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Abstract. Isolation Forests represent a recent variant of Random
Forests, specifically designed for one-class classification problems. In the
original version, this method builds a set of extremely randomized trees
to describe the set of points, subsequently measuring the “anomaly” of
a testing point by looking at how much deep it arrives in each tree.
Even if few extensions have been recently proposed – mainly aimed at
improving the training stage – in most cases the anomaly score is still
kept in its original formulation, which does not completely exploit all
the information contained in the trained forest. This paper is focused on
improving this aspect, and proposes a new approach for the computation
of the anomaly score, which exploits the different information linked to
the different nodes of the trees of the forest. We investigate three dif-
ferent variants of the novel anomaly score, evaluating them with twelve
UCI benchmark datasets, with encouraging results.
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1 Introduction

Random Forests [5] represent a widely used tool for classification and regression,
based on creating an ensemble of randomized decision trees [4], where each tree
is built on a random subsample of the data and of the features. Randomness is
crucial to get diverse trees, reducing the risk of overfitting and the computational
complexity. The obtained ensemble method is more robust and performs better
than a single tree [5,18]; actually it has been shown that these tools perform
very well in many different fields such as computer vision [3], bioinformatics [6],
remote sensing [23] and others, reaching performances which are comparable with
other state-of-the-art techniques such as Support Vector Machines and Neural
Networks [12].

Even if Random Forests have been mainly used for classification and regres-
sion, there also exist some random forest-based approaches for alternative
learning paradigms, such as clustering [1,21,26,27,30], survival analysis [16],
ranking problems [7], multi-label classification [17] and one-class classification
[8,14,15,20,26]. In this paper we focus on this latter class, i.e. one-class classifi-
cation [22], a learning problem in which only objects from one class are available
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(the target, or positive, class), and where the aim is to identify whether new
objects belong to that class or not [22,29]. The objects that do not belong to
the positive class are also known as outliers or anomalies.

Even if the exploitation of Random Forests in the one-class classification
field has not been studied as extensively as for classification and regression, some
interesting approaches have been proposed, which can be subdivided mainly into
two classes. The first class includes all those methods, such as [8,26], that solve
the one-classification task by creating a synthetic negative class (the outliers), so
that a classic classification random forest can be trained. The outlier generating
process is often based on assuming a well-defined distribution: one possibility is
to sample outliers uniformly on the domain space or to locate them in sparse,
isolated regions that contain few inliers [26]. The main advantage of this class
of approaches is that standard classification forests can be used without any
modification. At the same time these methods can arise some issues: the most
important is that the choice of the sampling technique is crucial. For example in
a high-dimensional space if we assume outliers to be uniformly distributed, we
have to generate a very big number of points to populate the space, and this is
often not feasible. In addition, given a specific problem, the chosen distribution
may not truly reflect how the outliers would distribute.

The second class of approaches are those based on Isolation Forests, a partic-
ular kind of Random Forests introduced by Liu and colleagues in [19,20]. Within
these tools, the goal is not to discriminate objects of different classes but rather
to isolate instances, that is to separate one object from the remaining ones. To
do that, Isolation Forests partition the data through random and recursive splits
along feature axes: a point is isolated when the leaf containing that point is cre-
ated. Outliers, which are very different in terms of feature values and number, are
likely to be separated earlier in the tree building process than inliers. Therefore,
to quantitatively measure how much an object is isolated, the authors of [19,20]
propose a scoring function, called anomaly score, which is inversely proportional
to the length of the path in a tree that the object traverses to reach its leaf, aver-
aged along all trees. As said before, the defined score will be higher for outliers
since they are likely to be separated closer to the root. Isolation Forests present
many advantages: they can work with only positive instances –and therefore no
outliers need to be artificially generated– and they are computationally efficient
thanks to the random split mechanism.

Even if Isolation Forests have been shown to be very effective for one-class
classification–e.g authors of [11] empirically demonstrated that they are the best
existing method to solve one-class classification tasks–, streaming data [13] and
clustering [1], their full potential has not yet been completely exploited, espe-
cially for what concerns the testing phase. In almost all works dealing with
Isolation Forests (see for example [9,11,28] or the extension proposed by [14])
the anomaly score is still kept in its original formulation of [19,20], which does
not completely exploit all the information contained in the trained forest1. More

1 For the sake of completeness, please note that a new scoring function has been
proposed in [15]. This measure, however, is specifically designed for streaming data.
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in detail, the scoring function is based on the length of the path traversed by
an object (the shorter the path, the more isolated the point). Even if being very
reasonable, this measure does not consider the information carried by each node,
i.e. it does not consider that not all nodes are equally important in the path –for
example a node with few points, e.g. a leaf, is usually more descriptive of the
feature space than a bigger node, such as the root. In this paper we overcome
this drawback, and propose an extension of the anomaly score: the novel score,
which we called path-weighted anomaly score, is based on the estimation of a
weighted path length, which exploits and takes into account the importance of
the different nodes of the trees. We designed three different variants of the score,
which consider different ways of measuring the “importance” of a node in a path.
It is important to note that node weights are computed on training data and
therefore, to not increase the testing procedure complexity, we compute them
while building the tree, i.e. during the training phase.

The proposed schemes have been evaluated on 12 UCI benchmark datasets
for one-class classification [10]. We investigated different parametrizations and
configurations, comparing the proposed approach with the standard counterpart:
the obtained results are very promising. The rest of the paper is organized as
follows: in Sect. 2 we explain in detail the Isolation Forests, while in Sect. 3 we
thoroughly define the proposed methodology. Section 4 is dedicated to the exper-
imental part and the related results. Finally, Sect. 5 contains some conclusions.

2 Isolation Forests

Isolation Forests are variants of Random Forests introduced by Liu in [19,20].
The basic idea behind these methods is that one-class classification can be solved
via isolation, that is by separating one object from the rest of the data, without
focusing on discriminating objects of different classes.

To encode the concept of isolation the authors in [19,20] propose a new tree
structure, called ITree. The ITree is based on the Extra-Trees proposed in [13].
These tools introduce different levels of randomness in the tree construction: for
example, instead of evaluating at each node every possible split on a subset of
features (as in standard decision trees), Extra Trees select a random split for each
feature in the subset. The ITree exploits the extreme version of the Extra-Trees,
called totally randomized trees, in which every split is completely random (at
every node, a random feature is extracted, and a random threshold in the feature
domain is chosen). Clearly, ITrees can be built using data coming from only one
class. Very recently, some authors [14,15] investigated alternative approaches
to build Isolation Forests: in particular in [14] they develop a function able to
evaluate every possible split in a one-class context, while in [15] they design a
new criteria which chooses the feature to split on randomly but proportionally
to the feature relevance.

To recover the isolation capability of an object, an anomaly score is defined
on the basis of the length of the path that the object traverses from the root to
its leaf. This measures the number of partitions needed to separate it from the
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rest [20]: if an object is found closer to the root, i.e. its path is short, it means
that it is easier to separate it, and thus to isolate it from the rest, with respect
to objects that end up in deeper leaves. More in detail the anomaly score of an
object x with respect to an Isolation Forest F is the following –in the paper we
consider the dependence of the score on F implicit in order not to make the
notation too heavy–:

s(x,N) = 2−E(h(x))
c(N) (1)

where N is the number of samples used to train each tree of the forest, E(h(x)) is
the average path length across all trees (see below) and c(N) is a normalization
factor, needed to compare trees built on sets of different sizes. To estimate c(N),
which can be seen as the average path length, we can use the estimation of
the average path length of unsuccessful searches in Binary Search Trees [19,20],
which is defined in the following way according to [24]

c(N) =

⎧
⎪⎨

⎪⎩

2H(N − 1) − 2(N − 1)/N if N > 2
1 if N = 2
0 otherwise

(2)

where H(i) stands for the harmonic number. The term E(h(x)) in formula (1) is
computed as:

E(h(x)) =
∑

t∈F ht(x) +
∑

t∈F c(|lt(x)|)
|F| . (3)

where t is a tree, c(|lt(x)|) is a normalization factor needed when t is not fully
grown (which estimates the average depth of the tree which can be built from
lt(x)) and ht(x) = |Pt(x)| with Pt(x) being the path of x, i.e. the set of nodes
visited by x from the root to the leaf containing x. From formula (1) it can be
inferred that the score of an object x is proportional to the inverse of its average
path length in the forest: if x ends up in leaves that are very deep in the trees,
its score will be quite low (close to 0), if instead its path ends very early the
score will be high (close to 1).

The anomaly score defined in (1) represents a reasonable way to characterize
outliers, and thus to solve the one-class classification problem: actually outliers
are usually very heterogeneous and low in number with respect to inliers, and
they do not follow a predefined distribution. When building an Isolation Forest,
they will be more likely separated from the rest of the data very quickly, i.e.
after few partitions. In other words, outliers will be likely to traverse a shorter
path with respect to inliers, producing an higher anomaly score (usually ≥ 0.5
as stated in [20]).

3 Proposed Methodology

In this section we describe the proposed approach. The starting observation is
that the anomaly score considers each node visited in a path to have the same
importance. In this sense, the path length ht(x) of a x in a tree t can be written as
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ht(x) =
∑

k∈Pt(x)

1. (4)

The main idea behind the proposed approach is to define a novel anomaly
score where nodes in the path are given a weight, which corresponds to specific
information that can be retrieved in the forest. The novel scoring function is
called path-weighted anomaly score and is based on re-defining ht(x) as follows.

Given a tree t and the path Pt(x) of an object x, ht(x) is defined as:

ht(x) =
∑

k∈Pt(x)

wtk (5)

where wtk represents the weight the node k has in the tree t. Clearly, when
considering wtk = 1 ∀t, k, we have the original anomaly score. The weights wtk

can be defined in several ways, here we investigated three different versions,
presented in the following.

3.1 Variant 1 – Neighborhood

The first variant is based on the concept of neighborhood defined in [30]: con-
sidering a node k and an object x in that node, the neighborhood of x is defined
as the set of all the other objects that would pass from k. More in general, we
can define the neighborhood Ntk of a node k of a tree t as the set of the objects
of the dataset that would pass by k in their path from the root to the leaves of
the tree t. Clearly the neighborhood of the root is the whole dataset, whereas
the neighborhood of a leaf contains only few points. To define the weight, we
observe that a node which has a very small and restrictive neighborhood is more
important than a larger one, since it is more specific for the object under anal-
ysis. In particular, in an Isolation Forest a small neighborhood occurs when we
are very deep in the tree (since the number of objects decreases from the root
to the leaves) or we are high in the tree and there is an outlier that has been
isolated after few partitions (i.e. we have leaves at small depths).

We thus want to give more weight to nodes with a smaller neighborhood,
which leads to the following definition of wN

tk. Given a tree t and a node k in t,
its weight wN

tk is:

wN
tk =

1
|Ntk| (6)

where Ntk is the neighborhood of the node k, i.e. the set of points passing by
that node in the path from the root to their leaves.

3.2 Variant 2 – Proxy

The second variant starts from [14], an extension of Isolation Forests which
improves the training stage: instead of a random train, trees are built by opti-
mizing a predefined function. In particular, while building a tree, the authors
of [14] find a split by minimizing the so-called proxy function, a function which
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indicates the loss of information obtained when doing a particular split. In the
classification setting, this function is typically defined using the class labels (an
example is the Gini impurity): however, in the case of Isolation Forests, labels
are not available and thus such function must be defined in an alternative way.

The definition given by [14] is based on the following intuition: the best split is
the one which best separates instances, i.e. where one of the two children contains
the maximum number of objects in a minimum volume and the other child the
minimum number of instances in a maximum volume. In principle, the former
child should characterize the inliers, whereas the latter should characterize the
outliers. In practice, the proxy is an adaptation of the Gini impurity for the
one-class context, and for its definition we need: a volume measure, the number
of inliers and an estimation of the number of outliers. Aside from the number of
inliers, which is known, we define the other two elements as follows:

(i) The volume of a node k is computed via the Lebesgue measure Leb(k). In
the proxy, the ratio λk = Leb(k)

Leb(parent(k)) between the volume of a node k and
its parent is measured to retrieve the best split.

(ii) In [14] the distribution of outliers within the node k to be split is assumed to
be constant with respect to node k. Therefore the number of outliers n′

k is
defined as n′

k = nkγ where nk is the number of inliers and γ some constant.

Leaving aside further mathematical processing steps (for all the details, please
see [14]), the one-class proxy is defined as:

proxy(k) =
nkL

γnkλL

nkL
+ γnkλL

+
nkR

γnkλR

nkR
+ γnkλR

(7)

where kL and kR are respectively the left and right child of k and γ = 1.
From our perspective, the one-class proxy can be used to measure the good-

ness of a split at a node k (the lower the proxy the better the split): actually, a
high proxy means that the split does not separate well the data the node con-
tains, i.e. the node is not very important in the isolation process. On the contrary
a low proxy means that the node is split in a good way, i.e. some objects will
likely to be isolated after it. Following this reasoning, we can define a new weight
wP

tk, given a tree t and a node k in t, as:

wP
tk =

1
proxyt(k)

(8)

where proxyt(k) is the proxy computed at node k.

3.3 Variant 3 – Proxy-Neighborhood

The third variant we propose combines the two previous versions, taking into
account both the neighborhood and the proxy of a node.
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Given a tree t and a node k in t, its weight wPN
tk is:

wPN
tk =

1
proxyt(k)|Ntk| (9)

where proxyt(k) and Ntk are respectively the proxy and the neighborhood of the
node k.

4 Experimental Evaluation

The evaluation is based on 12 datasets from the UCI-ML repository [10] which
are benchmarks for one-class classification [14] (they were preprocessed following
the specifications in [14]). Table 1 presents an overview of the datasets. We can
see that the datasets cover a large range of situations: they differ in size (the
smallest one has 351 samples while the biggest 567498), in the number of features
(from 3 up to 164) and in the outlier percentage (from 0.03% up to 45.8%).

Isolation Forests were trained with standard parameters, as defined in [19,20],
which are: number of objects N = 256 sampled without replacement, size of the
forest T = 100, number of features available per tree F = All and maximum
depth D = log(N). In addition we also performed the experiments using D =
N − 1 to understand whether more descriptive trees produce better results.

Following [14], we adopted a Novelty Detection framework [25], i.e. only
inliers are used in the training phase2. For each experiment the dataset has been
split equally, i.e. 50% of the samples, in training and testing set. Each experiment
has been repeated 30 times. Finally, as often done in many one-class classification
problems [14,19,20] as accuracy measure we adopted the area under the ROC
curve (AUC).

Table 1. Overview of the 12 UCI datasets used for the experimental evaluation.

Datasets Nr. of objects Nr. of features Outlier %

Adult 48842 6 16.10%

Annthyroid 7200 6 7.42%

Arrhythmia 452 164 45.80%

ForestCover 286048 10 0.96%

Http 567498 3 0.39%

Ionosphere 351 32 35.90%

Pendigits 10992 16 10.41%

Pima 768 8 34.90%

Shuttle 49097 9 7.15%

Smtp 95156 3 0.03%

Spambase 4601 57 39.40%

Wilt 4839 5 5.39%

2 An alternative framework to adopt would be Outlier Detection [2] which uses both
outliers and inliers in the training stage.
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The first analysis compares the novel anomaly score with the standard
unweighted version. In Table 2 we present the results obtained when using stan-
dard parametrization with depth log(N) and N − 1. The last row is the average
across all the datasets. The best result is highlighted in bold. To assess the sta-
tistical significance we computed the standard errors of the mean, which are
comprised in the range 4 ∗ 10−9 and 8 ∗ 10−5. As a first general observation, if
we look at the average across the datasets, we can see that the newly defined
scores outperform the standard anomaly score. More in detail, except for two
datasets, Spambase and Adult, the best score is always obtained with a path-
weighted variant; for Shuttle instead, it seems there is no difference in using
the standard or the novel score. On the other hand, in some cases, such as for
Wilt, the improvement is quite relevant (0.718 versus 0.535). Table 2 also shows
that varying the depth parameter is advantageous for our proposal, while for the
anomaly score the performances vary only slightly.

Table 2. Results for the standard parametrization setting. Anomaly stands for the
standard definition of the anomaly score, Variant 1 for the neighborhood-based variant,
Variant 2 for the proxy-based one and Variant 3 for the variant based on both the
neighborhood and the proxy.

Dataset Anomaly Variant 1 Variant 2 Variant 3

N − 1 log(N) N − 1 log(N) N − 1 log(N) N − 1 log(N)

Adult 0.631 0.630 0.625 0.629 0.627 0.630 0.610 0.629

Annthyroid 0.915 0.912 0.939 0.903 0.934 0.908 0.915 0.904

Arrhythmia 0.770 0.759 0.773 0.753 0.773 0.756 0.750 0.752

ForestCover 0.845 0.852 0.869 0.827 0.860 0.838 0.815 0.829

Http 0.994 0.993 0.997 0.994 0.997 0.996 0.997 0.992

Ionosphere 0.905 0.898 0.945 0.881 0.959 0.901 0.946 0.880

Pendigits 0.840 0.798 0.928 0.805 0.927 0.834 0.913 0.803

Pima 0.732 0.729 0.694 0.734 0.712 0.734 0.677 0.733

Shuttle 0.996 0.996 0.996 0.995 0.995 0.996 0.987 0.995

Smtp 0.902 0.913 0.908 0.920 0.918 0.927 0.890 0.915

Spambase 0.825 0.832 0.798 0.827 0.824 0.829 0.755 0.828

Wilt 0.535 0.483 0.704 0.476 0.691 0.484 0.718 0.477

Average 0.824 0.816 0.848 0.812 0.851 0.819 0.831 0.811

As second experiment, we performed an analysis to study how the perfor-
mances change when varying the size of the forest, i.e. T ∈ {50, 100, 200, 500}:
results are presented in Table 3. For each T we report the best anomaly score
(A) and the best path-weighted anomaly score (PW). We also indicate the vari-
ant reaching the best result. In bold we highlight the best result for each T .
To assess the statistical significance we computed the standard errors of the
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Table 3. Results for different T s. A stands for anomaly score, PW for path-weighted
score. We report the best weighted variant between parenthesis.

Dataset T=50 T=100 T=200 T=500

A PW A PW A PW A PW

Adult 0.629 0.628 (V2) 0.631 0.630 (V2) 0.632 0.631 (V2) 0.631 0.631 (V2)

Annthyroid 0.912 0.929 (V1) 0.915 0.939 (V1) 0.917 0.943 (V1) 0.918 0.946 (V1)

Arrhythmia 0.764 0.760 (V2) 0.770 0.773 (V2) 0.772 0.778 (V1) 0.775 0.784 (V1)

ForestCover 0.845 0.849 (V1) 0.852 0.869 (V1) 0.856 0.885 (V1) 0.861 0.896 (V1)

Http 0.992 0.996 (V2) 0.994 0.997 (V2) 0.994 0.998 (V2) 0.994 0.998 (V3)

Ionosphere 0.900 0.951 (V2) 0.905 0.959 (V2) 0.906 0.961 (V2) 0.907 0.962 (V2)

Pendigits 0.834 0.913 (V2) 0.840 0.928 (V1) 0.842 0.939 (V3) 0.844 0.953 (V3)

Pima 0.727 0.730 (V2) 0.732 0.734 (V2) 0.734 0.736 (V2) 0.735 0.737 (V2)

Shuttle 0.996 0.994 (V2) 0.996 0.996 (V1) 0.997 0.997 (V1) 0.997 0.997 (V1)

Smtp 0.911 0.923 (V2) 0.913 0.927 (V2) 0.913 0.927 (V2) 0.913 0.927 (V2)

Spambase 0.827 0.824 (V2) 0.832 0.829 (V2) 0.837 0.834 (V2) 0.840 0.837 (V2)

Wilt 0.534 0.687 (V1) 0.535 0.718 (V3) 0.537 0.753 (V3) 0.535 0.779 (V3)

Average 0.823 0.849 0.826 0.858 0.828 0.865 0.829 0.871

50 100 200 500
Nr of Trees

0.8
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0.82

0.83

0.84
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d 
A

U
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Neighborhood-N-1
Proxy-N-1
Proxy-Neighborhood-N-1
Neighborhood-log(N)
Proxy-log(N)
Proxy-Neighborhood-log(N)

Fig. 1. Datasets average-standard parametrization

mean, which are comprised in the range 2∗10−9 and 9∗10−5. As in Table 2, the
last row presents the average across all the datasets. We can observe that the
proposed method works well and the performances increase as T , the size of the
forest, does. This is not true for the standard anomaly score, which improvement
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reaches a plateau when T = 100. Indeed if we look at the results for T = 50 the
best score for 4 datasets is reached with the standard score, but if we observe
the results for T = 500 there is only one dataset which prefers the unweighted
anomaly score. This analysis also shows that in 27/48 cases the variant based on
the one-class proxy, Variant 2 is the best one. On the contrary, Variant 3 rarely
achieves the best results. We can also observe that for more than half datasets
the best variant does not change when varying the number of trees.

The last analysis aims at a deeper understanding of the three versions of the
path-weighted anomaly score. We analysed how the performance of the different
variants, averaged across all the datasets, varies when varying the size of the
forest. The results are depicted in Fig. 1: we can observe that among the three
variants, if we fix the depth to either log(N) or N −1, the best variant is in both
cases the one based on the proxy, confirming the results of Table 3. It makes
sense since the proxy measures the goodness of a node in terms of split, and
thus how well it isolates the data. Another observation we can make is that in
general, using fully grown trees, i.e. depth N − 1, increases the performances no
matter which variant we consider.

5 Conclusions

This paper proposes an improvement of the classical anomaly score of Isolation
Forests by exploiting node-related information. The proposed approach is very
robust and compares well to the state of the art; in particular it achieves the best
performances when working with large forests and with completely grown trees.
Nevertheless we could make some further improvements, such as developing an
automated method that given a dataset chooses a priori the best variant. In
the future we would like to investigate novel ways to define the importance of a
node and to design new methodologies to isolate points, i.e. modify the training
phase.
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