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Abstract. The Adaptive Nearest Neighbor (ANN) rule and the Hyper-
sphere Classifier (HC) are two very simple and relatively new variants
of the classical nearest neighbor (1NN) rule. Even if they share a simi-
lar formulation—they correct the query-to-prototype distance by taking
into account the distance of the prototype to the nearest one from other
classes—their relation has never been investigated. The main goal of
this paper is studying this relation and providing an exhaustive perfor-
mance comparison of both methods, highlighting occasions when their
performances differ as well as identifying cases in which their application
is advisable or leads to poorer results. Moreover, we propose a smooth
transition between the two classifiers by studying the use of several con-
vex combinations of their penalized distances. Experiments show that a
combination is particularly helpful when both ANN and HC are worse
than 1NN.
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1 Introduction

The nearest neighbor rule (1NN) [1,2] represents a well known and widely applied
classifier, which assigns an unknown object (query or test object) to the class of
the object of the training set (prototype) whose distance to the testing object
is minimum (i.e. the nearest neighbor). Over the years, numerous variants for
improving this rule have been proposed. Some of them consist in either reducing
the size of the set of prototypes [3] or generating new ones [4]; others focus
on proposing novel dissimilarity measures and making them well-behaved in
high dimensional spaces [5] or adaptive to particular local distributions. Two
relatively recent and very similar approaches belong to the latter category, which
have been independently proposed, namely the Hypersphere Classifier (HC) [6]
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and the Adaptive Nearest Neighbor rule (ANN) [7]. Apparently, authors of HC—
the most recently proposed method—were not aware of ANN since they do not
refer to it in spite of the clear relationship between the two methods.

HC and ANN are both based on the rationale of penalizing the distance
between the query point x and a prototype xi by using the concept of a hyper-
sphere, centered at xi, whose radius is defined by the distance to the prototype’s
nearest prototype which belongs to a different class. This radius measures how
“inside” a class a given prototype is – a large radius indicates that the other
classes are far away from it, thus it can be trusted more. Given this radius, both
HC and ANN correct the distance of the testing point to the prototype: HC
subtracts it from ||x − xi|| while ANN divides ||x − xi|| by the radius. In both
cases, prototypes well inside their class have more importance (their distance to
the testing object is decreased). Despite the idea behind the two approaches is
very similar, a relation between them has not been analyzed yet, this represent-
ing the first goal of this manuscript. Actually, an empirical comparison of these
methods would serve not just to judge whether there are significant performance
differences between the two methods but also to better understand the overall
effect of the corresponding penalizations.

The second goal of this paper originates from the fact that another way of
improving the behavior of the (dis)similarity measures for classification is by
combining them, such that the resulting measure outperforms the individual
ones. In this paper we investigated a simple combination of the two penalized
distances, in order to show if it is possible to improve even more the accuracies.
One of the simplest possibilities is to use a convex linear combination. Accord-
ing to [8], such a combination of two distance functions is particularly useful
when combining an overestimate and an underestimate of the Euclidean dis-
tance, provided that both are either suitable for non-Euclidean topological spaces
or cheaper to be computed than the Euclidean distance itself, by, for instance,
avoiding the computation of costly square root operations. Kernels—i.e. similar-
ity functions—have also been interpolated by convex combinations. Gönen and
Alpaydın [9], referring to [10], point out that the convex combination—or, more
in general, a weighted average—is beneficial if both kernels exhibit similar clas-
sification performances but their class assignments rely sometimes on different
support vectors.

Summarizing, the main contributions of this paper are the following: (i) first,
we highlight the affinity and discuss the relation between HC and ANN; (ii) we
compare their behaviors in terms of accuracy; (iii) we propose a modified convex
combination of them in order to give further insights on the transition from
one to the other. The remaining part of the paper is organized as follows. HC
and ANN are explained in more detail in Sect. 2. Afterwards, in Sect. 3, their
relation is analyzed and four linear transitions between HC and ANN by convex
combinations are proposed. Experimental results and their discussions are given
in Sect. 4. Finally, our concluding remarks are provided in Sect. 5.
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2 Methods

In this section we introduce the two variants of 1NN, namely the Hypersphere
Classifier and the Adaptive Nearest Neighbor Rule. Then, we study their relation
in terms of a logarithmic scaling and, afterwards, present a simple model for the
transition between the two.

2.1 The Hypersphere Classifier

This classifier was originally proposed [6] as an incremental method, usable to
reduce the number of prototypes. Clearly it can also be used without memory
restrictions and, therefore, without forgetting prototypes. In this study, we do
not make use of the incremental property of HC. Let us present the approach
starting from [6], coming later to the formulation with the radius. In [6] authors
define as ρi the region of influence of xi; given that, the distance from x to xi is
computed as follows:

dHC(x,xi) = ||x − xi|| − gρi, (1)

The region of influence ρi is defined as 1/2 of the radius of the hypersphere
associated to xi, namely the hypershpere having as center xi and as radius (ri)
the distance to the nearest prototype of xi belonging to a different class. The
radius ri can be formally defined as:

ri = min
xj∈OT (xi)

d(xi,xj) (2)

with
OT (xi) = {xk such that label(xk) �= label(xi)} (3)

In Eq. (1), g is a free parameter. Even though ρi is defined as half of the
radius of the hypersphere in order to avoid overlapping between hyperspheres
from different classes, in [6] it is shown that the best value for g is 2 which, in
words, means that the best configuration is considering the region of influence as
the whole volume of the hypersphere in spite of the overlapping, i.e. ri = 2ρi. For
the sake of simplification, here we only consider that recommended configuration
and use Eq. (2) to rewrite Eq. (1) as:

dHC(x,xi) = ||x − xi|| − ri. (4)

Notice that Eq. (4) produces negative distances when a query point is inside
the hypersphere associated to xi; this is not a practical problem with the nearest
neighbor rule, which simply takes the minimum of the distances to all prototypes
(no matter this value is negative).
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2.2 The Adaptive Nearest Neighbor Rule

Similarly to HC, this classifier [7] weights distances of a testing point to a pro-
totype according to the size of the hypersphere associated to that prototype—
the hypersphere is defined as in the HC method. Similarly to HC, the effect is
to promote prototypes well inside their class: distances to points having small
hyperspheres are enlarged while distances to points having large hyperspheres
are diminished. This effect is simply obtained by dividing the distances by the
radius, as follows:

dANN (x,xi) =
||x − xi||

ri
. (5)

Notice that Eq. (5) does not generate negative values but has a much stronger
penalization than the one of Eq. (4). However, the distance might diverge if
ri → 0. In order to avoid the uncontrolled increase of dANN , in [7] it is proposed
to add an arbitrarily small ε to the radius. In general, the numerical problem is
unlikely to occur for real-world data satisfying the compactness hypothesis [11].

3 Relation and Transition Between HC and ANN

Relation. It has been shown in some recent works [12,13] that scaling the
distance with a convex non linear transformation can be beneficial for distance-
based classifiers. One example of such non linear scaling is to raise the distance
to a power less than one. Another possibility, which has been investigated for the
feature space but not for distances [14], is to use the logarithm, which has the
same convex monotonic behavior of the power transformation (for feature spaces,
the power transformation corresponds to the well known Box-Cox transform
[15,16]).

Clearly, in distance-based classifiers, such monotonic transformation has no
effect if the classifier only relies on rankings (such as the K-Nearest Neighbor
methods). However, if the classifier uses more complex mechanisms, this non
linear scaling can drastically change the results – see [12,13] for an analysis in
the dissimilarity-based representation.

Suppose now that we apply the non linear scaling logarithm to our input
distance d(x,xi) = ||x − xi||, getting a novel distance d̃(x,xi):

d̃(x,xi) = log d(x,xi) (6)

Consider again the notation that was introduced in Eq. (3). Now the HC rule
redefines the distance with d̃HC(x,xi):

d̃HC(x,xi) = d̃(x,xi) − r̃i, where r̃i = min
xj∈OT (xi)

d̃(xi,xj) (7)
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This radius can be expressed in terms of original distances, as follows:

r̃i = log
(

min
xj∈OT (xi)

ed̃(xi,xj)

)

= log
(

min
xj∈OT (xi)

elog d(xi,xj)

)

= log
(

min
xj∈OT (xi)

d(xi,xj)
)

= log ri (8)

Where the first step is possible since the exponential does not change the argu-
ment of the minimum of the distance. Now,

d̃HC(x,xi) = d̃(x,xi) − r̃i

= log d(x,xi) − log ri

= log
d(x,xi)

ri

= log dANN (x,xi) (9)

Therefore, the application of the HC correction to the logarithm of the orig-
inal distances is equivalent to the application of the logarithm to the ANN
correction computed on the original distances.

Transition. The above-mentioned affinity of HC and ANN motivated us to
propose a link between the two classifiers. Let us call s = ||x − xi|| and t = ri.
Given that, the two distances dANN and dHC can be rewritten as s/t and s − t,
respectively. In order to combine dANN and dHC , we propose four variants of
their convex combination:

dλ(s, t) = (1 − λ)
s

t
+ λ(s − t) (10)

dλ(s, t) =
(1 − λ)s
(t + λ)

+ λ(s − t) (11)

dλ(s, t) =
(1 − λ)s
(t + λ2)

+ λ(s − t) (12)

dλ(s, t) =
(1 − λ)s
(t +

√
λ)

+ λ(s − t) (13)

Equation (10) corresponds to the canonical convex combination of s and t, where
λ ∈ [0, 1] controls the transition from ANN to HC. In order to cope with a
possible singularity, Eq. (11) might be preferred instead, as well as other variants
that damp faster or slower the singularity, e.g. Eqs. (12) and (13). Please note
that also in these variants λ ∈ [0, 1] controls the transition from ANN to HC (for
λ = 0 we have the dANN distance, whereas for λ = 1 we have the dHC one).
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4 Experimental Results and Discussion

For the sake of reproducible research and fair comparison, we consider the union
of the two collections of data sets that were used for the experiments in the orig-
inal papers of HC and ANN. In [6], results were computed for the following data
sets: WDBC, Ecoli, German credit data, Glass, Haberman, Heart, Ionosphere,
Iris, Pima, Sonar, Tic-Tac-Toe, Vehicles, Wine and Yeast. In [7], experiments
were performed for WDBC, Ionosphere, Pima, Liver and Sonar. Besides, with the
aim of considering a wider range of data conditions, we included additional data
sets to the collection; namely: Arrhytmia, WPBC, Soybean1, Soybean2, Malaysia,
x80, Imox, Chromo and Spirals. The main properties of the collection of 24 data
sets are summarized in Table 1.

Table 1. Main properties of the considered data sets

Dataset # feat # obj # class Dataset # feat # obj # class
German-credit 20 1000 2 Wine 13 178 3
Pima 8 768 2 Sonar 60 208 2
WDBC 30 569 2 Soybean1 35 266 15
Tic-Tac-Toe 9 958 2 Chromo 8 1143 24
Yeast 8 1484 10 Vehicles 18 846 4
Ecoli 7 336 8 Malaysia 8 291 20
Arrhythmia 278 420 12 Imox 8 192 4
Heart 13 297 2 x80 8 45 3
Haberman 3 306 2 Soybean2 35 136 4
Ionosphere 34 351 2 Iris 4 150 3
Liver 6 345 2 Glass 9 214 6
WPBC 32 194 2 Spirals 2 194 2

4.1 First Experiment: Classifier Comparison

All the results reported in Table 2 were computed for repeated train and test
with 50 repetitions. In each repetition, data sets were split into two random
equal-sized parts, one used for training and the other for testing. Classification
accuracies are computed as the number of correctly classified elements in the
testing set. In the second, third and fourth columns of Table 2 we reported such
accuracies, together with the standard errors. In order to have a statistically
robust pairwise comparison between the three methods, we performed a two-
tailed t-test, at the 5% of significance, to compare the 50 repetitions of each
pair of methods (namely 1NN vs. ANN, 1NN vs. HC and ANN vs. HC). This
permits to judge whether the observed differences are statistically significant or
not [17]. The null hypothesis was that the performances of the two examined
techniques are equivalent: when it is rejected, a statistically significant difference
is found. Results of the t-tests are reported in the last three columns of Table 2.
In case of rejection of the null hyphothesis, a slanted arrow points to the best
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Table 2. Accuracies and t-tests

Accuracies t-tests

Dataset 1NN ANN HC 1NN

vs. ANN

1NN vs. HC ANN vs. HC

♦ German-credit 68.59± 0.29 70.92± 0.29 71.27± 0.29 Reject↗ Reject↗ Reject↗
♦ Pima 69.03± 0.33 71.91± 0.32 72.19± 0.32 Reject↗ Reject↗ Reject↗
♦ WDBC 95.27± 0.18 96.01± 0.16 96.23± 0.16 Reject↗ Reject↗ Reject↗
♦ Tic-Tac-Toe 79.07± 0.26 80.79± 0.25 82.51± 0.25 Reject↗ Reject↗ Reject↗
♦ Yeast 50.81± 0.26 52.87± 0.26 53.54± 0.26 Reject↗ Reject↗ Reject↗
♦ Ecoli 79.42± 0.44 81.95± 0.42 82.71± 0.41 Reject↗ Reject↗ Reject↗
� Arrhythmia 56.42± 0.48 55.8± 0.48 58.07± 0.48 Accept Reject↗ Reject↗
� Heart 2 76.48± 0.49 78.28± 0.48 78.59± 0.48 Reject↗ Reject↗ Accept

� Haberman 66.3± 0.54 68.39± 0.53 68.24± 0.53 Reject↗ Reject↗ Accept

� Ionosphere 85.27± 0.38 92.92± 0.27 92.82± 0.28 Reject↗ Reject↗ Accept

� Liver 60.35± 0.53 62.08± 0.52 62.15± 0.52 Reject↗ Reject↗ Accept

� WPBC 66.25± 0.68 71.11± 0.65 70.99± 0.65 Reject↗ Reject↗ Accept

� Wine 94.47± 0.34 95.37± 0.31 95.28± 0.32 Reject↗ Reject↗ Accept

� Sonar 82.96± 0.52 83.77± 0.51 83.75± 0.51 Accept Accept Accept

� Soybean1 84.24± 0.45 83.32± 0.46 83.41± 0.46 Accept Accept Accept

� Chromo 54.32± 0.29 54.06± 0.29 53.95± 0.29 Accept Accept Accept

� Vehicles 68.56± 0.32 67.93± 0.32 68.0± 0.32 ↖Reject ↖Reject Accept

� Malaysia 66.07± 0.55 64.96± 0.56 64.64± 0.56 ↖Reject ↖Reject Accept

� Imox 91.77± 0.4 90.81± 0.42 90.67± 0.42 ↖Reject ↖Reject Accept

� x80 90.17± 0.88 87.48± 0.98 87.83± 0.96 ↖Reject Accept Accept

� Soybean2 83.68± 0.63 82.5± 0.65 82.62± 0.65 ↖Reject Accept Accept

� Iris 93.79± 0.39 94.32± 0.38 93.76± 0.39 Reject↗ Accept ↖Reject

	 Glass 66.62± 0.64 64.99± 0.65 66.07± 0.65 ↖Reject Accept Reject↗

 Spirals 72.95± 0.64 68.76± 0.67 68.02± 0.67 ↖Reject ↖Reject ↖Reject

classifier. To better clarify this notation, for example, in the “1NN vs. ANN”
column, “German-credit” row, the arrow following the “Reject” indicates that
the ANN rule was statistically significantly better than the 1NN rule on the
German-credit dataset.

By looking at the table, different observations can be derived. According to
the performances, a number of groups of data sets can be identified. The first
group (denoted with ♦) corresponds to six data sets for which HC is better than
ANN and both, in turn, are better than 1NN. A slightly different behavior is
exhibited by Arrhytmia (denoted with �) for which there is no statistical differ-
ence between 1NN and ANN. Another large group (denoted by �) is composed
by data sets for which there is no difference between ANN and HC but both are
better than 1NN. Subsequently, we find a group of three data sets (�) for which
there is no statistical difference between the three classifiers.

Continuing with the descending reading of the table, there is a group of three
data sets (�) for which 1NN is better than both ANN and HC while there is no
difference between the latter. A slightly different behavior is shown by x80 and
Soybean2 (denoted with �), for which—in contrast to the previous case—HC is
equivalent to 1NN. The last group (�, 	 and 
) contains three data sets whose
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results are special: Iris is the only case in which ANN is better than both
1NN and HC; for Glass, HC is better than ANN, even though the former is
not significantly different than 1NN while the latter is worse than 1NN. Finally,
results for the Spirals data set show an artificial case—deliberately included
by us for illustration purposes, see Fig. 1—in which 1NN is significantly better
in accuracy (by 4.19% and 4.93%, respectively) than ANN and HC. Notice that
the spheres defined for Spirals would occupy the space between the spiral arms
and their corresponding radii are the half of the width of the inter-arm corridors.
Penalizations by the radius, that are so beneficial in other cases, appear to be
counterproductive for this data set due to its particular configuration.
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Fig. 1. Scatter plot of Spirals data set

In general we can see that in many
cases the correction of both HC and ANN
is beneficial with respect to 1NN, but
there are some other cases where this cor-
rection is not useful at all. Concerning
the two techniques, the HC method seems
to be slightly superior to the ANN vari-
ant. We tried to derive a relation between
such classification accuracies and data
set properties (in terms of dimensional-
ity, number of classes and so on): however,
it was not possible to derive many regu-
larities, apart from the facts that (i) the
behavior for Arrhythmia—the highest-dimensional data set—is special; (ii) the
large group of datasets for which there is no difference between ANN and HC
but both are better than 1NN is homogeneous with respect to the number of
classes (five two-class problems and a three-class one) and (iii) two of the three
data sets with more classes (Soybean1 and Chromo) do not exhibit any profit
from the use of ANN and HC.

4.2 Second Experiment: Transition Between ANN and HC

In this second experiment we tested if and how much helpful is to employ a
smooth transition between ANN and HC. Actually, the penalizations of the
distances implemented by these two rules have different nature, due to the two
different mathematical operations involved (subtraction vs. division). Therefore,
it seems reasonable to try to employ a combination of the two, as explained
in Sect. 3. To test this aspect we repeated the classification experiments on the
24 datasets of before, by using the convex combinations of the two modified
distances (in all the variants proposed in Sect. 3). The parameter λ has been
varied from 0 (ANN rule) to 1 (HC rule) with step 0.1.

The results showed that when the HC and the ANN rules were both
outperforming the 1NN rule (namely in the first fourteen data sets, from
German-credit until Sonar), there are no improvements by their convex com-
binations, with a smooth transition between the accuracies of the two methods.
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More interesting are the situations where ANN, HC or both are worse than 1NN.
Such situations are shown in Fig. 2, where accuracies are shown when varying
λ. In all plots, the red line represents the 1NN result, whereas the four variants
defined by Eqs. (10), (11), (12) and (13) are represented by the blue, cyan, black
and magenta lines, respectively.

Fig. 2. (Best viewed in color) Analysis of the transition. Red line represents the 1NN
result, whereas the four variants defined by Eqs. (10), (11), (12) and (13) are represented
by the blue, cyan, black and magenta lines, respectively. (Color figure online)

For these data sets, it is interesting to observe that the convex combinations
improve over both ANN and HC, except in the Arrhytmia case. Equation 13
is consistently the best for all these cases. Notice, in addition, that in four out
of eleven occasions—for Chromo, Vehicle, Iris and Glass—at least one of the
convex combinations outperforms 1NN for either some values of λ or all its range
(cf. Iris). This represents a valuable result, since it supports the idea that the
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combination can be really useful when ANN and HC both fail. Concerning the
parameter λ, we observed that in general the best value lies in the interval
[0.1, 0.3].

A ranking of the variants of the convex combinations, according to their
effects, is clearly observed in some of the subfigures; see, for instance, results for
Chromo, Vehicles, and Malaysia. In such cases, the sequence of the variants,
starting from the best one, is: Eqs. (13), (11), (12) and (10).

5 Conclusion

In this paper we presented an empirical comparison and analysis of two related
techniques, namely the Adaptive Nearest Neighbor Rule and the Hypersphere
Classifier. Both approaches improve 1NN by correcting the distance query-
prototype with information related to the distance of the prototype to the other
classes, the difference consists in the way such correction is implemented. The
relation between them is that the application of the HC correction to the loga-
rithm of the original distances is equivalent to the application of the logarithm
to the ANN correction computed on the original distances. We also performed a
thorough experimental comparison between the two methods, also investigating
how to integrate them via convex combinations.

Results lead us to conclude that HC, overall, should be preferred over ANN.
However, since ANN does not yield negative distances, it might be considered
as a processing step to apply, afterwards, alternative decision rules that are not
necessarily based on the smallest dissimilarity values. We also showed that the
convex combination of the two approaches is useful when both methods are
worse than the original 1-Nearest Neighbor. In these cases, in general, 0.1 ≤
λ ≤ 0.3 seems to be a convenient interval to select the parameter for the convex
combination. Its proper tuning, however, is a matter for further study.
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