters detected by SubCMedians. In k-means we
used the Euclidean distance ∥ · ∥2 and re-initialized the algorithm
300 times, then we took the model with lowest residual sum of
squares. In GMM we re-initialized the algorithm 300 times and the
model with maximal log-likelihood was used. Initial component
means were generated by the k-means algorithm, initial mixing
proportions were set to uniform and initial covariance matrices
were defined diagonal and initialized according to the obtained
k-means result, namely by computing the variance for each vari-
able in a particular cluster. Parameter learning was performed by

computing a maximum likelihood solution through the Expectation-
Maximization (EM) algorithm. The full covariance matrix was used
and a maximum of 100 iterations were executed. Inference was
performed, given a trained GMM, by assigning each data point to
the component (i.e., cluster) with maximum posterior probability.
The performance of the three algorithms is shown in Table 3.

2.6 Performance evaluation and variable
ranking

To assess the performances of our method we employed two mea-
sures, purity and silhouette [15, 24]. The former is an external cri-
terion, which compares the result of the clustering with a ground
truth. In our case this is used to assess the capability of the pro-
posed framework to detect known situations. The latter is an in-
ternal index, which measures the goodness of the clustering with-
out using the ground truth but assessing only the compactness
of the clusters. More in detail, purity is computed by formula
P(C) = 1

N
∑
k ∈K max

d ∈D
|k ∩ d |, where C is a clustering, N is the

total number of points, K is the set of clusters and D is the set of
classes. Purity values close to 1/|D | represent clusterings very frag-
mented in different labels, while purity values close to 1 identify
clusterings having almost one label for each cluster. The silhouette
of the i-th data point is computed as S(i) = b(i)−a(i)

max{a(i),b(i)} , where
a(i) is the average dissimilarity of point i with all other data within
the same cluster and b(i) is the lowest average dissimilarity of point
i to any other cluster, of which i is not a member. Values range from
-1 to 1 where high values indicate points belonging to perfectly
compact and separated clusters and low values indicate clustering
with mixed clusters.

To improve the visual interpretability of the state models, we
sorted their variables by decreasing symmetrical uncertainty (SU )
[16]. SU is a measure of relevance of a variable fr with respect
to a clustering solution I and can be computed as SU (fr , I ) =
2( IG(fr | I )

H (fr )+H (I ) )whereH (I ) is the entropy of the clustering labels and
IG(fr | I ) is the information gain that is computed as IG(fr | I ) =
H (fr )−H (fr | I ), andH (fr ) is the entropy of variable fr andH (fr | I )
is the conditional entropy of fr given I . A value 1 of SU indicates
that the variable fr is completely related to clustering I while a
value 0 means that the variable fr is absolutely irrelevant. Finally to
check cluster coherence we also used t-SNE [34] a dimensionality
reduction method based on Stochastic Neighbor Embedding that
produces clear 2D visualizations (as scatter plots) of the multidi-
mensional datasets.

2.7 The eXplainable Modeling (XM) tool
The software eXplainable Modeling (XM) is a free Python tool which
supports the processes of data analysis and model generation. The
current version XM1.5.1 provides the following kinds of visualiza-
tion of data: time series, heatmaps, 2D/3D scatter plots, boxplots,
histograms, geolocation and t-SNE. Moreover, it enables to gen-
erate clusterings by k-means, GMM and SubCMedians. The main
advantage of XM is the enhanced interpretability of data and related
models that it enables, due to its integrated and interactive visual-
ization modes. All the charts displayed in Section 3 were generated
by this tool.
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3 RESULTS
In this section we analyze the performance and the clusters (rep-
resenting drone state models) of the clustering generated by Sub-
CMedians, and prove the ability of the proposed methodology to
recognize known states and discover new ones.

3.1 Best clustering and related performance
The performance of the best clustering computed by SubCMedians
and the related best clusterings generated by k-means and GMM us-
ing the same number of clusters are displayed in Table 3. This table
shows that the silhouette of the SubCMedians clustering is slightly
higher than that of k-means, and much better than that of GMM.
Moreover, the key property of the SubCMedians clustering, which
motivates its usage, is model sparsity and related enhancements of
model interpretability. This is observable in the last two columns
of Table 3 that display both the total size of the clustering model
(i.e., 247 for SubCMedians and 702 for k-means and GMM) and the
average number of variables for each cluster (9.5 in SubCMedians
and 27 in k-means and GMM).

Table 3: Properties and performance of the best clusterings
generated by SubCMedians, k-means and GMM.

Method Silhouette K Size(M) avg(#v)

SubCMedians 0.155 26 247 9.5
KM 0.151 26 702 27
GMM -0.076 26 702 27

The list of clusters (i.e., drone state-models) generated by SubC-
Medians is reported in Figure 2.a. For each model, the table shows:
the number of selected variables Di , the number of observations
belonging to the cluster Oi , the cluster silhouette Si and the cluster
purity in relation to the 7 situations described in Section 2.3 (i.e., in-
water PIW i , out-water POW i , downstream PDSi , upstream PU Si ,
no-stream PNSi , manual drive PMDi , autonomous drive PADi ),
where i represents the cluster index. The clusters are sorted by
silhouette, which is available also when no ground truth is known.

We observe that cluster subspaces have between 1 and 20 vari-
ables, and each cluster groups together between 20 and 3739 sam-
ples. The maximum silhouette is 0.754 for cluster M24 and the
minimum is -0.245 for cluster M21. In order to show that these
clusters have a direct connection to meaningful drone states, we
analyze some of the clusters having high purity. In particular we
show the relationships between the real geolocation of the known
states in the 6 experiments (i.e., the labeling), the geolocation of the
related clusters computed by SubCMedians, and the parameters of
the clusters.

3.2 Best clusters for state OW
We start with the analysis of clusterM22 which has a high purity
for state out-water (i.e., POW = 0.834, see Figure 2). The second
and third column of Figure 3 show, respectively, where the drone
was actually out-water during the 6 experiments (i.e., red point
labeling in the maps of the second column) and where the samples
belonging to the clusterM22 are located (i.e., red points in the paths

in the third column). In experiment ESP2 (i.e., first row of Figure 3),
for instance, the drone was turned on a lot of time before putting it
into the water, this can be seen by the long red line in the map. That
state was correctly detected by clusterM22 whose samples (i.e., red
path in the third column of Figure 3) almost perfectly correspond
to the red line in the map in the second and third columns of Figure
3. Similar behaviors can be observed also in the other experiments
(e.g., ESP5 and ESP4). We notice that variable electrical conductivity
(i.e., the raw signal coming from the sensor) was not part of the
set of variables retained, as described in Section 2.2, therefore the
recognition of this state is not naive. Moreover, we highlight that
automatically discovering this state is of interest for data filtering.

In order to understand the statistical properties that character-
ize the out-water state, we analyze the parameters of clusterM22,
which are listed in Figure 2.b (see the table for model M22). The
variables selected by SubCMedians are displayed in the first col-
umn, the related coefficients and SU are reported in the second
and third column, respectively. Variables are sorted by SU to sim-
plify the analysis and put more informative variables on top. The
main properties are a high voltage (v = 16.844 V ), null signals to
engines (m̄0 = m̄1 = 0.000), quite low standard deviation of speed
(ŝ = 0.167 m/s) and null standard deviation of electrical conductiv-
ity (êc = 0.000 S/m). From these parameters, summarized also in
Table 4, we can understand that the drone is at the beginning of
the mission, since the battery is completely full, the operator is not
providing any signal to the engines, he/she is moving quite steadily
(possibly to bring the boat to the water) and the electrical conduc-
tivity is completely fixed. The last property is the only one related
to the environment and it confirms that the boat is out-water. Also
recognizing the different stages of the mission is of great interest
for drone autonomy.

Table 4: Models of known states: summary. The main differ-
ences among parameters (in bold) are analyzed in the text.

V OW (M22) US (M23) DS (M1) AD (M10) N (M24)
v 16.844 15.139 15.103 - -
m̄0 0.000 0.783 0.000 0.075 -
m̄1 0.000 0.604 0.000 0.069 -
ŝ 0.167 0.192 - 0.050 -
êc 0.000 - 1.399 2.339 187.935
v̂ 0.006 0.088 0.013 0.003 0.014
m̂0 0.002 0.134 0.044 0.008 -
m̂1 0.000 0.211 - 0.022 -
s̄ - 1.290 - 0.455 -
ĥ 89.228 15.887 17.782 4.520 -
â - 0.201 0.161 0.063 -

3.3 Best clusters for states US and DS
A similar analysis can be performed on clusters related to up-
stream and downstream navigation, namely M23 and M1 respec-
tively, which have high purity PU S and PDS (see Figure 2.a). The
fourth column of Figure 3 shows the labeling for state upstream/-
downstream/no-stream, while the fifth and sixth columns display
the geolocation of the samples belonging to cluster M23 and M1,
respectively. The maps of experiments ESP2 and ESP5 (see first and
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Figure 2: State-models generated by SubCMedians: performance and parameters.

second rows of Figure 3) show a very good match between the true
state (i.e., green for upstream and blue for downstream) and the
related cluster. We remind that samples in which the label was not
available were not used to compute the purity. It is interesting to
notice that the lower purity of clusterM23 for state upstream (i.e.,
PU S = 0.575) can be explained by the (false positive) red points in
the paths of experiments ESP4, GARDA3 and mainly ITA6. These
points correspond to situations in which the drone drove in lakes
at very high engine power, which have very similar statistical prop-
erties to upstream navigations and for this reason they were mixed
up into the same cluster.

The main properties of cluster M23 (see Figure 2.b) are: high
signal to engine (i.e., m̄0 = 0.783 and m̄1 = 0.604, which have also
high SU that indicates that the operator provided full power to the
boat, high standard deviation of voltage (i.e., v̂ = 0.088 V ) which is
typical when the battery level decreasesmore sharply, high standard
deviations of signal to engines (m̂1 = 0.211 and m̂0 = 0.134) which
is typical of manual drive at high speed, high mean speed (i.e., s̄ =
1.290 m/s), low standard deviation of heading (ĥ = 15.887◦) which
corresponds to straight movement of the boat. All these properties
seem to be reasonable for identifying the upstream navigation state,
in which the boat needs much power to contrast the water flow.
The differences between models of upstream navigation (i.e., M23)

and downstream navigation (i.e., M1) can be visualized in Figure
2.b and 2.c, and summarized in Table 4.

3.4 Best clusters for state AD
As a last case study, we analyze clusterM10 which has the highest
purity for autonomous drive (i.e., PAD = 0.974). The geolocation of
the samples belonging to the cluster is shown in the eighth column
of Figure 3 and the ground truth (i.e., green for manual drive, blue
for autonomous drive, red for non labeled samples) is displayed
in the seventh column. The cluster mainly covers a large part of
experiment ITA1, which was completely performed by autonomous
drive. The other part of this path is covered by clusterM15 which
has also a large purity PAD .

Cluster M10 is characterized by low and very specific values
of signal to engines (i.e., m̄0 = 0.075, m̄1 = 0.069, m̂0 = 0.008,
m̂1 = 0.022), average/low speed (i.e., s̄ = 0.455 m/s), very small
standard deviation of acceleration, speed, heading and voltage (i.e,
â = 0.063m/s2, ŝ = 0.050m/s , ĥ = 4.520◦, v̂ = 0.003 V ). All these
properties, summarized also in Table 4, identify a very stable style
of navigation which is typical of autonomous drive.
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Figure 3: Geolocation of state-models computed by SubCMedians, with specific focus on some models having high purity.

936



3.5 Novelty detection
To prove the novelty detection capabilities of our method, we finally
analyzed all the other clusters and tried to use the qualitative (i.e.,
based on chart visualization) and quantitative (i.e., based on internal
performance measures of clusters and information measures of
variables) tools of XM to get meaningful interpretations of related
state-models. The cluster with higher silhouette (namely 0.754),
for instance, isM24 which is mainly characterized by a very high
standard deviation of electrical conductivity (êc = 187.935 S/m, see
model parameters in Figure 2.b and the third box plot on the right
hand side of Figure 2.c). This cluster includes only 120 samples
which correspond to the specific instants in which the boat was
put or recovered into/from the water. Other states of interest were
discovered that cannot be described here for space limitations.

4 CONCLUSION AND FUTURE WORK
We proposed a first complete framework for generating and ana-
lyzing state models of water monitoring drones from real sensor
data. Both known and novel states were recognized and interpreted.
This line of research can be extended in several applicative and
theoretical directions. First, the approach can be scaled to datasets
containing more missions with online methods able to update our
models when new data are available. Second, new clustering per-
formance measures and stability approaches should be tested to
statistically prove (or rank) the significance of each model and of
related variables. Third, the capability of detecting more complex
situations, such as the presence of dangerous waves or wind, should
be tested, which needs an expansive labeling stage. Fourth, we aim
to investigate the connection between the feature extraction pro-
cess and the state detection performance since different variables
could enable to discover different states. Finally, a goal-oriented way
to rank states according to their importance should be identified,
where states gain more importance if their knowledge improves
the drone capability to reach its mission objectives.
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