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Abstract—In this paper we present a novel clustering approach
based on Random Forests, a popular classification and regression
technique whose usability in the clustering scenario has been
investigated to a lesser extent. In the clustering context, the most
used class of approaches is based on the exploitation of a single
Random Forest to derive a proximity measure between points,
to be used with any distance-based clustering technique. On the
contrary, our scheme exploits a set of Random Forests, each one
devoted to model one cluster, in a spirit similar to that of the
mixture models approach. These Random Forests, which provide
flexible cluster descriptors, are iteratively updated using a K-
means-like clustering algorithm. The proposed scheme, which
we call K-Random Forests (K-RF), has been evaluated on five
datasets: the obtained results suggest that it represents a valid
alternative to classic Random Forest clustering algorithms as well
as to other established clustering approaches.

I. INTRODUCTION

Random Forests [1]–[3], firstly introduced by Breiman in

the early 2000s [1], represent a famous and widely applied

approach for Pattern Recognition, whose usefulness has been

demonstrated in a huge variety of application fields – bioin-

formatics [4], biometrics [5], remote sensing [6], computer

vision [7] and medical image analysis [8], just to cite a

few. This technique represents an ensemble of decision trees

[9], [10], a widely known classification tool which realizes

a hierarchical splitting of the feature space, each split being

based on a threshold on a single feature. Random Forests

are based on the “divide and conquer” principle: in their

classic version, different sets of random samples are extracted

from the training set, each one used to build a decision tree.

The final model is then obtained by aggregating the different

trees. This aggregation shows interesting theoretical properties,

the most famous being the one shown by Breiman in [1],

who defined an upper bound on the generalization error of

the Random Forests in terms of correlation and strengths

of individual trees. The key aspect in Random Forests is

represented by the randomization injected in the learning of

the model, which permits to have strongly diverse trees: this

randomization can be driven to the extreme, for example by

randomly choosing also the splitting threshold – these aspects

have been largely investigated by Geurts and colleagues in

their work on Extremely Randomized trees [11].

Generally speaking, Random Forest approaches have been

almost always studied as regression or classification tools: in
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these contexts they represent state-of-the-art machines, able to

compete with the most effective and established approaches

(like SVM or Neural Networks). Their exploitation in other

pattern recognition contexts, such as clustering, density esti-

mation, one-class classification and others, has received less

attention. Clearly, excellent works in these scenarios exist: for

example, Criminisi and colleagues provided in [3] a unified

view of Random Forests (called by them Decision Forests)

usable for classification, regression, density estimation, mani-

fold learning and semi-supervised learning; moreover, specific

Random Forest models have been also proposed for ranking

problems (Ranking Forests – [12]), survival analysis (Random

survival forests – [13]), one-class classification (One-class

Random Forests – [14], [15]) and multi-label classification

[16], just to cite a few.

This paper is inserted in the above described research

stream, and proposes a novel approach for the scarcely inves-

tigated scenario of clustering using Random Forests. In this

context, the most established class of approaches [17]–[19]

exploits a Random Forest to derive a similarity between points:

given two points, their similarity is obtained by counting

how many times they fall in the same leaf of a tree of the

forest with respect to the total number of trees. Given the

proximity, any distance-based clustering approach (such as

Spectral Clustering [20]) can be used. This basic scheme

has been extended in recent years in different ways (e.g.

[21]), providing excellent performances in many different tasks

[22]–[26]. However, these approaches almost all maintain the

same basic idea: to exploit a trained Random Forest to get a

proximity measure, used as input to a distance-based clustering

algorithm. Even if few other interesting methods have been

proposed (see Section II), clustering with Random Forests

remains an open problem.

In this paper we make one step forward along this direction,

proposing a novel approach for clustering based on these

tools. In particular, the basic idea is that, instead of building

a single Random Forest to describe the whole problem, we

can use a single Random Forest to describe every cluster, in

a spirit similar to that of finite mixture models [27]: thanks to

the flexibility of Random Forests, we can characterize every

cluster with a flexible and accurate boundary. Since we are

interested in modelling a given cluster without considering

the rest of the patterns, we use One-class Random Forests

[14], [15], [28], [29], i.e. Random Forests able to be trained
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with only positive examples1. We devise a simple iterative

strategy, which takes inspiration from the classic K-means

algorithm [30] or from some of its extensions [31], [32]. In

particular, at every iteration we assign every point to the One-

class Random Forest which most accurately models that point

(similarly, in the K-means, we assign a point to the cluster

with the nearest mean); subsequently, we re-train each One-

class Random Forest using only points assigned to it (in K-

means, we re-compute each cluster mean using only points

assigned to it). Starting from a random assignment, these two

steps are repeated until convergence. Here we employed as

one-class forests the so called Isolation Forests [28], [29], one

of the best methods for one-class classification (i.e. anomaly

detection) according to [33]. In its basic original form2 this

method builds a set of Extremely Randomized Trees [11];

then, given an input point, the corresponding “anomaly score”

can be computed by looking at the length of the path the point

has to follow to reach its leave, averaged over all trees. The

intuition is that outliers will fall in the upper part of every tree,

since there is no need for many splits to isolate that point: as

a result the averaged path should be shorter.

The proposed approach, which we call K-Random Forests

(K-RF), has been preliminary evaluated on five different

standard datasets from the UCI-ML repository, investigating

the effect of the different parameters (such as the number of

trees). We compare our approach with the classic Random

Forest approach for clustering [17], with encouraging results.

A further comparison with alternative clustering methods sug-

gests that the proposed scheme represents a viable alternative

to classical as well to advanced clustering algorithms. The

remainder of the paper is organized as follows: in Section II

we summarize the related work, whereas in Section III we

describe the proposed scheme. The experimental evaluation is

then presented in Section IV; finally Section V concludes the

paper.

II. RELATED WORK

As reported in the introduction, the exploitation of Random

Forests in the clustering scenario has received little attention.

The most famous and widely applied class of approaches ex-

tends early works on clustering trees [34], [35], and proposes

to employ a Random Forest to derive a proximity measure

between points [17]–[19]. More in detail, the main idea is to

create a Random Forest predictor, and to run all the training

objects down each tree: reasonably, points which are nearby

in the feature space will fall on the same leave. We can

therefore obtain a similarity between objects by counting how

many times this happens, i.e. in how many trees xi and

xj fall in the same leaf (normalized by the total number

of trees). Given the proximity, any distance-based clustering

approach (such as Spectral Clustering [20]) can be used. The

Forest used to derive the proximity can be built in different

ways: the most common solution is to use a classification

1An alternative not investigated here is to consider classic Random Forests;
in this case, we can use as negative class the points of the other clusters.

2A recent extension has been proposed in [15].

forest which discriminates between the original data and a

synthetically generated negative class [17], typically obtained

by sampling points from the product of empirical marginal

distributions of the observed data (this permits to remove the

dependency structure of the original data). Another option is

exploit Extremely Randomized Trees [11] enriched with some

aside information which can be available (e.g. in [18], [19],

the goal is to learn a visual dictionary – a clustering problem

– for image classification or categorization, for which labels

are available and can be exploited). This scheme has been

recently extended to get even more robust similarity matrices

for spectral clustering [21]. The obtained proximity seems to

be very attractive: among other properties, it is invariant with

respect to monotonic transformations of the variables and can

deal with high dimensional problems. Actually the scheme, in

its basic and extended forms, has shown excellent results in

many different applications, like analysis of tumor marker data

[24], [25], genomic data analysis [22], chemometrics [23] or

computer vision [18], [19], [21].

Some other approaches appeared in recent years, all more

or less characterized by the exploitation of a Random Forest-

like ensemble mechanism (more than by the exploitation

of an actual Random Forest). One example is [26], where

the video segmentation problem is faced by getting multiple

partitions using different clustering trees, partitions which are

then fused together via intersection to get a more robust result.

Another very interesting example is [36], which, similarly to

what Random Forests do for classification, extracts random

projections on which good local clusterings are found, to

be aggregated to get the final result. In this sense, also this

represents an ensemble clustering method.

Finally, it is worth to note that a clustering can be also

derived from a density estimation procedure (e.g. via mode

seeking); interestingly, in recent years, there has been few

attempts to derive Random Forests for density estimation [3],

[37]: to the best of our knowledge, however, their capabilities

in the clustering context have never been investigated.

III. THE K-RF APPROACH

In this section the proposed scheme is presented. In particu-

lar, we will first summarize the Random Forest model used to

characterize each cluster; subsequently we will introduce the

iterative clustering procedure.

A. The cluster model

In our approach every cluster is described with a One-class

Random Forest, and in particular with a slight modification

of the so-called Isolation Forest [28], [29], a Random Forest

approach largely and successfully employed for anomaly de-

tection [33]. This scheme, after building a set of Extremely

Randomized Trees [11], derives an anomaly score which is

inversely proportional to the average length of the path a

point has to travel to reach a leave. The intuition is that

anomalies are typically few and with feature values which

are very different from those of normal instances: therefore,

as written in [28], “anomalies are more likely to be isolated
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closer to the root of the tree, whereas normal points are more

likely to be isolated at the deeper end of the tree”. Given the

forest, we can exploit this property to derive a membership

score which describes how well a given point is modelled by

the forest.

More precisely, an Isolation Forest is built by learning M
trees, each one trained using a random fraction ρ (0 < ρ < 1)

of the available patterns. At each node, a split is generated by

i) randomly selecting a feature and ii) randomly selecting a

split value between the minimum and the maximum value of

that feature. In [28], [29], since they are interested in modeling

the anomalies (which should be in the upper part of the trees),

the tree is grown only until it reaches the expected averaged

length log2(n) (with n the number of objects in the training

set). Here we are interested in the “inliers”, therefore we build

the tree until the end, i.e. when i) each node contains one

element or ii) it contains data with the same value.

Once learned the forest, authors in [28], [29] propose to

characterize the anomaly of a given point x with the so-called

anomaly score s(x, n). This score is computed by running

the point x down each tree and computing the number of the

edges the point has to travel to reach a terminal node (the so

called path length of the point ht(x) – for a given tree t)3.

In particular, given the set of {ht(x)} computed for all trees

of the forest RF (built using n points), and given its average

E(ht(x)), the anomaly score is computed as:

sRF (x, n) = 2−
E(ht(x))

c(n) (1)

where c(n) is a normalization function defined as:

c(n) = 2H(n− 1)− (2(n− 1)/n) (2)

with H(n) the Harmonic number, estimated with ln(n) +
0.5772156649 (Euler’s constant).

In our approach, we reverse the reasoning, and evaluate

how well a given forest RF describes an input point x by

computing the following membership score:

wRF (x) = 1− 2−
E(ht(x))

c(n) (3)

(i.e. wRF (x) = 1 − sRF (x, n)), where we dropped the

dependence on n for clarity of presentation.

B. The clustering procedure

The K-RF algorithm is described in Figure 1. In particular,

the procedure takes in input the points X = {x1, ..., xn} to

be clustered, the number of clusters K, the initialization for

the clustering assignment Yinit, and the maximum number of

iterations maxiter. After initializing the clustering result Y (0),

the iteration counter t and the memberships w
(0)
k,i (lines 2–4),

the algorithm iteratively repeats two steps: a model update

step (lines 7–10) and an assignment step (lines 11–19). In

the first step (model update), we first determine the set of

3More precisely ht(x) is computed as the number of edges the point x has
to travel in the tree t to reach a leaf l, plus a correction factor c(size(l)).
This last quantity represents the averaged path length of a tree built using the
points in l (see below for the definition of the function c(n)).

Input: X,Yinit,K,maxiter
Output: Y, t, E

1: procedure BASIC K-RF(X,Yinit,K,maxiter)
2: Y (0) ← Yinit

3: t← 0
4: w

(0)
k,i ← 1/K ∀i = 1...n ∀k = 1...K

5: repeat
6: t← t+ 1
7: for k ← 1...K do
8: Xk ← {xi s.t. y

(t−1)
i == k} ∪ {xo}

9: RFk ← trainRF (Xk)
10: end for
11: E(t) ← 0
12: for i← 1...n do
13: for k ← 1...K do
14: w

(t)
k,i ← wRFk

(xi)
15: end for
16: y

(t)
i ← argmaxk w

(t)
k,i

17: E(t) ← E(t) +
maxk w

(t)
k,i

∑
K
j=1 w

(t)
j,i

18: end for
19: Y (t) ← {y

(t)
1 ...y

(t)
n }

20: until (Y (t) == Y (t−1)) OR (t == maxiter)
21: return Y (t), t, E(t)

22: end procedure

Fig. 1. The basic K-RF Algorithm.

points to be used to train each RF cluster model (line 8). For

a given cluster k, this set Xk contains the points assigned to

the k-th cluster in the previous iteration, plus the point xo,

which represents the “nearest” outlier – it is the point, among

those not assigned to cluster k, which membership w
(t−1)
k,i is

maximum4. We added this point in order to force the presence

of at least one outlier in the set Xk: actually Isolation Forests

somehow assume that there are outliers; authors in [28], [29]

train Forests using all available data, suggesting that training

with only inliers may decrease the performances. Given the

training set Xk, the procedure then uses it to train the k-th

cluster model (line 9).

In the second step (the assignment step, lines 11–19),

the algorithm computes, for each point xi, the membership

score wRF (x) defined in eq. (3) with respect to all models

RF1, · · ·RFK (lines 13–15). Then, the new cluster assignment

y
(t)
i for point xi corresponds to the cluster for which the

membership is maximum (line 16). In this second step, we

also compute the energy E(t) (lines 11 and 17), which is aimed

at quantifying the goodness of the fitting at iteration t. This

energy resembles the optimization function of the K-means,

and is defined as:

E(t) =

n∑

i=1

maxk w
(t)
k,i

∑K

j=1 w
(t)
j,i

(4)

These two steps are repeated until there are no changes in the

clustering assignments or the maximum number of iterations

has been reached (line 20). An example of few iterations of

4xo is the point so that o = argmax
j,r,y

(t−1)
j

!=k
w

(t−1)
r,j .

K-Random Forests: a K-means style algorithm for Random Forest clustering

paper N-19210.pdf- 3 -



Fig. 2. Original Dataset (top) and starting random assignment of the clustering
labels (bottom).(Best viewed in color).

the algorithm execution on a toy example (Figure 2) is shown

in Figure 3.

C. Properties

Convergence. Similarly to what happened to other methods

which implement k-means like algorithm [31], [32], the formal

proof of the convergence of this procedure remains an open

problem. Here difficulties are even larger, since the training

step contains a random component (Isolation Forests are built

using Extremely Randomized Trees).

From an empirical point of view, we noted that the con-

vergence strongly depends on the initialization of the cluster

assignment Yinit. To increase the robustness and to enforce the

empirical convergence, we employed two solutions: first, we

added a simple numerical stabilization of the memberships via

a damping factor – similarly to what done in other approaches

e.g. [38] – which gives an inertia to the membership computed

in the previous iteration. More precisely, line 14 of the

algorithm presented in Fig. 1 is substituted with:

w
(t)
k,i ← (1− λ)wRFk

(xi) + λw
(t−1)
k,i (5)

where λ is the damping factor. Second, we have observed

in our experiments (thousands of runs) that when we start

from random assignments there are mainly two cases: i)

the procedure converges very fast (few iterations), or ii) the

procedure continues to oscillate between two regimes. Thus

we adopted the following scheme: if the convergence of the

TABLE I
DETAILS OF THE DATASETS EMPLOYED FOR TESTING.

Name #objects #features #clusters #obj per cluster

Parkinsons 195 22 2 48,147
Iris 150 4 3 50,50,50
Wine 178 13 3 59,71,48
WBC 683 9 2 444,239
Auto-mpg 398 6 2 229,169

procedure is not reached within the first few iterations, we

re-initialize the labels, starting again the procedure. After

maxtrials re-initializations without convergence, the solution

with the maximum energy in eq. (4) is returned. The resulting

algorithm is summarized in Figure 4.

Computational Costs. The K-RF algorithm is more com-

putationally demanding than the classic scheme, especially

for what concerns the number of Forests to learn. In the

classic scheme we have to train a single Forest on the whole

dataset (enriched with the negative class)5, whereas in the K-

RF algorithm, we have to train K Random Forests for every

iteration of the algorithm. However, the forests are trained

using only a part of the dataset (all points are split among

the K-clusters), and in many cases with few iterations the al-

gorithm converged, thus maintaining the added computational

burden to a reasonable level.

IV. EXPERIMENTAL EVALUATION

The K-RF algorithm has been preliminary evaluated using

five classic datasets, all downloadable from the UCI Machine

Learning Repository6 or from the prtools library7. The details

of the datasets are presented in Table I. As usual in clustering

studies, we used labelled datasets (typically used for classifica-

tion), removing labels before applying clustering algorithms,

using them to assess the goodness of the results.

In the proposed approach, we let the number of trees M and

the subsampling size ρ of Isolation Forests vary in a reasonable

range, in order to have a deeper understanding of the method.

In particular we tested our approach with 50, 100, 200 and

400 trees, using for each tree 50% and 80% of the training

set. As explained in Section III-B, we built each tree until the

end, i.e. until a leaf contains one point or equal points.

We started the clustering from random assignments of the

clustering labels; after a preliminary evaluation not shown

here, we set the number of iterations maxiter to 15, the

maximum number of re-initializations maxtrials to 10, and

the damping factor λ to 0.8. Actually, it turned out that these

parameters were not so critical, and performances varied only

slightly when varying them.

The proposed approach has been compared with the classic

approach for Random Forest clustering (ProxRF) [17]–[19],

5In this scheme there is also the cost of the proximity-based algorithm used
to get the cluster

6https://archive.ics.uci.edu/ml/datasets.html
7http://prtools.tudelft.nl/software/
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Fig. 3. Few iterations of K-RF on the toy example shown in Figure 2(top), starting with the initialization shown in Figure 2(bottom). The plots in the first
two columns represent the contour lines of the memberships score defined in eq. 3 (in the first column we have the model of the first cluster, in the second
column the model of the second). The last column reports the cluster assignments. It can be noticed that at the very beginning both models are focused
on both clusters; as soon as the number of iterations grows, every model specializes itself on a specific cluster. Convergence in this case is obtained in 8
iterations. (Best viewed in color).

[21]–[26], which exploits the forest to derive a proximity be-

tween points to be used in a distance-based clustering scheme.

In particular, here we implemented the version proposed in

[17], which trains a classical classification forest using a

synthetically generated negative class. In our experiments the

negative class was obtained by randomly sampling a set of n
points (with n the size of the original dataset to be clustered)

from the product of empirical marginal distributions of the

observed data. The decision forest was built with the classic

Gini index, growing each tree until the end (leaves with one

element or equal elements). Given the proximity, we derived

the final clustering with Spectral Clustering [20], as done in

more recent RF-clustering works [21]; in particular we used

the Ng-Jordan-Weiss normalized version [20], repeating the

inner k-means 20 times and taking the best result in terms

of the objective function. Number of trees and subsampling

size were set as for the K-RF algorithm, comparing the two

frameworks when varying these parameters.

K-Random Forests: a K-means style algorithm for Random Forest clustering
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Input: X,Yinit,K,maxiter,maxtrials
Output: Y, t, E

1: procedure ENHANC. K-RF(X,Yinit,K,maxiter,maxtrials)
2: ℓ← 0
3: repeat
4: ℓ← ℓ+ 1
5: Yℓ, tℓ, Eℓ ← BasicK −RF (X,Yinit,K,maxiter)
6: if tℓ < maxiter then
7: return Yℓ, tℓ, Eℓ

8: end if
9: until (ℓ == maxtrials)

10: opt← argmaxℓ Eℓ

11: return Yopt, topt, Eopt

12: end procedure

Fig. 4. The Enhanced K-RF Algorithm.

We computed clustering accuracies using the purity index

[39] and the adjusted Rand index (ARI) [40], [41], two widely

used indices to compare partitions. The former is obtained by

assigning to each cluster the class label that is most frequent

in that cluster; then the purity is determined as the proportion

of examples assigned to the correct label (0 (worst case) and

1 (best case)). The ARI index is obtained by first building a

contingency table between the clustering and the true labeling;

then the index is computed by measuring the agreement

between the two partitions (the Rand index) corrected for the

chance of the formation of the clusters. Also in this case,

the higher the index value, the better the clustering. For each

method, each dataset and each configuration of parameters, we

repeated the clustering 30 times, computing and reporting in

Table II the median clustering accuracy (top: purity, bottom:

ARI, in bold the best value between the two alternatives). For

each set of experiments, we also performed a statistical test

to measure how significant were the reported differences. In

particular we performed a two-sided rank sum test [42], under

the null hypothesis that performances of our method and the

classic proximity based RF approach in the 30 repetitions are

independent samples from identical continuous distributions

with equal medians, against the alternative that they do not

have equal medians. In Table II with put a “(*)” when the test

is passed (i.e. the difference is statistically significant) with

a p-value less than 0.1, and a “(**)” when the test is passed

with a p-value less than 0.01.

Different information can be derived from the table. In

general, it is interesting to note that K-RF outperforms the

classic counterpart in the datasets Parkinsons, iris, WBC and

Auto-mpg, for almost all configurations of number of trees and

subsampling ratio. In Parkinsons, the statistical significance is

always present at the highest level, whereas for WBC, iris and

Auto-mpg it depends on the particular configuration. However,

when comparing the best configuration for the two methods

(last row of the table) the improvement of our approach

over the classic proximity-based scheme is significant and

supported by a strong statistical evidence. For what concerns

the wine dataset, results are mixed: for some configurations

our method is better, for some others not; on this problem

the classic scheme already works very well (please note the

very high purity/ARI), so that improvements are difficult to

be obtained.

For what concerns the parameters, it is interesting to note

that K-RF seems to perform better with less trees: for iris,

wine and WBC the best result is obtained with 50 trees, and

increasing this number is not so beneficial for the scheme

– this confirms results in [28], [29], where authors claimed

that a reduced number of trees (100 in [28], [29]) is good

to get reasonably results. On the contrary, the classic ProxRF

method follows a more established trend, increasing the per-

formances when increasing the number of trees. Concerning

the subsampling ratio, both schemes prefer small fraction

(50% of the training set): actually this seems reasonable

(and in line with other studies on Random Forests), since it

permits to introduce in the models more variability. These

two observations are not valid for the Parkinsons and for

the Auto-mpg datasets, for which however accuracies were

all somehow low. Interestingly, the classic Random Forest

approach completely fails in recovering the clustering on these

two datasets.

A. Comparison with alternative clustering approaches

This section compares the K-RFapproach with other clus-

tering techniques: we tested both classical approaches like k-

means, hierarchical schemes or mixtures of Gaussians, as well

as more sophisticated approaches, such as affinity propaga-

tion [38], k-means++ [43], spectral clustering [20] and the

very recent Binary Embedding clustering [44]. For k-means

and agglomerative clustering (single link, complete link, and

Ward link), we used the versions implemented in Matlab; for

Gaussian mixtures we employed the implementation from the

Netlab toolbox8; for k-means++ we used a Matlab implemen-

tation from the Mathworks web site9; for affinity propagation

we used the code downloaded from the authors’ web site10;

finally, for Binary Embedding Clustering we used the author’s

implementation.

In the k-means approaches (“k-means” and “k-means++”),

we repeated the procedure 20 times, starting from random

initializations (k-means) or from carefully chosen points as

described in [43] (k-means++), keeping the best result (in

terms of objective function). In the agglomerative clustering

approaches, complete link (“HierCl-CL”), single link (“HierCl-

SL”) and Ward link (“HierCl-WL”), we used Euclidean dis-

tances. We used three versions of Gaussian mixture models:

“GMM (diag)”, with diagonal covariance matrices, “GMM

(full)”, with full covariance matrices, and “GMM (spher)”,

with spherical covariance matrices. In all versions we ini-

tialized the EM with 5 iterations of k-means, stopping the

procedure at likelihood convergence. We used three versions of

spectral clustering, one with the unnormalized graph Laplacian

(“SpectClus”), and two using normalized graph Laplacians, in

the version of Shi-Malik (“SpectClus (SM)”) and Jordan-Weiss

(“SpectClus (JW)”). For affinity propagation (“AffProp”), we

8http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads/
9https://it.mathworks.com/matlabcentral/fileexchange/28804-k-means++
10http://www.psi.toronto.edu
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TABLE II
CLUSTERING RESULTS FOR DIFFERENT DATASETS AND DIFFERENT PARAMETER CONFIGURATIONS: (TOP) PURITY, (BOTTOM) ADJUSTED RAND INDEX.

“PROXRF” IS THE CLASSIC PROXIMITY BASED CLUSTERING BASED ON RF, WHEREAS “K-RF” REPRESENTS OUR PROPOSED APPROACH.

Purity

Parkinsons Iris Wine WBC Auto-mpg

Ntrees ρ ProxRF K-RF ProxRF K-RF ProxRF K-RF ProxRF K-RF ProxRF K-RF

50 0.5 0.753 0.773(**) 0.872 0.893(**) 0.938 0.955 0.924 0.952(**) 0.678 0.793

50 0.8 0.753 0.789(**) 0.836 0.869(*) 0.895 0.912 0.916 0.919 0.678 0.846(**)
100 0.5 0.753 0.784(**) 0.866 0.893 0.949 0.935 0.919 0.947(*) 0.678 0.848(**)
100 0.8 0.753 0.789(**) 0.812 0.846 0.912 0.898 0.913 0.930(*) 0.678 0.802(**)
200 0.5 0.753 0.784(**) 0.876 0.889 0.944 0.955 0.923 0.946(**) 0.678 0.805(**)
200 0.8 0.753 0.799(**) 0.826 0.862(*) 0.944(*) 0.881 0.916 0.947(**) 0.678 0.816(**)
400 0.5 0.753 0.784(**) 0.866 0.886 0.949 0.949 0.922 0.930 0.678 0.848(**)
400 0.8 0.753 0.784(**) 0.836 0.852 0.915 0.898 0.906 0.933(*) 0.678 0.846(**)

Best Conf 0.753 0.799(**) 0.876 0.893(**) 0.949 0.955 0.924 0.952(**) 0.678 0.848(**)

Adjusted Rand Index

Parkinsons Iris Wine WBC Auto-mpg

Ntrees ρ ProxRF K-RF ProxRF K-RF ProxRF K-RF ProxRF K-RF ProxRF K-RF

50 0.5 0.145 0.244(**) 0.686 0.731(**) 0.815 0.862 0.718 0.815(**) 0.121 0.348(**)
50 0.8 0.160 0.250(**) 0.621 0.683(**) 0.711 0.746 0.693 0.703 0.121 0.480(**)
100 0.5 0.152 0.268(**) 0.670 0.731(*) 0.854 0.806 0.700 0.799(*) 0.121 0.483(**)
100 0.8 0.151 0.224(**) 0.577 0.649(**) 0.748 0.707 0.681 0.738(*) 0.121 0.365(**)
200 0.5 0.144 0.242(**) 0.691 0.725 0.832 0.862 0.715 0.796(**) 0.121 0.371(**)
200 0.8 0.164 0.249(**) 0.594 0.672(**) 0.831(*) 0.669 0.691 0.799(**) 0.121 0.399(**)
400 0.5 0.153 0.247(**) 0.667 0.716 0.849 0.845 0.713 0.740 0.121 0.483(**)
400 0.8 0.151 0.229(**) 0.611 0.652 0.760 0.714 0.659 0.748(*) 0.121 0.479(**)

Best Conf 0.164 0.268(**) 0.691 0.731(**) 0.854 0.862 0.718 0.815(**) 0.121 0.483(**)

employed the version which allows setting the number of

clusters. Finally, for Binary Embedding Clustering (“BinEmb-

Clus”) we set the parameters as reported in the original paper

[44]. For some of these techniques a space normalization was

necessary in order to get reasonable results (this was especially

true for those technique based on euclidean distances, which

may suffer for badly scaled spaces) – please note this was

not needed with our RF-based technique. For what concerns

our approach, for each dataset we selected the best number

of trees and subsampling ratio, as determined by the analysis

shown in the previous section. Among the 30 runs, we selected

the clustering with the highest energy, as defined in eq. (4)

(“K-RF” in the table). To have a direct comparison, we also

reported the maximum accuracy obtained among the 30 runs

(“K-RF (Max)”). All these results are displayed in Table III.

Even if preliminary, the analysis shows that the proposed

approach compares very well with classic as well as with

sophisticated alternative approaches, with performances which

are among the top ones for all datasets. More in detail, for

Parkinsons and WBC our scheme outperforms all the others,

whereas for iris, wine and Auto-mpg it represents the second

best technique. Please note that these performances can be in-

creased even more by properly solving the initialization issue:

when considering the maximum performances (last row), the

presented method always outperforms all other approaches (the

only exception is the very recent Binary Embedding Clustering

[44] scheme on the Auto-mpg dataset).

V. CONCLUSIONS

In this paper a novel Random Forest approach for clustering

has been introduced. The approach uses a different Random

Forest to characterize every cluster; these Random Forests

are iteratively updated with a K-means-like algorithm. The

approach has been evaluated on five different datasets, with

encouraging results.
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