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A B S T R A C T

The ability to recognize faces and to detect differences and similarities between faces has proved to be
fundamental in the evolution of humans and in the conditioning of their social behaviors. In this paper, we
investigate basic mechanisms underlying this ability, focusing in particular on the relevance of local and
global features and on some interesting differences characterizing judgments of similarity with respect to
judgments of dissimilarity.
In a first experiment, a set of participants is involved in order to evaluate the human response with respect
to a simple judgment protocol based on two-alternative forced choice. Triplets of face stimuli are evaluated
first with the aim of identifying (between two candidate faces) the face more similar to a reference face.
The protocol is then repeated for the same triplets but involving a different set of participants and asking to
identify the face less similar to a reference face. These visual judgments of similarity and dissimilarity are
finally analyzed and compared with the results of a closely related computational experiment based on the
same set of triplets; in this case, however, the similarity-dissimilarity measure is derived by automatically
extracting facial points and matching with regression techniques (LASSO and Elastic Net) two configurations
of image descriptors: the first capturing holistic information, the second capturing local information, that is
few localized facial features.
Our results suggest that computational models based on holistic cues (emphasizing the concept of the
whole as a composed set of interdependent parts) better fit judgments of humans participating to the first
experiment (similarity judgments). On the other hand, models based on spatially localized cues do not
offer significant accuracy. Vice versa, computational models based on local cues better fit dissimilarity judg-
ments and are less adequate to express similarity information. Notably, our results provide some empirical
evidence that local and global cues are both important in face perception, but with different roles. This find-
ing supports the hypothesis that similarity and dissimilarity should not merely be considered as opposing
concepts, as they could derive from different processing paths.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Overview

In recent years research on face perception led to remarkable
advances in the understanding of many different aspects of how face
are processed and memorized by the human brain [1,2]. The impact
of these findings will be significant on a wide range of disciplines
and, notably, in the next-generation of human-machine interfaces,
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as faces provide primary access to other people’s identity [3], and
can signal behavioral intentions as well as mental and emotional
states that play a crucial role in social interactions [4]. In this paper,
we focus on a specific and fundamental feature of face perception,
namely the ability to evaluate similarity and dissimilarity from visual
cues. This problem has been studied in the last years by researchers
from different areas, giving rise to different evidences, interpreta-
tions and computational models of face and expression recognition
[5-7]. Is the recognition is a unitary event or rather a complex com-
bination of multiple distinct functional components? And does the
recognition encompass the evaluation of specific points of the face
or rather takes the form of an holistic judgment considering the face
as a whole? These issues, which constitute the starting point of our
study, are briefly introduced in the next section.
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1.2. Related works

In the wide literature covering this topic, Multi Dimensional
Scaling (MDS) models [8,9] have been extensively used to describe
the perception of similarity and dissimilarity. In MDS models, the
physical attributes of the stimulus (for example, the hue or the inten-
sity of a color) are coded as different dimensions of a metric space
and the stimulus is thus identified with a point in such a multidimen-
sional space. Following this geometric approach, all the considered
attributes can easily contribute to a unitary measure of distance
between stimuli, representing both similarity (small distance) or
dissimilarity (large distance). The extension of MDS models to face
similarity is straightforward. To this aim, Valentine [10] suggests
that faces can be considered as points in a multidimensional “face
space” where dimensions represent specific properties that serve
to maximize the discrimination process. Valentine does not provide
any scheme to identify the attributes of a face that the dimensions
represent: he generically refers to previous works using MDS tech-
niques and assuming that “the principal dimensions needed would
represent hair color and length, face shape, and age”.

A quite different approach, involving multiple functional compo-
nents, has been firstly detailed in the seminal work of Bruce and
Young [11]. They suggest the existence of distinct types of infor-
mation that people derive from faces and hypothesize the presence
of distinct functional/processing routes contributing to face recogni-
tion. Interestingly, among different facial types of information, they
identify two types (pictorial and structural) that clearly play different
roles. Goldstone and colleagues [12] in a general paper on similarity
introduce and detail the key concepts of “primitive attributes” and
“relations”. Questioning MDS models and other models taking into
account set tools [13],they propose a separate pooling of attributional
and relational similarities. In particular, they clarify that relations
are not global features, even though relations can bind two or more
arguments and assume a global meaning.

Vokey and Read [14] address the role of typicality (exemplifying
most nearly the essential characteristics of a known group) with a
principal components analysis, demonstrating the existence of two
independent components: the first coding attractiveness, familiarity,
likeability and the second coding memorability. They do not comment
about specific attributes of the faces but demonstrate that familiar-
ity generally decreases the discrimination ability while memorability
enhances it. Moreover, they argue that familiarity has to do with the
similarity of the faces whereas memorability is somehow related to
distinctiveness and that the two components work in opposition.
O’Toole and colleagues [15] extend the work of Vokey and Read. They
train an associative neural network to recognize Caucasian and Asian
faces and show that the memorability component of recognition is
due to small, local distinctive features, while the familiarity compo-
nent of recognition is related to more global aspects of the shape of
the face. This finding is confirmed by Collishaw and Hole [16]; their
results not only support a clear distinction between global and local
components but also record similar effects for both familiar (typical)
and unfamiliar faces.

The idea that perceived similarity is strongly affected by relational
structures, extrinsic to the features compared, is well investigated
in a recent work of Jones and Love [17]. They show that in addition
to the traditional role of isolated features, the presence of com-
mon relational structures (both spatial, causal or dynamic) increases
the perception of similarity; this is especially evident when objects
involved in the relations play the same role. Simmons and Estes [18]
further extend this concept demonstrating the importance of the-
matic relations and the high plausibility of a dual model process:
according to this model “thematic relations are not represented as
common features” and “comparison is more heavily weighted for
thematically related items”. Interestingly, this hypothesis can also
explain the well known “non-inversion” effect, related to similarity

and difference. In fact, Simmons and Estes report that the thematic
effect can be significantly attenuated in difference ratings, thus
explaining why perceived similarity is not always inversely related
to perceived difference.

The possible existence of different pathways in face percep-
tion emerges from the work of Schawaninger and colleagues [19].
They analyze the role of local and global (holistic or structural)
representations and conclude arguing about a two-route model of
face processing and matching. Similar conclusions are suggested by
Lorusso and colleagues [20] investigating the visual judgment of sim-
ilarity, dissimilarity and kinship. In particular, they report priming
effects (selective suppression/enhancement of the dissimilarity judg-
ments following similarity and kinship judgments) that suggest the
existence of different processing pathways “perhaps modulated by
experience and cultural conditioning”.

The importance of the spatial localization of visual cues has been
recently investigated also by Dal Martello and colleagues [21]. They
suggest a configural nature of the kinship judgment, strictly related to
the spatial localization of visual cues. The discussion on how recogni-
tion of faces is affected by the adoption of a configural representation
becomes particularly interesting considering that face recognition in
humans is successful over a variety of appearances due to light, pose
and external factors. To this respect, findings of Redfern and Ben-
ton [22] suggest that expressions are part of facial representation,
thus deeply coded in the basic mechanisms detecting and measuring
similarities between faces.

Trying to summarize, there are significant psychological evidences
that spatial localization (or configural representation) of visual fea-
tures play a crucial role in the perception of face similarity. This
issue has not been disregarded from researchers in computer science
proposing and testing computational models suitable to capture basic
abilities of humans. For example, Tistarelli and colleagues [23] focus
their work on the selection of relevant features and on the local/global
matching strategy bringing to a single similarity score. Again from a
technical perspective, Zhan and colleagues [24] focus on the familiar-
ity issue and propose a mathematical approach capable of combine
reusable features and to distinguish between different forms of famil-
iarity. Edelman and Shahbazi [25] define a global framework taking
into account structural similarity and show how this framework can
adequately scale to deal with massive visual data. Martinez [26], try-
ing to strictly formalize the problem of identity recognition, criticizes
deep learning [27] and focus on “critical” information of faces and
on the contribution that features and surface properties can give to
facial and expressions recognition [28].

Despite all these efforts, and probably due to the specificity of the
face recognition problem, the relationship between computational
models and human judgments for face similarity and dissimilarity
has been only slightly investigated. In fact, this kind of perspective
requires the adoption of a common dataset and a clear identifica-
tion of a detailed aspect for which both measures (psychological and
computational) can be easily derived. The work presented in this
paper makes one step forward along this direction, trying to show
that this perspective is viable when evaluating the role of holistic and
local information on face analysis.

1.3. The proposed study

Our investigation focuses on the assessment of the relation
between judgments of similarity and dissimilarity; in more detail,
we show that computational models based on local and global (holis-
tic or structural) representations perform differently with respect to
corresponding human judgments, giving strength to the hypothesis
of a two-route model of face processing and matching.

The study is organized with both psychological and computa-
tional experiments. In particular, in a first psychological experiment
(Section 2), participants are asked to judge face-triplets that can vary
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in age or sex, the judgment consisting on a simple two-alternative
forced choice (2AFC) between the central-left, central-right pair. The
judgments are both on similarity and dissimilarity, with the goal
of assessing the relation between similarity and dissimilarity judg-
ments. In the computational experiment (Section 3), the same set
of face triplets are characterized using local and global descrip-
tors which are automatically extracted and described following a
two-route model. Such descriptors are then used to approximate
the results of the psychological experiment, trying to infer relations
between local or global characteristics and perceived similarity and
dissimilarity. Please note that the image data used in both experi-
ments were validated through a preliminary calibration procedure
whereby an independent group of participants graded face-pairs on
a 0–1 point scale: from entirely dissimilar to entirely similar. The
reader can refer to Ref. [29] for details concerning this procedure.

Summarizing, the main contributions of this study are the
following:

1. a psychological experiment is performed, trying to character-
ize the relation between perceived face similarity and dissim-
ilarity, and providing some evidences that there are indeed
some differences (“similarity” is not just the opposite of “dis-
similarity”);

2. starting from a classic computational characterization of the
face image, two computational models are derived, one encod-
ing a global holistic description of the face, the other encoding
a more local-discriminative one; the prediction accuracy of
these models is thus tested giving some empirical evidences
that the perceived face dissimilarity is more related to local
configurations, whereas face similarity is mainly due to global
descriptors.

These findings offer a novel perspective, opening the door to
the possibility of developing novel automatic face recognition meth-
ods; in Section 4, we provide some considerations on a possible
computational model which explicitly considers that similarity and
dissimilarity are not two faces of the same medal, but rather two
complementary and distinct processes, to be possibly simultane-
ously exploited.

2. Experiment 1 – Perceived similarity-dissimilarity

In this section, the psychological experiment is presented.
Starting from a controlled set of 79 face pairs, each associated to a
robust (independently computed) perceived similarity index (PSI),
the purpose of the first experiment was to understand the role of PSI
in the judgment of similarity (JS) and dissimilarity (JD).

2.1. Method

In order to obtain similarity and dissimilarity judgments, a two
alternatives forced protocol (2AFC) was applied. Triplets used in the
2AFC trials were composed by three images (two face pairs sharing a
common reference image, see Fig. 1). The reference face was always
positioned in the middle of the triplet; participants had to make a
forced choice between the candidate image on the left and the can-
didate image on the right side, indicating which of the two candidate
faces looked the most similar (or dissimilar) to the reference face.
Responses were collected by recording the mouse click (position)
and the time elapsed since the presentation of the triplet. Sub-
jects were given unlimited time to respond. The first three triplets
presented per participant were considered as a training and were
omitted from any subsequent data analysis.

2.1.1. Stimuli
Face pairs. A homogeneous dataset of 79 face pairs, derived from

an original set of 54 color photographs, each depicting a face, has
been carefully selected for the experiment. Faces had mostly sponta-
neous expressions, being taken from friends’ photo albums, without
further processing except for the homogenization of the background.
Fig. 1 shows a sample face pair. Twenty-five male and twenty-nine
female faces were included in the set, spanning an age range from 25
to 62 years. They were all of Caucasian appearance. Forty-four of the
total declared themselves to be in kinship relation (either parents-
offspring or siblings) with one another. In total, 14 distinct family
sets each containing three or four members were so declared.

Please note that face-pairs used for the experiment are all asso-
ciated to a perceived similarity index (PSI) which is the result of a
complex calibration procedure well described by Lorusso and col-
leagues [29]. This index is somehow analogous to the index that
can be obtained by rating scales, an approach commonly used in
psychophysics; however, the procedure proposed by Lorusso and col-
leagues proved to be much more reliable, and useful to take into
account some context-based and non-metric behaviors that charac-
terize the human judgment. Without going into the details of the
calibration, it is worth noting for our purposes that the rating of each
face-pair is the final outcome of an experimental protocol based of
2AFCs, thus very similar to that adopted in this experiment, but involv-
ing an exhaustive comparison of the face-pair with all the images of
the dataset. The rating of each selected face-pair (from the dataset
of 54) finally required the evaluation of 52 different triplets where
the pair-reference face was always positioned in the middle of the
triplets while the pair-candidate face and the varying candidate were
randomly positioned to the left or right side. To improve the statis-
tical significance of the computed PSI, each single triplet was judged
by six participants; as a consequence, each face-pair received a total
of 312 evaluations (six evaluations for each of the 52 triplets).The
final PSI value for the face-pair, in the range 0–1, was derived tak-
ing into account both the accordance of the six evaluations and the
distribution of the judgments for all the 52 triplets.

Due to the very large number of judgments required in order to
rate a single face-pair, only a limited subset of all possible face-pairs
was rated by this procedure. In particular 79 items were selected,
with the assistance of expert psychologists, in order to guarantee
a good representativeness of the subset with respect to i) potential
differences in rating ii) balanced presence of kin and non-kin pairs. In
total, the calibration experiment involved 24,648 single judgements
(79 × 52 × 6). Finally note that, despite a balanced presence of kin and
non-kin face-pairs, PSI values above 0.5 (on a range 0–1) tended to be
more frequent, suggesting some kind of perceptual saturation in the
human judgments. As expected, this effect was much more evident
for kin pairs, where 85% of the pairs have shown PSI values above 0.5.

Face triplets. In analogy with the selection of the 79 face pairs,
the generation of the triplets proved to be a very difficult task
that required the assistance of expert psychologists. Starting from a
repeated random selection of a first face-pair, the procedure tried to
iteratively associate a second face-pair but always keeping in mind
both the family relationships and the differences in PSI. More in
detail, three simple constraints were considered:

• large coverage of the available face-pairs (i.e. well distributed
use of all the face pairs), provided the existence of a common
pair-reference image for each triplet;

• large coverage of differences in PSI (i.e. generation of triplets
spanning all possible values of difference in PSI, from −1 to 1);

• large coverage of different types of stimulus (i.e. balanced use
of triplets including people related or not-related by kin).

To all the constraints mentioned above it has been assigned the
same cost, in such a way as to ensure a fairly uniform distribution
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Fig. 1. (Left): a face-pair selected from the original dataset of 54 images. (Right): an example of triplet used in the 2AFC trials.

of the features that characterize the stimuli. Despite the great num-
ber of potential triplets theoretically derivable from the 79 face-pairs
(3081), the application of cost constraints and the need to identify
a common pair-reference image for each triplet drastically reduced
(under 300) the number of triplets passed to the manual selection.
Also in this case, the assistance of expert psychologists was essen-
tial in order to proceed to the final selection and to guarantee a
good representativeness of the subset. From now on, the difference
in PSI between face-pairs (left-central, right-central) of a triplet will
be called PSI delta (PSID). As already stated, triplets included people
related or not-related by kin; in particular three groups of triplets
were so considered:

• Mixed — where only one of the two face-pairs of the triplet was
of people related by kin;

• Non-mixed K — where both face-pairs belonged to people
related by kin:

• Non-mixed NK — where both face-pairs belonged to people
not-related by kin.

Fig. 2. Distribution of the time response.

The total number of triplets involved in the experiment was 69.

2.1.2. Participants
As usual in psychological studies [30,21], participants in the

experiment have been recruited among students of the University.
In particular, participants were 64 undergraduates at the University
of Sassari (39 females and 25 males), all reported to have normal
or corrected-to-normal vision. Mean age of the participants was
23 years.

2.1.3. Equipment and detail of the procedure
Stimuli were presented on a computer monitor, screen resolu-

tion 1280 × 1024, refresh rate 60 Hz. Pictures were presented in
triplets over a gray background. Participants completed one of the
two possible trials (assigning similarity or dissimilarity), a trial being
a randomized sequence of 2AFC judgments for the same set of 69
triplets. The order of presentation of the triplets was randomized in
order to guarantee the presence of different faces in two consecutive
triplets, so avoiding memory effects.

In order to improve the statistical significance of the judgments,
the 64 participants were randomly divided in two groups; we finally
had 32 subjects assigned to task Judgments of Similarity (JS) and 32
to task Judgments of Dissimilarity (JD). Each of the 64 participants
evaluated only 69 triplets, expressing a single kind of judgment. In
summary, each single triplet has been involved in 64 2AFC trials (32
JS + 32 JD), for a total number of 4416 single judgments ( 69 × 64).

2.2. Results

As a first result, Fig. 2 and Table 1 show the distribution of the
response times recorded during the experiment. Response times are
clearly condensed in the range 0–20 s with a peak around 6 s. More-
over, a non-normal distribution of response times is confirmed; this
aspect is not surprising, as it has been reported in different works
and faithfully reflects well known previous models [31] based on the
so-called ex-Gaussian distribution.

Fig. 3 plots the results obtained from our psychological experi-
ments, for both JS and JD, on the three groups of face-triplets (Mixed,
Non-mixed K, Non-mixed NK). In particular, in the plot related to JS
(top), the relative amount of choices for the left face-image has been

Table 1
Median of the response times and 95% tolerance interval with a coverage area of 99%.

Num Median RT Toler. a = 0.05, P = 0.99

Lower side Upper side

2408 6.169 2.632 32.070
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Fig. 3. Results for the perceived similarity (top) and perceived dissimilarity test (bot-
tom). Each point represents the ratio between votes for the left (right) pair and the
total number of votes. In blue (circles) the Mixed triplets (Mixed), in red (squares) the
Non-mixed triplets where both face-pairs came from the same kin set (Non-mixed
K), in green (diamonds) the Non-mixed triplets where both face-pairs came from dif-
ferent kin sets (Non-mixed NK). Lines represent linear regression for Mixed (blu),
Non-mixed K (red) and Non-mixed NK (green) triplets. In black the linear regression
computed for all the available points. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

plotted in function of PSID; in the plot related to JD (bottom) the rel-
ative amount of choices for the right face-image has been preferred
in order to facilitate the comparison between JS and JD. Note that for
both judgments the percentage of votes seems to linearly increase
with the increase of PSID. This is somehow expected because PSID
represents the “amount” of similarity that an independent set of
observers judged in favor to the left pair of the triplet. In other words,
in presence of a positive PSID the choice of the left image is expected
for JS, and similarly the choice of the right image is expected for

Table 2
Result of the Pearson’s correlation test for the similarity (JS) and dissimilarity (JD)
judgments with respect to available PSID. “Group” represents the different splitting
of tests, “dof” are the degrees of freedom of the test, “coef” is the Pearson correlation
coefficient for Judgements of Similarity (JS) and Dissimilarity (JD), together with the
corresponding P-value (“P-val”).

Group dof Coef (JS) P-val (JS) Coef(JD) P-val (JD)

Mixed 39 0.802 8.21E−10 0.795 1.47E−09
Non-mixed K 21 0.677 0.0007 0.626 0.0024
Non-mixed NK 9 0.873 0.0021 0.926 0.0003
ALL 69 0.785 1.33E−15 0.758 4.39E−14

JD. This result can be also considered as a further validation of the
method used to compute PSI between faces.

Table 2 shows the Pearson correlation coefficients of the
responses for all the groups and tasks considered, as a function of
the PSID. Correlation coefficients of the ALL group show that the two
judgments (JS and JD) depend linearly on the PSID; in both cases (JS
and JD) we observe that this dependence is retained by the Mixed
group while a variation in the dispersion of data is present for both
the Non-mixed groups (an increase of dispersion for Non-mixed K, a
decrease for Non-mixed NK). This effect seems more pronounced for
JD. On one hand this finding could suggest a limited role of kinship;
in fact the presence of kinship increases going from the Non-mixed
NK (no kin pairs) to the Mixed (1 kin pair) to the Non-mixed K group
(2 kin pairs). On the other hand, however, this result could testify
in favor of a non-perfect opposition between the concepts of simi-
larity and dissimilarity (JD and JS seem to be differently affected by
Non-mixed triplets).

Table 3 shows the estimated values of the linear regression for
the different tasks and groups considered. Standard errors and p-
values of the estimates are also reported. Looking carefully to the
two parameters characterizing the linear regression, the line’s slope
and intercept, some additional aspects emerge. First of all the varia-
tion between the Mixed and Non-mixed groups (both in slope and
intercept) shows similar trends for JS and JD. This result means that
a role of kinship, if proved, would have similar consequences (pre-
sumably a mix of “enhancement-suppression” and “bias” effects) for
both judgments. Second, note that for all the groups, slope decreases
and intercept increases in JD with respect to JS, with a noticeable
effect on the intercept. In order to better understand this difference

Table 3
Slope and intercept values for the similarity (JS) and dissimilarity (JD) judgments.

Parameter Value Std err P-value

Mixed (DOF: 37)
Slope JS 0.465 0.056 8.216E−10
Intercept JS 0.466 0.023 3.556E−21
Slope JD 0.438 0.054 1.476E−09
Intercept JD 0.513 0.022 3.700E−23

Non-mixed K (DOF: 19)
Slope JS 0.527 0.131 0.0007
Intercept JS 0.459 0.033 2.073E−11
Slope JD 0.498 0.142 0.0024
Intercept JD 0.480 0.035 3.663E−11

Non-mixed NK (DOF: 7)
Slope JS 0.562 0.119 0.0021
Intercept JS 0.520 0.050 1.675E−05
Slope JD 0.532 0.082 0.0003
Intercept JD 0.622 0.035 4.209E−07

All (DOF: 67)
Slope JS 0.483 0.046 1.330E−15
Intercept JS 0.469 0.017 1.166E−37
Slope JD 0.448 0.047 4.392E−14
Intercept JD 0.516 0.017 6.660E−40
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we thus considered the two linear regressions of the whole set (ALL
group) and statistically compared the slope and the intercept values.
Note that both these parameters follow the t distribution and that for
both the t-value can be computed by the expression:

t =
p1 − p2√
S2

1 + S2
2

(1)

where p1 and p2 are the considered parameter (slope or intercept)
for the two populations and S1, S2 the corresponding standard errors.

Table 4 shows the result of the test; note that with a confidence
interval at 95% the null hypothesis (same populations) cannot be
rejected but for the intercept the t-value is very close to the critical
value; the p-value on the last column better explains the fact that the
null hypothesis would be rejected at significance level only slightly
higher. For our purposes, this result testifies in favor of a possible
(significant) distinction between JS and JD and suggests the presence
of different or partly different functional components that partici-
pate to the formation of the final judgment. We then proceeded in
the investigation of a computational model taking into account dif-
ferent processing pathways for JS and JD. All these aspects are better
developed and discussed in the following section.

3. A computational comparison of similarity and dissimilarity

The main goal of this section is to propose a computational
approach to the problem of comparing similarity and dissimilarity
of faces. Clearly, we are aware that in recent years a huge amount
of computational methods have been proposed for measuring simi-
larities (or dissimilarities) between images of faces, mainly for bio-
metrics purposes [5,32,33,7]. However, it is important to note that
in this work we are not interested in proposing a novel method for
face recognition, neither to implement the most accurate and recent
approaches in this field. The main goal here is to derive two sim-
ple computational models usable to model perceived similarity and
dissimilarity measures derived from the previous experiment; the
final aim is to provide some computational evidence that these mea-
sures are different in terms of the information of the face which is
exploited. To this end, the two computational models get inspiration
from two opposite and widely known paradigms in face recognition:
holistic and local paradigms [34]. In the first paradigm (also referred
to as global, configural, relational, and monolithic), faces are per-
ceived as units, and characterized with features extracted from the
entire face. On the contrary, the second paradigm (also referred to
as part-based, analytic, feature-based, piecemeal, componential and
fine grained) is focused on the exploitation of specifically localized
parts of the face. Our goal here is to investigate in which way these
two complementary processing schemes are related to similarities
and dissimilarities between faces.

In short, our computational experiment is composed of four
steps:

• a set of iconic features is extracted in specifically relevant
locations, from all the faces of the triplets;

• this set of iconic features is encoded following two different
strategies, one based on a holistic configuration (using features
from all parts of the face) and one based on a local features
(using only few distinctive parts);

Table 4
Statistical comparison for slope and intercept values between similarity (JS) and
dissimilarity (JD) judgments (ALL group).

Parameter dof t t∗ (a = 0.05) P-value

Slope 134 0.530 ±1.896 1.403
Intercept 134 −1.882 ±1.896 0.061

• the two coded sets of features are used as input to two regres-
sors, one fitting perceived similarity and the other fitting per-
ceived dissimilarity. At the end of this process, four possible
cases are considered: using Holistic Features to model simi-
larity (HolF-Sim), using Holistic features to model dissimilarity
(HolF-Dis), using Local features to model similarity (LocF-Sim)
and at last using Local features to model dissimilarity (LocF-
Dis);

• via a cross validation experiment, the four cases above are
tested, and experimental evidence is provided that when fitting
the similarity the model based on Holistic Features is better
than the model based on Local Features. On the contrary, when
the aim is to fit the dissimilarity, the model based on Local
Features is better than the one based on Holistic Features.

Before going into the details of the method, let us stress that we
are not proposing a novel model for visual analysis of a face, but we
simply propose two opposite modalities of exploiting the percep-
tual results of the previous section, empirically showing how these
modalities are related to similarity and dissimilarity. Overall, we pro-
vide additional evidence in favor of a multi-route model for judging
similarity-dissimilarity of faces and we show that this model should
take into account both local and global information.

3.1. Facial features

Many open tools exist for the automatic extraction of facial fea-
tures. We adopted Openface, an open source, state of the art tool [35]
capable of facial landmark detection and head pose estimation. Facial
landmarks detection is performed over 68 points, see Fig. 4. Original
images are then cropped, rotated and scaled taking the interocular
distance as the only normalizing factor. The extraction of the iconic
information is performed for all the 68 points by resampling through
a log-polar scheme. The log-polar transformation applied here is that
described in Ref. [30] but with a very limited number of receptive
fields (8 radial fields along 12 angular directions). Moreover, mean
and Laplacian of Gaussians filters are applied to each receptive field.
With reference to Fig. 5, each descriptor finally results into a 96 × 2
vector of floats; only 96 of these values, the first part of the vector
related to the mean filter, are used in the following experiments.

In summary, each face A is characterized by a set F (A), which
contains M descriptors, i.e.,

F (A) =
{
f1(A), f2(A), · · · fM(A)

}
, (2)

where M represents the number of landmarks extracted from the
face (in our experiments M = 68); each descriptor fi(A) is itself a
vector of Z dimensions (where Z = 96 represents the total num-
ber of receptor fields of the log-polar mapping). Note that the set of
landmarks F (A) is the basis for both the local and the global (holis-
tic) models described in the following sections. In particular, even
though single landmarks come from local points (and single descrip-
tors characterize local areas of the image), the full set of descriptors
can be considered as a good representation of the whole image while
a local model will only keep part of this information [36].

3.2. Holistic vs local models

A single triplet of the perceptual experiment is involved in 32
similarity and 32 dissimilarity judgments. Let us denote by the letters
L(eft), C(entral) and R(ight) the three faces considered; this process
provides a final similarity score for the left-central pair (Sp(L, C)) and
for the right-central pair (Sp(C, R)). Analogously, it provides final dis-
similarity scores Dp(L, C) and Dp(C, R). The subscript p indicates that
these measures are derived from the perceptual experiment, possi-
bly being even not metric. By construction Dp(L, C) = 1 − Dp(C, R)
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Fig. 4. The automatic extraction of facial landmarks provided by the Openface toolkit: note that the tool is robust to rotation and small scaling factors.

and Sp(L, R) = 1 − Sp(C, R). This is because, when assessing the
similarity-dissimilarity in the perceptual experiment, the subjects
have to decide between two pairs of faces: (L, C) and (C, R). As said
before, we devised two scenarios, one more linked to a holistic con-
figuration, and one linked to a local configuration. These scenarios
are aimed at forming the vector xLCR to be used for the regression of
the similarity-dissimilarity.

3.2.1. Holistic model
In this case, the vector xLCR is defined in two steps:

1. Starting from the set of features F (L), F (C) and F (R), we
first compute the distance between all pairs of correspond-
ing features of face L and C (please remember that the M
points are ordered). In other words, we compute the vector of

distances df(L, C) (the subscript f indicates that this represents
a distance between features):

df (L, C) =

⎡
⎢⎢⎢⎢⎣

d(f1(L), f1(C)
d(f2(L), f2(C)

...
d(fM(L), fM(C)

⎤
⎥⎥⎥⎥⎦ (3)

d( • , • ) is any distance between vectors (Euclidean, based on
correlation or others). In the same way, we compute the
vector df(C, R).

2. The vector xLCR is obtained by concatenating the two vectors
df(L, C) and df(C, R):

xLCR =
[

df (L, C)
df (C, R)

]
(4)

Fig. 5. A single facial landmark is encoded through a log-polar mapping; mean and LoG filters are applied to each receptive field.
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The idea is that in the experimental set up to assess the
similarity-dissimilarity a human has to use both the compar-
ison between (L,C) and that between (C,R).

This represents an holistic approach, due to the nature of the log
polar features (which encode a region of the face) but mainly due to
the fact that we are using all the available information: actually the
similarity is measured by comparing all the different parts of the face.

3.2.2. Local model
In the Local Model, we start from the same set of features

F (L), F (C) and F (R), but take a different approach. In particular,
we exploit the observation that what makes two faces different is
encoded in few points, namely the points where the two faces dif-
fer the most. To encode this fact, we extract from vectors df(L, C) and
df(C, R) the K largest values, which are relative to the most different
parts of the face. In practice:

1. in this step, as in the Holistic Model, we compute the vectors
df(L, C) and df(C, R)

2. we sort (in descending order) the two vectors, obtaining the
vectors dord

f (L, C) and dord
f (C, R)

3. the vector xLCR is obtained by concatenating only the largest
K values of dord

f (L, C) and dord
f (C, R), i.e.

xLCR =

[
dord

f (L, C)[1...K]

dord
f (C, R)[1...K]

]
(5)

where the suffix [1 . . . K] indicates the first K elements of the
vector.

In our Local Model, we only use few points to represent the
experiment, in particular the most distinctive points between the
pairs (L,C) and (C,R). Please note that the selected features can be in
principle different for every face, since we are extracting the most
distinctive ones for the given comparison (in one case, the difference
between the two faces can be seen in the nose, in another in the lips).

3.3. Regression

Once encoded the set of psychophysical experiments into a set
of n vectors {xi}, the goal is to find a function of x which approxi-
mates the similarity (dissimilarity) values. This is clearly a regression
problem, which can be addressed with different approaches. In gen-
eral, most of them can be formulated in the following way: given
a set of training points {xi, yi} (where yi represents the target value
for the input xi), the goal is to find a function R(x) which approxi-
mates the target values yi. Since the goal is to not to memorize the
training set but rather to capture the general behavior of the func-
tion (i.e. generalization), typically a restriction is imposed on the
function (the so-called regularization). In our work, we used two
kinds of regression approaches: LASSO (Least Absolute Shrinkage and
Selection Operator [37]) and Elastic Net [38], all based on a linear
approximation of the input, i.e.,

y = xTb + 4, (6)

where b represent the regression coefficients (a vector of dimension
p, where p is the dimension of the input space where x lives) and 4

is the residual error. The difference between the two approaches lies
in the way they estimate the regression coefficients b. Given a set of
n examples xi encoded in the training matrix X = [x1, x2, · · · , xn],
and given the corresponding target vector y = [y1, y2, · · · , yn]T, the

regression coefficients b are retrieved via the minimization of two
different functions:

LASSO : bLASSO(k) = arg min
b

‖ y − XTb‖2 + k ‖ b‖1 (7)

Elastic Net : bEN(k, d) = arg min
b

‖ y − XTb‖2 + d ‖ b‖2 + k ‖ b‖1 (8)

Both techniques minimize the approximation error (‖y − XTb ‖2),
with two different regularization terms: in all cases, the goal is to
force the shrinking of coefficients of b toward to zero, in order to
remove irrelevant contributions. The LASSO penalty term forces the
regularization coefficients to be exactly zero (i.e. to have a sparse
solution); the Elastic Net extends the LASSO approach by adding a
L2 regularization term (similarly to what is used in Ridge Regres-
sion [39]), which permits to derive a close form solution for the
minimization problem. For more information on these approaches
we refer the interested readers to Refs. [37-39].

3.4. Empirical results

In this section, we describe the experiments aimed at evaluat-
ing the proposed models. In particular, the scheme is applied to the
69 triplets of the perceptual experiment, each one involving a face
triplet. For each face we extracted 68 fiducial points (i.e. M = 68),
and we computed the log-polar descriptor (96 values) for each
fiducial point — see Section 3.1. We then computed the Euclidean
distance between feature descriptors d(fi(A), fi(B), (1 ≤ i ≤ M).
Before estimating the regression coefficients, we employed Principal
Component Analysis to remove the redundancy present in the vec-
tors {xi}: in particular we reduced the space via PCA by keeping the
99.99% of the variance explained by the data: in this way, we had a
number of coefficients which was inferior to the number of objects
(to get more accurate regression solutions). Regression has been
performed using the SPASM software1, which implements, among
others, the LASSO and the Elastic Net regression methods. In order
to estimate the parameters of these models (i.e. k for LASSO, (k, d)
for Elastic Net) a sequence of models is estimated, each one with a
different parameters configuration: the best model is then chosen
according to the Akaike’s Information Criterion, which is estimated
for each model (k) as

AIC(k) ‖ y − XTb(k)‖2 + 2s2
4 df (k) (9)

where df(k) represents the number of non-zero elements in the vector
of coefficients b(k), and s2

4 represents the residual variance of a low-
bias model defined as

s2
4 =

1
n

‖ y − X†y‖2, (10)

where X† is the Moore-Penrose pseudo-inverse of X. The best model
is the one minimizing Eq. (9).

For what concerns K, which represents the number of maximally
distant points considered to build the Local model, we set this value
to 34. This value, in the middle of the range of possible values [1–
68], has been chosen as a compromise between two extremes: from
one hand, a very small K does not permit a good regression, since the
x vector contains too few elements, becoming not informative. On

1 Available at http://www2.imm.dtu.dk/projects/spasm/.

http://www2.imm.dtu.dk/projects/spasm/
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the other side, with a too large K, we loose the local behavior we are
interested in, coming back to the Holistic approach.

In order to test the two different models (Local and Holistic) with
the two different measures (Similarity and Dissimilarity), we esti-
mated four models: one using Holistic Features to model similarity
(HolF-Sim), one using Holistic features to model dissimilarity (HolF-
Dis), one using Local features to model similarity (LocF-Sim) and the
last using Local features to model dissimilarity (LocF-Dis). The goal
is to show that Holistic Features are better when modelling similar-
ity, whereas Local Features are better when estimating dissimilarity.
To have a robust comparison we performed a Leave One Out Cross
Validation procedure: we used the whole set, except one, to esti-
mate the parameters of the regressor, using the left one to test it; we
repeated this procedure until all elements of our perceptual experi-
ment have been left out. To test a regressor we computed the Mean
Squared Error (MSE), defined as the squared difference between the
true target and the estimated one:

MSE =
1
n

∑
i

(yi − xT
i b)2 (11)

The final Leave One Out MSE measure (LOO-MSE) is then obtained by
averaging the MSE on the different trials. In Table 5, we reported the
results, for the two different regression models.

In order to provide more support to our conclusions, we repeated
the regressions with the local model by letting K vary in the range
[16–50] (step 2). We then report the LOO-MSE value, averaged
over all different K (last two rows of Table 5). From the Table, we
can observe that the best fitting for the similarity is obtained with
the holistic model, whereas the best fitting for the dissimilarity is
obtained with the Local model: this is more evident with the chosen
K (“Fixed K”), but still holds when averaging results for multiple K
(“ALLK”). To better investigate this aspect, we reported in Fig. 6 the
LOO-MSE error when fitting the Similarity with Local Features (LocF-
Sim) and the LOO-MSE error when fitting the Dissimilarity (LocF-
Dis), for the different values of K (the plot is the average between
LASSO and Elastic Net). This plot supports the conclusion: LocF-Dis is
consistently better (lower LOO-MSE) that LocF-Sim among the whole
range. Moreover, it can be seen that the largest difference is in the
middle of the range (as hypothesized before). Please note that all
these observations are valid for both regressors. As expected, regres-
sion with Elastic Net is more accurate than the one obtained with
LASSO.

In order to have a statistical significance, we performed a t-
test(with a significance level of 0.05) to compare the two pairs of
results (i.e. HolF-Sim vs HolF-Dis and LocF-Sim vs LocF-Dis). In all
cases, we performed a paired t-test comparing all the corresponding
LOO MSE, under the null hypothesis that the two samples come from
distributions with the same means. In all cases, this hypothesis has
been rejected, thus meaning that the difference is statistically signif-
icant. The corresponding p-values are reported in Table 6: again, we
report results for fixed K as well as for all K.

Table 5
Result of the leave one out experiment.

Method LASSO LOO-MSE Elastic Net LOO-MSE

(HolF-Sim) 0.0342 0.0296
(HolF-Dis) 0.1177 0.0779
(LocF-Sim) — Fixed K 0.0683 0.0584
(LocF-Dis) — Fixed K 0.0367 0.0379
(LocF-Sim) — ALL K 0.0580 0.0506
(LocF-Dis) — ALL K 0.0428 0.0383

Fig. 6. LOO-MSE when varying K in the Local Model.

4. Suggestions for a two-routes computational model

Results proposed in the previous sections point toward the
definition of a new two-routes computational model for face recog-
nition, suitable to simultaneously exploit similarity and dissimilar-
ity information. This perspective, which has been considered for
domains like shape categorization [40], spectral clustering [41] and
person re-identification [42] has been only partly applied to face
recognition, as most of the attention has been independently devoted
to similarity or dissimilarity measures (see for example Ref. [43]).

Following ideas emerged in our manuscript, we hypothesize in
Fig. 7 a possible model for the implementation of a two-route model.
In our perspective, developers should take into consideration at
least four points: i) feature extraction, ii) feature coding, iii) met-
ric for similarity/dissimilarity estimation, and iv) basic mechanisms
of fusion/integration of the two routes. Concerning the first aspect
(feature extraction), clearly one can resort to many well established
methods usable to extract salient points [44]: this should be proba-
bly preserved as a first, low level stage of feature extraction. These
descriptors could be immediately used in order to code dissimilarity
(local) features. However, the coding of holistic features will probably
require an additional effort to better understand and define relational
structures that condition holistic perception. Concerning similar-
ity/dissimilarity estimation, an important point is the adopted metric.
To this purpose, different metrics could be used for similarity and dis-
similarity. More importantly, in line with some literature results [45],
we suggest to implement some enhancement/suppression mecha-
nisms giving rise to non-linear responses of the two paths, depending
on the strength of the similarity/dissimilarity measures. This would
be also in line with the old proposal of Tversky (the so called Tversky
contrast model [13]) that suggests a visual description in terms
of qualitative features and the comparison in terms of presence
or absence of such specific features. Concerning the last aspect

Table 6
Statistical test. “FK” refers to local models which use a single fixed K (Fixed K), whereas
“AK” is related to results obtained using all K (ALL K).

Comparison LASSO Elastic net

Result P-value Result P-value

(HolF-Sim) vs (HolF-Dis) Reject 2.6823e−06 Reject 2.7277e−05
(LocF-Sim-FK) vs (LocF-Dis-FK) Reject 0.0019 Reject 0.0146
(LocF-Sim-AK) vs (LocF-Dis-AK) Reject 2.613e−11 Reject 2.432e−10
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Fig. 7. A possible two-routes computational model.

(fusion/integration of the two routes) traditional approaches (vot-
ing, ranking, weighted average) could be applied. However, we see
a potentially interesting approach also in the application of met-
ric learning techniques, i.e. in methods which try to derive a global
proximity measure which can be meaningful for the specific classifi-
cation problem. An interesting example, in this sense, can be found in
Ref. [46], where, in a clinical scenario, different metrics derived from
different clinicians are fused together to derive a global measure of
similarity between patients.

5. Conclusions

In this paper, we investigated basic mechanisms underlying
the ability of humans to discriminate similarities and differences
between faces. We focused in particular on the relevance of local and
global features and on some interesting peculiarities characterizing
judgments of similarity with respect to judgments of dissimilarity.
First, a psychological experiment has been designed and performed,
with the aim of verifying whether similarity and dissimilarity are two
aspects of the same process; results provide evidences that there are
indeed some differences, which emerge independently of the stim-
ulus type. Second, we tested two computational models, based on
a classical pipeline for the characterization of faces. Through these
models, we provided some empirical evidences about the origin of
this difference, suggesting that the perceived face dissimilarity is
more related to a local analysis of the face, whereas face similar-
ity is mainly due to global descriptors. Based on these observations,
we also suggest a possible novel two-routes computational model,
aimed at explicitly considering that similarity and dissimilarity are
not two faces of the same medal, but rather two complementary and
distinct processes, probably exploiting different image cues.

Future work will be devoted to the implementation of the pro-
posed computational two-routes model for face recognition. Being
conscious that the size of the dataset so far adopted for the com-
putational experiment is limited, especially if compared with recent
benchmarks developed for assessing automatic face recognition
methods, additional effort will be also addressed to the extension of
the dataset involved, for instance considering all the possible triplets
that can be generated starting from the available set of face pairs.
Further work will be finally addressed to better investigate the varie-
gated set of local descriptors proposed in the literature, and to better
evaluate the dependence of the recognition from the quality and the
amount of local information involved in the process.
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