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a b s t r a c t 

We study the problem of Protein Remote Homology Detection, which assesses the functional similarity 

of two proteins. We approach this as a problem of binary multiple-instance learning (MIL) that aims to 

distinguish between homologous and non-homologous proteins. The particular MIL approach employed 

is based on the dissimilarity representation in which various schemes of combining N-gram representa- 

tions are considered. This approach allows us to cope with longer N-grams, capturing a richer biological 

context, and results in versatile framework offering competitive performance compared to state of the 

art. 
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. Introduction 

Protein Remote Homology Detection (PRHD), is a challenging

nd widely studied bioinformatics problem [2,15,17] . The task is to

ssess whether two proteins have similar functions (i.e. are homol-

gous). A common solution is to compare the proteins’ sequences,

ince they determine the tertiary structure (often not available),

hich in turn determine the proteins’ functions. The low sequence

imilarity often makes the task relatively complex. 

Many different methods have been proposed to face the PRHD

roblem. Following the recent survey by Chen et al. [2] , these

ethods can be divided in three categories: (i) alignment-based

ethods, which assess the homology by evaluating the pairwise

lignment result of sequences; ii) ranked-based methods, that as-

ess whether a protein belongs to a certain superfamily by looking

t the most similar sequences, and iii) discriminative based meth-

ds, which are based on the use of a discriminative classifier for

etecting the homology. 

This study focuses on the last class of approaches: PRHD is

ast as a binary classification problem that distinguishes between

omologous and non-homologous proteins. More precisely, we
∗ Corresponding author. 

E-mail address: antonella.mensi@univr.it (A. Mensi). 

t

 

t  

m  

ttps://doi.org/10.1016/j.patrec.2019.08.027 

167-8655/© 2019 Elsevier B.V. All rights reserved. 
oncentrate on Support Vector Machines-based (SVM) approaches

since they obtain top performances on many benchmarks 

8,17–21,26] . 

Since SVMs with standard kernels require as input a feature

ector, a proper representation must be obtained. A very com-

on one [18–21] is based on N-grams. An N-gram is a subse-

uence of consecutive symbols with fixed length N , extracted from

he original sequence. This concept can be used to build a Bag

f Words (BoW) representation, i.e., given a list (called a dictio-

ary) of all possible N-grams, a vector is obtained by counting

ow many times each N-gram in the dictionary appears in the

equence to represent. Although rather straightforward, this tech-

ique has shown to perform very well in many studies [18–21] .

onger N-grams seem to encapsulate more significant information

rom a biological point of view [14] . Unfortunately, the use of BoW

ith N-grams with N > 3 is prohibitive, due to the exponential in-

rease of the size of the representation vector, leading to the curse

f dimensionality and sparsely populated vectors [6] . Alternatives

o the BoW scheme are often based on a direct computation of

ernels on the basis of long N-grams. A relevant example is [14] ,

hich proposes an N-gram based string kernel approach that ob-

ains the best results using N-grams of length 5. 

This paper presents a new SVM-based discriminative approach

o face PRHD which overcomes the limitations of BoW-based

ethods. It proposes a novel representation that can employ

https://doi.org/10.1016/j.patrec.2019.08.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.08.027&domain=pdf
mailto:antonella.mensi@univr.it
https://doi.org/10.1016/j.patrec.2019.08.027
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longer N-grams and manages a good trade-off between efficiency

and accuracy. 

The proposed method is based on Multiple Instance Learn-

ing (MIL), a recent learning paradigm [7] which extends classi-

cal supervised learning. The main difference with classical learn-

ing paradigms is that an object is not represented by a single fea-

ture vector, but with an unordered set of feature vectors, called

instances. This set of instances, called a bag, has a unique label.

This paradigm, which usefulness has been shown in many contexts

[3,10] , has, up to now, not been investigated in the Protein Remote

Homology Detection scenario. In this paper we cast the PRHD task

in a MIL framework: protein sequences are considered as bags of

N-grams, i.e. subsequences, each one representing the instances.

In particular, we adapted and extended a recent approach for MIL

[4] which integrates the dissimilarity-based representation for Pat-

tern Recognition, a paradigm introduced some years ago by Duin

and Pekalska [23,25] to represent objects through dissimilarities.

Our approach is very appropriate for the task at hand. First, the

underlying MIL paradigm assumes that the label of a bag is de-

termined by only a few of its instances [7] . This is especially true

in PRHD, where the homology between two proteins is determined

by the existence of few very informative subsequences (such as lig-

and sites). Second, the methodology is not limited by the length of

the N-grams. Therefore the representation can leverage longer frag-

ments. Finally, the proposed approach computes distances between

pairs of fragments, allowing for the use of biologically meaningful

and sophisticated distances. 

The approach has been tested using standard benchmarks based

on two datasets: SCOP 1.53 [17] and SCOP 2.04 [20] . The results

we obtain demonstrate the suitability of the proposed approach,

comparing favorably to current State of the Art in addition. 

A preliminary version of this paper was published in [22] .

This manuscript extends the aforementioned paper from both a

methodological and experimental point of view; a new method-

ology for representing the bag as a vector is proposed; moreover a

novel thorough experimental evaluation on a newer benchmark is

presented. 

Summarizing, this paper makes four contributions with respect

to the state of the art. First we employ MIL in a novel scenario,

which is the challenging task of Protein Remote Homology De-

tection, and we obtain excellent results. Second, we extend the

method by [4] . We propose a new way to extract a robust descrip-

tor from the dissimilarity matrices, called d MR and we show that

this novel variant is the best choice in terms of performance, i.e.

supporting the methodological assumptions we made about it. The

third contribution of our work concerns the possibility to use long

fragments, i.e. longer than 3, which is very difficult for BoW-based

methods. This is a severe limitation since longer fragments con-

tain more information from a biological point of view. Lastly, we

perform a thorough evaluation on the effect of different choices of

the parameters, exploring different ways to encode the protein se-

quences under the chosen methodology. We analyze and compare

the obtained variants from an experimental point of view as well,

to assess their suitability for PRHD. 

2. General and dissimilarity-based MIL 

The main concept in MIL [7] is based on a new definition of ob-

ject: an object is not a collection of features but rather a set (bag)

of feature vectors (instances). A label is assigned to the whole bag,

and not to its single instances, differently from the standard classi-

fication paradigm. Typically, not all instances are relevant for label-

ing the bag. The standard MIL assumption considers a bag positive

if it contains at least an instance that is positive; conversely, a bag

is negative if all of its instances are. Many different types of tech-

niques exist to solve MIL tasks [3,5,10] . In this study we use a MIL
pproach based on dissimilarities [4,23,25] . In the dissimilarity-

ased paradigm an object is encoded as a vector where its en-

ries represent dissimilarities to other objects, called prototypes.

his approach makes it particularly easy to extract vectorial rep-

esentations from non-vectorial objects. 

We define T as the number of bags to encode, and L the number

f prototypes used to build the representation. In the most simple

ase, every object in the training set can be a prototype. Each bag

 i = { x i 1 , . . . x in i } is composed of n i instances, while each prototype

 j = { x j1 , . . . x jm j 
} contains m j instances. The steps to follow to en-

ode the bag B i as a vector are: 

1. For each bag B i and prototype P j compute the pairwise dis-

tances between all instances of the bag and those of the pro-

totype. 

2. Reduce the obtained matrix d ( x ik , x jl ), ( k = 1 , . . . , n i , l =
1 , . . . , m j ) of size n × m to a compact set of features. 

3. Concatenate the outputs of Step 2. for all L prototypes to obtain

the final vector representing B i . 

Clearly Step 2 can be performed in various ways: 

1. d bag : this strategy reduces the dissimilarity matrix to a single

value in the following way: 

d bag (B i , P j ) = 

1 

n i 

n i ∑ 

k =1 

min 

l 
d(x ik , x jl ) . (1)

It extracts the minimum distances across all the instances of

the prototype, and these minimum distances are then averaged

to obtain a single feature that represents the dissimilarity be-

tween a bag and a prototype. 

2. d inst : this strategy produces a vector of length m j : for each pro-

totype instance, we extract the minimum distances across all

feature vectors of B i . 

d inst (B i , P j ) = 

[ 
min 

k 
d(x ik , x j1 ) , . . . , min 

k 
d(x ik , x jm j 

) 
] 
. (2)

The final representation of a bag B i is the concatenation of ei-

her the d bag or d inst features computed with respect to all proto-

ypes. 

 bag (B i ) = 

[
d bag (B i , P 1 ) , d bag (B i , P 2 ) , . . . , d bag (B i , P L ) 

]
, (3)

r 

 inst (B i ) = [ d inst (B i , P 1 ) , d inst (B i , P 2 ) , . . . , d inst (B i , P L ) ] , (4)

hich have lengths L and 

∑ L 
k =1 m k , respectively. 

Since D bag is an average over all distances, it may hide the

ost informative dissimilarities. D inst may highlight them, but the

rocess is computationally more expensive, and furthermore, D inst 

ay suffer from the curse of dimensionality, when 

∑ L 
k =1 m k is

igh. 

To solve this, Cheplygina et al. [4] proposes a variant which

ombines their respective strengths: maintain a low dimensional-

ty, like D bag , while still capturing the information retained in the

issimilarities, as D inst does. To achieve this, the combining clas-

ifier paradigm is exploited [13] . This ensemble approach, called

 ens , treats each prototype as an independent subspace where a

ingle classifier is trained and tested. The final classifier is then

btained by combining all these classifiers (one for each subspace).

s in D inst , the directions of each subspace correspond to the min-

mum distance between each instance of the given prototype and

ll instances of the bag. Thus, the dimensionality of the subspace,

nd thus of the final vector representing the original bag, reduces

o the number of instances of a single prototype. Summarizing, af-

er choosing L prototypes, we build L different representations and

rain L different classifiers. The final classifier is given by the ag-

regation of the results of the L classifiers independently trained,



A. Mensi, M. Bicego and P. Lovato et al. / Pattern Recognition Letters 128 (2019) 231–236 233 

u  

o  

C

3

 

p  

(  

a  

t

 

d  

s  

o  

t  

b  

b  

S  

w  

b  

i  

s  

t  

v  

t

 

p  

m  

m  

q  

t  

t  

f  

s  

d  

g

d

 

m  

r  

d  

g

 

a  

f  

t

 

p  

t

m  

A  

S  

t  

w  

s  

t  

r  

t  

q

 

i  

i  

d

 

 

 

 

 

 

 

 

 

 

 

 

s  

(  

t  

p

 

g  

t  

n  

c  

d  

f

4

 

o  

d  

[

i  

a  

o  

m  

1  

a  

p  

f  

 

p  

e  

t  

m  

w  

M  

S  

o

l  

t  

m  

s  

c  

R  
sing a specific combination function (this justifies the terminol-

gy of ensemble approach – for additional details please refer to

heplygina et al. [4] ). 

. MIL solution to the PRHD problem 

The PRHD problem is cast into a MIL formulation by: (i) decom-

osing a protein sequence into N-grams, (ii) using the fragments

N-grams) as the instances, (iii) considering the protein sequence

s the bag, and (iv) attaching the label of the whole sequence to

he bag of instances. 

The fragments can be extracted in several different ways (ran-

om sampling, exhaustive list, and so on). Here we use a simple

trategy: given a sequence of length n , we extract all subsequences

f length N , which is fixed, with maximum overlap, i.e. N − 1 . In

his way, each protein sequence with length n is represented by a

ag B i containing n − N + 1 N-grams. Then, we use the obtained

ags as input to a dissimilarity-based approach, as described in

ection 2 . First, we define the set P = { P 1 · · · P L } of prototypes (here

e define it on the basis of T , the original training set or on the

asis of T ′ which contains a bag for each feature vector present

n T ). Second, each prototype P j is encoded as a MIL bag in the

ame way B i was encoded. Subsequently, a matrix of dissimilari-

ies is created for each pair ( B i , P j ). Finally, we extract a feature

ector which summarizes the dissimilarity between the bag and

he prototype. 

Next to d bag and d inst presented in the previous section, we pro-

ose a novel approach, which we called d MR , where MR stands for

ultiresolution. First note that a fragment in a prototype may be

ore or less useful for the representation, depending on the se-

uence which is represented. This may affect the d inst feature vec-

or, which considers the distance from all fragments of the proto-

ype. To solve this problem, we consider distances from groups of

ragments , so that every sequence can use, in some sense, the most

uitable fragment among a group of possible choices. In the PHRD

omain, such a group can be defined as a set of q consecutive N-

rams in a given sequence: 

 

q 
MR 

(B i , P j ) = 

[ 
min 

(
min 

k 
d(x ik , x j1 ) , . . . , min 

k 
d(x ik , x jq ) 

)
, . . . , 

min 

(
min 

k 
d(x ik , x jq +1 ) , . . . , min 

k 
d(x ik , x j2 q ) 

)
, . . . 

] 
. (5) 

When q = 2 consecutive N-grams are used in a group, the di-

ensionality of the representation is halved, therefore reducing its

esolution . In this way we are partially recovering the problem of

estroying the structure of the sequence which is typical of N-

ram based approaches. 

Two observations must be made. First, in case q = 1 , the MR

pproach corresponds to d inst . Second, whenever the number of

ragments is not a multiple of q , we must deal with extraction of

he last feature. 1 

Finally, to obtain the vector representing B i , two alternatives are

ossible. Either we concatenate the feature vectors obtained with

he different prototypes ( D inst , D bag or D MR ), or we use the D ens 

ethod, which trains a classifier on each prototype independently.

s to the application of D ens , we can use the approach described in

ection 2 (which we will refer to as D ens ( Inst )) based on the a pos-

eriori combination of classifiers trained on different prototypes, or

e can extend this by also combining different resolutions on the

ame prototype (referred to as D ens ( MR )). We will demonstrate in

he experimental part that this strategy achieves state-of-the-art

esults. Note that L is the same as in the other approaches, even if

he total number of subspaces will be higher (which depends on

 ). 
1 In this paper we keep the last set of fragments smaller than q . 
One of the most crucial steps in dissimilarity-based approaches

s the choice of the prototypes, both in terms of the number and

n terms of the selection strategy [24,25] . Here we considered three

ifferent options. 

i) Random selection of sequences : prototypes are randomly

selected from protein sequences of the training set. In gen-

eral, choosing prototypes randomly leads to good results

[24,25] . 

ii) Informed selection of sequences : the selection of the pro-

totypes depends on some a priori knowledge of the dataset.

For example, we can select as prototype a sequence which is

the most “central” in a given family (i.e. the sequence whose

distance to all other sequences of the family is minimum). 

iii) Random fragments : prototypes are randomly selected from

fragments of the entire set of training bags, i.e. they do not

correspond to whole protein sequences. The number of frag-

ments must be fixed. This permits to have more diverse pro-

totypes. 

We also studied prototypes from another point of view: we de-

igned two schemes called Same for All (SfA) and Different for All

DfA). The former corresponds to using the same set P of proto-

ypes for all classification problems, while the latter instead em-

loys a specific set of prototypes for each classification problem. 

Note that our proposed approach allows to exploit long N-

rams, i.e. N > 3, since long fragments do not cause an exponen-

ial increase of the dimensionality (as it does in BoW-based tech-

iques). Actually the dimensionality of the dissimilarity matrix and

onsequently that of the final vector representing the bag does not

epend on the length of the N-grams, but only on the number of

ragments and/or prototypes. 

. Experiments 

All the variants of the proposed approach have been tested

n the standard Protein Remote Homology Detection benchmark

ataset 2 , based on the SCOP 1.53 [17] . SCOP 1.53 is often used

8,17–21,26] and allows for a direct comparison with other discrim- 

native methods. However it is somewhat dated and incomplete

nd to confirm the suitability of our method we also tested some

f the best variants of our approach on SCOP 2.04, 3 a newer and

ore accurate dataset. It is processed in the same way as SCOP

.53 and made available by the authors of Lovato et al. [20] . In

ll cases, we followed the protocol from [17] that casts the PRHD

roblem as several binary classification problems, one per protein

amily. For SCOP 1.53 we have 54 families, for the other dataset 89.

The N-grams extraction, as done in other studies [18–20] , is

erformed after encoding each protein sequence using information

xtracted from the corresponding profile, a representation which

akes into consideration evolutionary information derived from a

ultiple sequence alignment [1] . After processing the sequences,

e extract N-grams and build the MIL representation. From the

IL representation, we extract feature vectors, as described in

ection 3 . The vectors are the inputs to a SVM classifier. As done in

ther works [9,18–21,26] , we use the public GIST implementation, 4 

eaving most of the parameters to their default value, except for

he kernel function which was set to the radial basis function. To

easure the accuracy, we employ the ROC50 score [11] which is a

tandard accuracy measure for the PRHD context that takes into

onsideration unbalanced datasets. ROC50 is the area under the

eceiver Operating Characteristic curve – up to the first 50 false
2 Available at http://noble.gs.washington.edu/proj/svm-pairwise/ . 
3 Available at http://profs.sci.univr.it/ ∼bicego/code/scop2.04.zip . 
4 Downloadable from http://www.chibi.ubc.ca/gist / [17] . 

http://noble.gs.washington.edu/proj/svm-pairwise/
http://profs.sci.univr.it/~bicego/code/scop2.04.zip
http://www.chibi.ubc.ca/gist
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Table 1 

The different variants of the proposed approach. 

Variant MIL Prot. Sel. Detail 

1. D bag -Info D bag Informed SfA: most central positive train seq per family, DfA: positive train seqs of the family 

2. D inst -Info D inst Informed SfA: most central positive train seq of dataset, DfA: most central positive train seq of the family 

3. D inst -RndFrag D inst Rand Frag fixed number of fragments randomly selected among all positive training fragments (SfA) or 

family-specific ones (DfA) 

4. D ens (Inst)-RndSeq-Mean D ens ( Inst ) Rand Seq Prototype: random sequence from all positive training seqs (SfA) or among those belonging to 

the family (DfA), combination: mean. 

5. D ens (Inst)-RndSeq-Max D ens ( Inst ) Rand Seq Equal to D ens (Inst)-RndSeq-Mean, combination: maximum 

6. D ens (Inst)-RndFrag-Mean D ens ( Inst ) Rand Frag Prototypes created as in D inst -RndFrag, combination: mean 

7. D ens (Inst)-RndFrag-Max D ens ( Inst ) Rand Frag Equal to D ens (Inst)-RndFrag-Mean, combination: maximum 

8. D ens (MR)-RndFrag-Mean D ens ( MR ) Rand Frag Prototypes as in D inst -RndFrag, combination: mean, q = 1,2,3,4 

9. D ens (MR)-RndFrag-Max D ens ( MR ) Rand Frag Equal to D ens (MR)-RndFrag-Mean, combination: maximum 
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positives. The score ranges from 0 to 1, where 0 indicates that the

classifier is unable to distinguish the two classes and 1 indicates a

perfect separation [16] . 

The experiments were repeated for different lengths of the N-

grams, which are N ∈ {2, 3, 4, 5, 6, 9, 12}. The distance between the

fragments is computed by using the Jukes-Cantor distance [12] , a

biological distance based on the Hamming metric. No alignment

was carried out prior to the distance computation. We consider

different variants of the proposed approach, attempting to capture

the most relevant combinations of the basic schemes introduced

in Sections 2 and 3 and of the way the prototypes are chosen. The

variants investigated are described in Table 1 . 

4.1. SCOP 1.53: results and analyses 

For SCOP 1.53, the ROC50 scores averaged over the 54 families

are reported in Table 2 for each variant. Since the most suitable

N may be different depending on the family under analysis (due

to some intrinsic biological properties), we selected the highest

score for each classification problem among the different choices,

i.e. lengths, of N-grams. An additional analysis which highlights the

preferred lengths for each experiment is presented later on in this

section. 

From Table 2 , we can see that the most basic variant, D bag -Info

performs almost as well as the ensemble variants. This surprising

result – each prototype is represented by a single value– suggests

that the representation is already very informative. Second, we no-

tice that in general the SfA variant, i.e. the one for which the proto-

types are equal across all families, is better than DfA where proto-

types are indeed family-specific. Clearly this is not due to the fact

that identical prototypes are used, because each classification prob-

lem is solved independently. Instead, the reason may be that the

prototypes are generated starting from a bigger training set, not

family-dependent, which contains more variability. This permits to

have a potentially richer representation of the sequences. Inter-

estingly, the results obtained with the D inst technique show that

prototypes with randomly selected fragments reach better perfor-
Table 2 

ROC50 accuracies of the different variants of the proposed ap- 

proach. 

Variant ROC50 (SfA) ROC50 (DfA) 

D bag -Info 0.863 0.711 

D inst -Info 0.820 0.781 

D inst -RndFrag 0.867 0.862 

D ens (Inst)-RndSeq-Mean 0.878 0.792 

D ens (Inst)-RndSeq-Max 0.819 0.781 

D ens (Inst)-RndFrag-Mean 0.886 0.859 

D ens (Inst)-RndFrag-Max 0.860 0.840 

D ens (MR)-RndFrag-Mean 0.890 0.828 

D ens (MR)-RndFrag-Max 0.844 0.793 
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a  

o  

s  

3  

d  

v  

N  
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a  

w  

e  

a  
ances than prototypes that were chosen in an informed way. This

esult is also supported by literature [25] , where it has been shown

hat with big datasets random selection is a good technique for

hoosing the prototypes. Furthermore, in most cases the average

ombining rule to combine the scores leads to better results than

he maximum combining rule, which is in line with some other

tudies in the field of combining classifiers [13,27] . In general, the

 ens ( MR ) scheme is the one which performs best. This result is

ery important as it confirms that the usage of an ensemble ap-

roach, as stated in [4] , is able to overcome the limitations of the

 bag and D inst representations. It also shows that using the same

rototype in different ways, i.e. by extracting features at multiple

esolutions via the D MR approach, is better than using D ens ( Inst )

nd thus it is better suited to exploit the information contained

n the fragments. 

To understand what the influence of the number of prototypes

 is, we carried out an additional set of experiments using the two

est performing techniques, i.e. the variants D ens ( Inst )-RndFrag-

ean (SfA) and D ens ( MR )-RndFrag-Mean (SfA). In Table 3 (a) we

eport the ROC50 for different values if L . Performances seem to

emain more or less stable when more than seven prototypes are

sed for both variants. This suggests that the approach is robust

gainst variations in L , provided that this number exceeds a min-

mum (7 in this case). Another notable point is that the D ens ( MR )

ethod performs better than the other ensemble-based approach

n most cases. 

To understand whether using long fragments leads to better

lassification, we analyzed the distribution of the best N . We par-

itioned the lengths in short N ∈ {2, 3} and long N > 3. This anal-

sis has been performed in two different ways. First we consider

he best results, in terms of ROC50 scores, obtained for each fam-

ly. Fig. 1 (a) shows a bar plot: for each variant the length of the

arker bar indicates the average number of families that prefer a

ong N-gram, where the average was computed between the SfA

nd DfA versions of the same variant; analogously the length of the

ighter bars indicates those families that prefer a short fragment.

or the majority of families the best results are obtained when

sing longer N-grams. The second analysis focuses on the vari-

nt D ens ( Inst )-RndFrag-Mean (SfA). For each family, fixed a number

f prototypes, we choose two ROC50 scores: the first is the best

core between those obtained with short N-grams, i.e. when N ∈ 2,

, the other is chosen as the best score obtained when N > 3. In-

eed the plot in Fig. 1 (b) depicts how the averaged ROC50 score

aries as the number of prototypes increases for short and long

-grams. The length of the vertical bars describes the standard er-

or of the given population. From this analysis we see that the av-

raged scores are higher when dealing with longer N-grams. We

lso observe that on average the score tends to increase slightly

hen increasing the number of prototypes, but reaches a plateau

ventually. This confirms what we stated in the previous analysis

bout the robustness with respect to the number of prototypes. All
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Table 3 

ROC50 results of the variants D ens (Inst)-RndFrag-Mean (SfA), D ens (MR)-RndFrag-Mean (SfA): (a) with varying number of prototypes and (b) with varying N-grams. 

Nr. Prototypes 1 2 3 4 5 7 10 15 20 30 40 50 

D ens (Inst)-RndFrag-Mean 0.854 0.859 0.862 0.870 0.869 0.895 0.886 0.885 0.885 0.885 0.886 0.885 

D ens (MR)-RndFrag-Mean 0.866 0.870 0.867 0.862 0.873 0.890 0.890 0.888 0.890 0.881 0.875 0.876 

(a) 

N-gram 2GRAMS 3GRAMS 4GRAMS 5GRAMS 6GRAMS 9GRAMS 12GRAMS 

D ens (Inst)-RndFrag-Mean 0.784 0.845 0.861 0.842 0.856 0.865 0.872 

D ens (MR)-RndFragMean 0.789 0.857 0.879 0.862 0.863 0.879 0.897 

(b) 

Fig. 1. Analysis of preferred N-gram length on SCOP 1.53. (a) The distribution of 

the best length over all approaches. The number on the left of each bar indicates 

the variant with respect to Table 1 . (b) The ROC50 performance as a function of the 

number of prototypes in the D ens (Inst)-RndFrag-Mean (SfA) variant (best viewed in 

colors). 
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Table 4 

ROC50 accuracies on SCOP 2.04 of the best 

variants of the proposed approach. 

Variant ROC50 (SfA) 

D ens ( Inst )-RndSeq-Mean 0.934 

D ens ( Inst )-RndSeq-Max 0.923 

D ens ( Inst )-RndFrag-Mean 0.930 

D ens ( Inst )-RndFrag-Max 0.916 

D ens ( MR )-RndFrag-Mean 0.948 

D ens ( MR )-RndFrag-Max 0.892 
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4

 

p  
n all, it seems that using longer N-grams allows to reach better

erformances. This result is important as it confirms the biological

ypothesis that longer subsequences are more informative, allow-

ng a richer representation. A richer representation allows, in turn,

 better discrimination and therefore better performances. 

To further establish the suitability of longer subsequences in the

RHD context, we perform an additional analysis. It simply consists

f fixing the length of the N-gram after which, for each family, we

hoose the number of prototypes that performs the best in terms

f ROC50. We carried out this analysis for the two best variants

 ens (Inst)-RndFrag-Mean (SfA) and D ens (MR)-RndFrag-Mean (SfA).

able 3 (b) presents the ROC50 score averaged across all families.

s can been seen the score increases with larger N in almost all

ases, once more confirming the significance of longer fragments

ver short ones. In addition, we see that the D ens (MR)-RndFrag-

ean (SfA) approach outperforms the other one for all N-grams. 
Table 5 

SCOP 1.53, comparison with state of the art. For the

tained result, i.e. the result for D ens ( Inst )-RndFrag-Me

N-grams based approaches 

Method Year ROC50 

BoW-row-2gram 2017 0.772 [20] 

Soft BoW 2017 0.844 [20] 

Soft PLSA 2017 0.917 [20] 

SVM-N-gram 2014 0.589 [19] 

SVM-N-gram-LSA 2008 0.628 [18] 

SVM-Top-N-gram (n = 2) 2008 0.713 [18] 

SVM-Top-N-gram-combine 2008 0.763 [18] 

SVM-N-gram-p1 2014 0.726 [19] 

SVM-N-gram-KTA 2014 0.731 [19] 

ROC50 of the proposed approach: 0.897 
.2. SCOP 2.04: results and analyses 

Results are presented on SCOP 2.04 for some of the best vari-

nts. We decided on all variants based on D ens in their SfA ver-

ion. The ROC50 scores are again averaged and extracted in the

ame way as described in Section 4.1 . Table 4 reports on the per-

ormance with L = 10 . Clearly, the proposed framework performs

atisfactorily also for this newer dataset. These experiments fur-

her reinforce that averaging the scores is a better choice when

ombining classifiers. In addition we see that the ensemble variant

ased on D MR outperforms the one based solely on d inst also for

his newer dataset and so again combining classifers seems more

uitable for the task at hand. 

We carried out the same analyses we performed on SCOP 1.53

n the length of the N-grams. Fig. 2 (a) shows a bar plot analogous

o Fig. 1 (a), with the exception that on this dataset the analysis

as performed only on the SfA variants; the conclusion is simi-

ar, since for most families the best results are obtained when us-

ng longer N-grams. Fig. 2 (b) shows a plot built in the same way

s Fig. 1 (b): when using longer N-grams better performances are

chieved, independently of the number of prototypes. 

.3. Comparison with the state of the art 

In Table 5 , a comparisons with other methods on SCOP 1.53 is

resented. We can see that the proposed approach is very com-
 proposed approach we reported the best ob- 

an (SfA) with 4 prototypes – see Table 3 (a). 

Other approaches 

Method Year ROC50 

SVM-pairwise 2014 0.787 [19] 

SVM-LA 2014 0.752 [19] 

HHSearch 2017 0.801 [20] 

Profile (5,7.5) 2005 0.796 [14] 

PSI-BLAST 2007 0.330 [8] 

SVM-Bprofile-LSA 2007 0.698 [8] 

SVM-Pattern-LSA 2008 0.626 [18] 

SVM-Motif-LSA 2008 0.628 [18] 

SVM-LA-p1 2014 0.888 [19] 
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Table 6 

SCOP 2.04, comparison with state of the art. For the proposed approach we 

reported the best obtained result, i.e. the result for D ens ( MR )-RndFrag-Mean 

(SfA) with 10 prototypes – see Table 4 . 

Approach ROC50 

BoW row(1,2)-gram 0.864 [20] 

softBoW,prod-col 2gram 0.899 [20] 

softPLSA,prod-col(1,2)-gram 0.942 [20] 

softPLSA,prod-row(1,2)-gram 0.944 [20] 

ROC50 of the proposed approach: 0.948 

Fig. 2. Analysis of preferred N-gram length on SCOP 2.04. (a) The distribution of 

the best length over all approaches. The number on the left of each bar indicates 

the variant with respect to Table 1 . (b) The ROC50 performance as a function of the 

number of prototypes (best viewed in colors). 
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petitive, well comparing with alternatives. Our ROC50 best score,

obtained with the variant D ens ( MR )-RndFrag-Mean, performs better

than most approaches from the current literature. The only method

that outperforms ours is SoftPLSA, which is a very complex ap-

proach based on a richer representation that exploits more evo-

lutionary information (see [20] for more details). However, on the

more accurate SCOP 2.04, our proposed approach outperforms also

SoftPLSA, confirming to be a flexible and accurate alternative solu-

tion for the PRHD (see Table 6 ). 

5. Conclusions 

This paper presents a new approach to solve the Protein Re-

mote Homology Detection problem, based on the Multiple Instance

Learning paradigm combined with a dissimilarity-based represen-

tation and tailoring the methodology proposed by [4] . We designed

various specific approaches and performed an extensive compari-

son on different datasets to test the robustness and suitability of

the method; the experimental part also showed that the usage of

longer fragments allows to reach better performances, confirming

their informativeness. 
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