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Several problem in Artificial Intelligence and Pattern Recognition are computationally intractable due to their inherent
complexity and the exponential size of the solution space. One example of such problems is biclustering, a specific clustering
problem where rows and columns of a data-matrix must be clustered simultaneously. Quantum information processing
could provide a viable alternative to combat such a complexity. A notable work in this direction is the recent development
of the D-Wave computer, whose processor has been designed to the purpose of solving Quadratic Unconstrained Binary
Optimization (QUBO) problems. In this paper, we investigate the use of quantum annealing by providing the first QUBO
model for biclustering and a theoretical analysis of its properties (correctness and complexity). We empirically evaluated the
accuracy of the model on a synthetic data-set and then performed experiments on a D-Wave machine discussing its practical

applicability and embedding properties.

Keywords Quantum annealing - D-Wave - Biclustering

1 Introduction

Biclustering, also known in other scenarios as subspace clus-
tering, is a term used to encompass a large set of data
mining techniques generally aimed at “performing simul-
taneous row-column clustering” of a data matrix (Madeira
and Oliveira 2004). It is used in several different sce-
narios, such as document analysis (Dhillon 2001), market
segmentation (Dolnicar et al. 2012), recommender systems
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(Mukhopadhyay et al. 2014) and, most importantly, expres-
sion microarray data analysis (Oghabian et al. 2014; Madeira
and Oliveira 2004; Badea 2009; Preli¢ et al. 2006; Flores
etal. 2013). In this last scenario, the starting point is a matrix
whose rows and columns represent genes and experiments,
respectively. Each entry of the matrix measures the expres-
sion level of a gene in a specific experiment. Biclustering
aims to find clusters of genes which show a coherent behav-
ior in subsets of experiments. This permits the discovery of
co-regulation mechanisms. Answering this task can provide
invaluable information to biologists, given the ever increas-
ing amount of data that they have to analyze.

Different biclustering techniques have been proposed in
the past (Cheng and Church 2000; Ayadi et al. 2012; Tu
et al. 2011; Bicego et al. 2010; Denitto et al. 2014), each one
characterized by different features, such as computational
complexity, effectiveness, interpretability and optimization
criterion—cf. (Madeira and Oliveira 2004; Preli¢ et al.
2006; Flores et al. 2013; Henriques et al. 2015; Henriques
and Madeira 2014) for a general review. Some of these
approaches aim at adapting a given clustering technique to
the biclustering problem, for example by repeatedly perform-
ing rows and columns clustering. However, the majority of
recent works aim at proposing novel models for bicluster-
ing, where rows and columns are analyzed simultaneously
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(as opposed to clustering rows and columns separately) (Tu
et al. 2011). This has several advantages for what concerns
the performance of the biclustering process that is signifi-
cantly more accurate. However, such accuracy comes at a
price as such models typically involve a large amount of
variables and relationships. Specifically, the typical candi-
date data for biclustering are represented by a matrix with
thousands of column/rows (Madeira and Oliveira 2004).
Moreover, the underlying optimization task required by the
model is NP-hard leading to severe restrictions on the prac-
tical applicability of those approaches. In order to combat
such complexity, recent works typically relax the model or
use heuristic, greedy approaches, hence giving up optimality
of the solution.

In this paper, we investigate the applicability of a meta-
heuristic, called Quantum Annealing (QA) (Finnila et al.
1994; Kadowaki and Nishimori 1998; Santoro and Tosatti
2006), to the global optimization problems underlying biclus-
tering, by following some recent developments in the con-
struction of quantum devices that physically realize quantum
annealing. Similarly to the classical Simulated Annealing,
QA is an optimization meta-heuristic that seeks the global
optimum of an objective function by following a process
inspired by the thermodynamic process of annealing. In this
search, QA employs quantum fluctuations in order to escape
local minima, i.e., it uses some quantum effects that allows
the tunneling through narrow barriers separating local min-
ima, rather than climbing over them as done classically by
using thermal fluctuations. Apart from the recent theoretical
demonstrations, this has also been demonstrated experimen-
tally (Denchev et al. 2016). A fundamental contribution in
this direction is due to D-Wave Systems Inc., which has com-
mercialized some analog quantum devices designed to use
quantum annealing to solve quadratic optimization problems.

Various works investigated the possibility of addressing
typical Artificial Intelligence (AI) and Pattern Recognition
(PR) problems by using QA. Examples include image recog-
nition (Neven et al. 2008), Bayesian network structure learn-
ing (O’Gorman et al. 2015) and hard operational planning
problems (Rieffel et al. 2015). As done in Rieffel et al. (2015)
or in Neven et al. (2008) for image recognition, we show here
an encoding of biclustering as a Quadratic Unconstrained
Binary Optimization (QUBO) problem (Kochenberger et al.
2014), i.e., as a problem where the aim is to find an assign-
ment for binary variables so as to minimize a quadratic
objective function. The QUBO format corresponds to the
input format required for the D-Wave superconducting adi-
abatic quantum computing processors. To the best of our
knowledge this is the first study in this direction. A sam-
pling algorithm for clustering was proposed in Kurihara et al.
(2009) which is inspired by quantum annealing. However,
this algorithm is designed for classical computers, while here
we investigate the possible exploitation of a radically differ-
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ent computing machine, i.e., the D-Wave quantum computer,
for biclustering.

The contributions of this paper can be summarized as
follows: (1) We introduce the first QUBO model for the
biclustering problem; more specifically, we formulate the
biclustering problem as a repeated search for the most coher-
ent biclusters following well-known approaches such as
Cheng and Church (2000) and Ben-Dor et al. (2003), where
biclusters are extracted one at a time from the data-matrix. (2)
We analyze the model proving that it is correct, i.e., that the
optimal solution of the QUBO model is the optimal solution
for the one-bicluster problem. Results show that our model
outperforms in terms of quality state-of-the-art biclustering
approaches [i.e., BICRELS (Truong et al. 2013) and FLOC3
(Yang et al. 2005)]. (3) We discuss the practical applicabil-
ity of our model by means of experiments performed on the
D-Wave 2X™ architecture.

Overall, the key contribution of this work is anovel QUBO
formulation for the biclustering problem that can be com-
puted by quantum machines. Our investigation shows that
such QUBO model is a viable approach for small-sized data
matrices and the proposed principles might be used as a
foundation for variant formulations better equipped to tackle
larger datasets.

2 Background and related work

In this section, we first introduce the biclustering problem,
then provide some necessary notions at the base of quantum
annealing and the D-Wave architecture. Finally, we present
the QUBO formalization for generic optimization problems.

2.1 Biclustering

As already mentioned, biclustering has been used in vari-
ous application domains with different techniques. However,
in its most general form, biclustering can be defined as the
simultaneous clustering of rows and columns of a given
data-matrix (Madeira and Oliveira 2004). The goal is then
retrieving the subsets of rows and columns that have a coher-
ent behavior, where “coherence” is defined according to the
specific application domain (e.g., Euclidean distance, Pear-
son correlation).

In this paper, we formulate the problem of biclustering
as a sequential search for the most coherent bicluster. This
is a widely employed technique in the literature (Cheng and
Church 2000; Ben-Dor et al. 2003; Denitto et al. 2017), and
consists in extracting biclusters one by one from the data-
matrix. Clearly, it is crucial how to “mask” the obtained
bicluster before looking for the next one. There exist dif-
ferent heuristics in the literature addressing this problem: for
example, one way to address this problem is to replace the
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obtained bicluster with background noise in the original data
matrix (Cheng and Church 2000), so that the next bicluster
can be looked for.

Hence, our problem takes as input a real-valued data
matrix A with N rows and M columns, and returns a subset of
rows and columns that identifies the most coherent bicluster.
Each real value of the data-matrix g; ; encodes an “acti-
vation” level for a specific configuration. For example, for
expression microarray data, rows typically represent genes
and columns experimental conditions; hence, each entry ¢; ;
represents the activation level of gene i under the experi-
mental condition j. Our goal is to return the set of genes
that exhibits a coherent behavior under the same subset of
experimental conditions.

2.2 Quantum annealing and D-Wave

Among the various approaches to quantum information pro-
cessing, a particularly interesting one is adiabatic quantum
optimization and the closely related phenomenon of quan-
tum annealing (QA), which allows us to replace exhaustive
searches in global optimization problems with heuristic algo-
rithms approximating the global optimum to the aim of
finding a satisfactory solution. QA is a meta-heuristic based
on the quantum adiabatic theorem,! whose basic strategy
can be described as follows: first, the system is initialized to
a simple state and then the conditions are slowly (adiabati-
cally) changed to reach a complex final state that describes
the solution to the computational problem of interest. The
time-dependent Hamiltonian for QA is

HQA(I) = A(t) Hinit + B(I)Hproba

where the gradual transition from the ground state of the
initial Hamiltonian Hjpj; to the ground state of the problem
Hamiltonian Hprob is defined by the annealing parameters
A(t) and B(t) (Denchev et al. 2016). This is in some way
similar to the classical simulated annealing (SA) (Farhi et al.
2002), which instead borrows a metaphor from the physical
process used in metallurgy to create a defect-free crystalline
solid. Rather then thermal fluctuations used in SA to control
the search, in the quantum case, the computation is driven by
quantum fluctuations and the tunneling field strength replaces
temperature to control acceptance probabilities (Finnila et al.
1994). This is motivated by the fact that in SA the thermal
transition probability depends only on the height of the poten-
tial wall to overcome, which means that in general it fails
when it has to deal with very high barriers. The advantage of

1 According to the quantum adiabatic theorem, a quantum system
that begins in the non-degenerate ground state of a time-dependent
Hamiltonian will remain in the instantaneous ground state provided
the Hamiltonian changes sufficiently slowly.

QA is the dependency of the tunneling probability both on
the height and the width of the potential barrier, which gives
it the ability to move in an energy landscape where local
minima are separated by tall barriers, provided that they are
narrow enough (Ray et al. 1989).

The QA optimization scheme has been implemented
directly on quantum hardware by the Canadian company D-
Wave Systems Inc. The D-Wave devices are able to minimize
an objective function expressed in accordance to the Ising
Model of statistical mechanics. This model can be arranged
in a graph whose nodes are the spins and the edges represent
interactions between them. The energy of the Ising model is
expressed by the Hamiltonian

H(o) = ZJ,'/O’,‘GJ' +Zhj0j,
() J

where o € {+1, —1} and & is the external magnetic field in
site j. The interaction between the spin in site i and the one in
site j is given by J;; and it can be either ferromagnetic (J;; <
0, that tends to align spins) or anti-ferromagnetic (J;; > 0,
that tends to misalign spins). The Ising energy minimization
problem is equivalent to the QUBO model presented in the
next section. This means that solving the latter corresponds to
finding the ground state energy of the associated Ising model
(Bian et al. 2010).

Moreover, in order to solve an instance of a QUBO
problem with a D-Wave machine, we need to adapt the log-
ical formulation of a given problem (i.e., the logical Ising
problem) to the physical fixed architecture of the quantum
processor (i.e., the physical Ising problem). This architec-
ture is composed by a matrix of unit cells (Fig. 1) that is a set
of 8 qubits disposed in a bipartite graph. These unit cells are
connected in a structure called chimera graph. At the time
we are writing, the most recent version of the machine is the
D-Wave 2000Q™which has 16 x 16 unit cells for a total of
2048 qubits.

2.3 Quadratic unconstrained binary optimization
problems

The goal of a Quadratic Unconstrained Binary Optimization
problem (QUBO) is to find the assignment to a set of binary

Fig.1 D-Wave unit cell as shown in Dahl (2013)
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variables x1 ... x, S0 as to minimize an objective function of
the form:

Z bi jxix; (1

n
O(X1,y ...y Xp) = Zaixi +
i=1 l<i<j<n

We can also represent an instance of a QUBO prob-
lem with a weighted graph where each node represents a
binary variable x;, a linear coefficient a; encodes the value
associated with the node x; and a quadratic coefficient b; ;
represents the value associated with the edge between nodes
x; and x;. With this representation, setting x; = 1 corre-
sponds to selecting the node x;, while x; = 0 corresponds to
eliminating the node x; from the graph. Hence, the objective
function corresponds to the sum of all values in the graph
and its minimization is equivalent to decide which nodes to
remove (where removing a node implies the removal of all
edges that are incident to that node), in such a way that the
summation of the values remaining in the graph is the lowest
possible.

3 The QUBO model for biclustering

In this section, we detail our QUBO model for the one-
bicluster problem. We first describe a binary model for the
one-bicluster problem; then, we show how such a model can
be encoded as a QUBO.

3.1 A binary model for one-bicluster

We now present the objective function for the binary one-
bicluster problem and in what follows we explain how it is
derived. Given areal-valued data matrix A with N rows and M
columns, the objective function for the binary one-bicluster
problem is the following:

<Za,-,jc,;j— > Oi,j,r,kCi,jCz,kJrZBi,z)
i

i,j.t.k i<t
(2

arg max
(C1,15e-CN M)

where | <i,t <N; 1 <j, k<M.

In the first two terms, we have N x M binary variables
¢;,j that encode whether a given entry g; ; of the data matrix
A belongs to the bicluster or not (where ¢; ; = 1 indicates
that the entry g; ; does belong to the bicluster).

Also, in this function, we can identify two forces: one that
encourages points to group together, namely the first term in
(2), and one that avoids points that are not coherent to be in the
same group [i.e., the second term in (2)]. Such term is based
on a value O; j,; which measures the coherence between
two points a; ; and a; ;. The function O; ;;  depends on
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which kind of biclusters we wish to analyze. In particular,
following the relevant literature (e.g., Tu et al. 2011), we
consider two types of coherence:

Constant: Which aims at penalizing points that have a dif-
ferent activation level and hence identifies biclusters that
have a single coherent value.

Oij.r.k = wlai j — ar il (3)

Additive: Which identifies biclusters that encode an evolu-
tion of the activation values over columns.

2
Oijuk=wlaj—aj+a,— ajk) 4

In both (3) and (4), the weight w can be adjusted to bal-
ance such two forces: setting w to high values favors the
coherence of the points inside the biclusters, while setting
w to low values favors the creation of large biclusters. The
set of valid values for such weight is RT: however, setting
high values could lead as a result to biclusters composed of
a single element. The appropriate value to set depends on
the data context and must be determined experimentally as
shown in Denitto et al. (2017).

In order to solve our problem, we need to restrict the fea-
sible variable assignments so that only valid assignments
correspond to a bicluster. In other words, we need to rule
out assignments that do not correspond to a subset of rows
and columns that have all entries selected (see Fig. 2b for
an example of a non-valid assignment). To do so, we add
one constraint stating that, given two rows of the output
matrix C, they have to share the same configurations or one
of them must be zero. The constraint between rows i and 7 is
expressed in Eq. (2) by the term:

0, if Creix=0V (e =0
v (2 k(Cik = erk) = 0) (&)

otherwise

Bi,t =

—00,

Such constraint ensures that there is a permutation of rows
and columns that forms a sub-matrix with all entries selected
(i.e., visually a full rectangle of ones).

Another interesting way to look at an admissible config-
uration is that it can be described by fixing the same value
for all the elements of a column with an exception for the
elements that belong to a disabled row. For example, consid-
ering Fig. 2a (before permutations), the configuration can be
expressed as: Columns {1, 3, 4} take value 1, columns {2, 5}
take value O and row 2 is disabled (all the element are 0).
Hence, any admissible configuration can be uniquely identi-
fied by this type of description. This description is useful to
better understand the QUBO model we describe next.
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10110
00000
10110
10110

11100
11100
11100
00000

(a)

10110
00000
10010
01110

(b)

Fig.2 Example of: a valid assignment and its permutation that results
in a full rectangle of ones (a); an invalid assignment, no permutation
can result in a full rectangle of ones (b)

3.2 The QUBO model for the one-bicluster problem

We now provide a QUBO formulation for the binary model
described above. For ease of explanation, let us start with
a QUBO representation that does not consider the bicluster
constraint [i.e., the B; ; elements in Eq. (2)]. To build such
model by using the graph-based representation of QUBOs,
we create a node x; ; for each variable c; ;. Considering
that the QUBO formulation has to be minimized, we then
assign a coefficient —a; ; to each node. For each pair of
nodes (x; j, x; k), we assign to the edge between them a pos-
itive value O; j ; x calculated according to the Egs. (3) or (4).
Note that the latter has value 0 for points on the same row or
the same column, hence for such measure, the horizontal and
vertical edges are absent from the graph. The corresponding
objective function for the QUBO problem will then be:

arg min (Z—ai,jx,-,j + Z Oi,j,,,kxi,jx,,k) 6)

(xl,lv~~axN,M) i,j i,j,t,k

where | <i,t < N; 1 < j,k < M.Itis easy to see that the
assignment that maximizes function (2) without the bicluster
constraint is the same that minimizes the QUBO objective
function (6). Figure 3 shows a graphical representation of
such a simplified QUBO model for a 2 x 2 input data matrix.

Now, in order to consider the bicluster constraint, we must
add some extra nodes to the QUBO model so as to ensure
that the assignments generated are valid (i.e., they represent
a subset of rows and columns). As mentioned in Sect. 3.1,
an admissible configuration should set all variables in the
same column to the same value except for the variables that
belong to disabled rows. To express this, we create two types
of constraints: column constraints and row constraints. A
column constraint ensures that all variables in a column have
the same value (either O or 1). To do so, we add to each node
a positive coefficient V and we add a new node to the graph

Fig.3 A graphical representation of our QUBO model for a2 x 2 data-
matrix, the (red) dotted edges are absent in case of additive coherence
measure (4) (color figure online)

Fig.4 Graphical representation
of a column constraint

with a coefficient equal to N(B — V) where B > V. We
call this new node the column switch and we indicate with s
the variable that corresponds to the node switch for column
Jj. Finally, we set the coefficient of the edges between the
column switch and the N nodes to — B (see Fig. 4 for a
graphical representation). Intuitively, if k of the N nodes are
selected and the switch is not active (i.e., s; = 0), we add to
the objective function a value k V. If we select the switch and
the k nodes, we add k(V — B) + N(B — V). Since we are
minimizing the objective function the best configuration will
be either selecting all nodes [with a contribution of N(V —
B) + N(B — V) = 0] or not selecting any node (again with
a contribution of zero). All other configurations will add a
positive value to the objective function.

A row constraint should force all variables in a row to be
zero when a specific condition holds (i.e., we decide to not
consider that row). To enforce this, we add a new node to the
graph with a coefficient O and we call this new node the row
switch. We indicate with r; the variable that corresponds to
the node switch for row i (see Fig. 5 for a graphical represen-
tation). Then, we set the edges between the row switch and
the M nodes to a positive coefficient G. Intuitively, when
the r;, = 0 any configuration for the M nodes contributes
with a null value to the objective function; hence, they are
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G

T
Ti 1 Ti 2 Ti, M o

Fig.5 Graphical representation of a row constraint

equally desirable. However, if r; = 1, then selecting any of
the M nodes will increase the objective function of a value
G. Hence, in this case, the best configuration is the one that
does not select any of the M nodes.

Finally we combine the first graph (Fig. 3) without the
bicluster constraint (from now on called the inner graph)
with the row and column constraints and by adding from each
row switch to every column switch an edge with coefficient
V — B. The objective function has now the following form:

arg min Z <in,j - Bx,-,jsj + Gxi,jri

(Xl,l ----- XN,M) i,j

+(V — B)r,-sj- + (B — V)Sj —aj jXij

+ Z Oi,j,t,kxi,jxt,k) (N

t,k

In order to ensure that our QUBO formulation is a proper
model for the one-bicluster problem, we must show that for
all valid solutions, the extra constraints (i.e., row and column
constraints) contribute with a zero value, while for all non-
valid solutions they contribute with a strictly positive value.
In particular, we prove the following theorem:

Theorem 1 (Model validity) Given a model of a data-matrix
with N rows and M columns and values B > V > 0 and
G > B —V, for all assignments that do not violate a row
or a column constraint such extra constraints provide a null
contribution to the objective function. For all other configu-
rations, the contribution is > 0.

Proof Given the objective function (7), we can observe that
in each addend of the summation, the terms that depends
from the combined constraint structure are:

in,j — Bxi’ij + Gx,-,jr,- +(V — B)risj + (B — V)Sj.
(7a)

Hence, each of these addend depend exclusively on three
binary variables, namely a node from the inner graph x; ;
and the two switches r; and s;. Now we compute the value
of the term for the combined constraint structure equation
(7a) exhaustively for all eight cases of the three variables:

1. [x,',j =O,rl- =O,Sj =0]ZO
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x,',ij,rizO,sj-zl]:B—V

x,',j=0,r,-=1,sj' =0]:0
x,j=0,r=1s;=1:V-B+B-V =0
Lj:l,)’,':O,Sj =0]V
xi,j=1Lr=0,5;=1:V-B+B-V =0
xi,j=1r=1s;=0:V+G
[xi,j=Lri=1s;=1:V-B+G+V—-B+B-V =
V-_B+G

=

[
[
[
[
[
[

P NNk

For 1, 3, 4, 6 which represent a valid assignment where
all the inner graph nodes are in compliance with the switches
(i.e., do not violate row or a column constraints), the contri-
bution is 0. For all the other configurations which represent a
non-valid assignment, the contribution is greater that O (this
isbecause B>V >0and G > B —V). m]

In order to complete the model, we have to identify the
appropriate values for V, B and G. To do so, we observe that
a configuration that does not comply with all the switches
constraints should increase more than the decrease in value
that can derive from taking such a configuration in the inner
graph, namely the values assigned to the structure should be
high enough to ensure that the objective function does not
minimize for the non-valid configurations. Although intu-
itively we can simply choose high values, to maintain the
range of possible values as small as possible, we investigate
what the lowest admissible ones are. Let us indicate with R
a configuration for the row switches, S a configuration for
the column switches, X a configuration for the inner graph
nodes in compliance with the switches and X a configuration
where any subset of X does not comply with the correspond-
ing switches.

We can then show the following theorem:

Theorem 2 (Determining V, B, G) Giventhe specific switches
configurations R and S and the valid solution (X, R, S), we
have that:

OX,R,S)— OX,R,S) >0
= 8)
(V>VaAB>ByAG>Gp)

for all invalid solutions (Y, R, S), where

Vin = ma.x{ai,j}
L]

By =V +max §—a; ; + E Oi jitk 9)
L]
1.k

Gy = B —V +max{a; ;}
l’.]

Proof Similarly to what we did for Theorem 1, we now com-
pute the value of equation (7) for all configurations of the
three binary variables x; ;, r; and s;:
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1. [x,',ij,rizO,sJ-=0]:O
2. [x,',j=0,r,-=0,sj-=1]:B—V
3. [x,',j=0,r,-=1,sj' =0]20
4, [)Cl',jZO,I"i=1,Sj=1]ZV—B+B—V=0
5. [x,‘,j =1,r, =0, sj = 0]: vV —aj+ Zk Oi,j,t,kxt,k
1,
6. [xi,j=1,r=0,5;=11:V-B+B-V —aq;;+
> 0ijuxXik =—aij+ 2 Oij1kXik
t.k t.k
7.

[xl',j =1,rn= l,Sj =0]: V+G—a,-,j+Z Oi,j,t,kxt,k
t.k

8 [xij=1Lri=1s;=1:V—-B+G+V—-B+B—-V—
ai i+ O jiixek =V—B+G—a; j+) Oi Xtk
t.k t.k

In order to ensure the desired behavior, the difference
between a non eligible configuration (Y, R, S) and an eli-
gible configuration (X, R, S) must be higher than 0. Let us
impose this condition to the difference between the previous
eight cases:

CSH1> 0=V —a; + Y O sk > 0

S [THB1> 0= V4G — aif’,-,c+ Y O jixxik >0
A1 05 V- B+ G a4 X 0p ki = 0
- 2H6=0= B—Vta; -3 off,t,kx,,k >0

Because the coherence measure O; j ; x is always greater or
equal to 0, we are now ready to determine the minimum value
to assignto V, B and G.

From the first difference [S5]-[1], we have:

V > max{a; j} = Vi
iJ

From the last difference [2]-[6] we have that:
B>V +max {—a;+ Z Oij.tk { = Bm
i,j
t.k
And from the third one [8]-[4] we have:

G > B —V +max{a; ;j} = Gp
ij

The second one [7]-[3] holds because of V and G already
defined. O

3.3 Properties of the model

Theorems 1 and 2 ensure that, by building the model as
described above, for any valid configuration (i.e., a config-
uration that describes a bicluster), the contribution of the
column and row constraints to the objective function is null.

For all valid assignments the objective function reported in
(7) reduces to (6), hence the configuration that minimizes
(7) is the same that maximizes equation (2) (i.e., the most
coherent bicluster). Moreover, for any non-valid assignment
(i.e., an assignment that does not encode a bicluster) the con-
tribution of the row and column constraints will be strictly
positive hence such configuration will always be discarded
in favor of a valid assignment.

The proposed model can be further simplified. In partic-
ular, we can reduce the number of edges (quadratic terms)
by observing that if a couple of nodes (in the inner graph)
on different rows and columns are active (i.e., two nodes
on the opposite corners of a rectangle) also the other two
nodes on the other diagonal of the rectangle must be active
to comply with the switches. The terms O; j ; xX; jX; r and
Oy, }j.i kX1, jXi i either contribute both or none to the objective
function. Hence, we can add both values O; j;x + Oy j ik
to a single edge and remove the other one. Hence, regard-
less of the coherence measure used, we can remove half of
the diagonal edges. An example of the complete simplified
model is shown in Fig. 6.

As for space complexity, given an input matrix N x M,
the model has NM + N + M binary variables. The number
of edges depends on the coherence metric used. In particular,
for the constant coherence Eq. (3), we have in the worst case
(i.e., when all the coherence measures are different from 0)
NM(NM—1)/2—NM(N—1)(M—1)/4+3N M edges. For
the additive coherence Eq. (4), we must insert into the model
only the diagonal edges (see Fig. 6); hence, the total number
of edges, in the worst case,is NM (N —1)(M —1)/4+3NM.

Fig. 6 Graph of the complete model for N = 2 and M = 2 with the
additive coherence similarity metric (4) and the simplification proposed
at the end of this section
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Since the complexity class of the problem is NP-complete
(hence the problem is in general not tractable), our main moti-
vation for the work is to investigate the possibility to exploit
the quantum annealing process to combat such a complex-
ity. Based on the above analysis, the main computational
bottleneck for our model is space requirements. While the
worst-case analysis reveals a polynomial complexity for what
concerns space, typical application domains for biclustering
can involve data matrix with a large number of rows and
columns (i.e., thousands of genes and hundreds of exper-
iments). For such numbers, the space requirement for our
model becomes an issue that needs an adequate treatment.
To this purpose, in the next section, we also propose a sparsi-
fication method in order to simplify the model by eliminating
a given percentage of edges using a heuristic. Moreover, fol-
lowing previous approaches (Denitto et al. 2014), we use
a decomposition technique in order to aggregate biclusters
extracted from sub-matrices.

4 Empirical evaluation of the model

Having described and analyzed our approach, we now present
an empirical evaluation of our QUBO model for biclustering.
In what follows we first describe the methodology we use to
perform the experiments and then we present results obtained
by following established evaluation protocols for biclustering
(Tu et al. 2011).

4.1 Evaluation methodology

The main goals of our empirical evaluation are: (1) validate
the accuracy of the QUBO model for biclustering comparing
it with state-of-the-art approaches [BICRELS (Truong et al.
2013) and FLOC3 (Yang et al. 2005)]; (2) evaluate how the
removal of edges from the model affects the quality of the
solutions; (3) evaluate the quality of our model through a
widely exploited biclustering dataset (Preli¢ et al. 2006); (4)
assess the applicability of the model on current state-of-the-
art quantum processing units (i.e., the D-Wave architecture).

Hence, we created a synthetic dataset so to accurately
measure the performance of our approach. In particular, the
dataset is composed by 10 x 10 matrices with a constant
random-positioned bicluster that occupies the 25 percent
of the elements. Then, we added a Gaussian noise to each
matrix, where the standard deviation of such Gaussian noise
is a percentage of the difference between the mean of the
entries belonging to the biclusters and the mean of all the oth-
ers. In particular, we considered 5 different percentage values
from O (no noise) to 0.2. We generated a set of 15 matrices
per noise level for a total of 75 matrices. This dataset allows
us to measure the accuracy of the algorithms by comparing
the bicluster extracted from the models with the ground-truth
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Fig. 7 Performance comparison of our QUBO model, BICRELS and
FLOCS3 varying noise level

(i.e., the bicluster that is present in the data-matrix). Given
C the set of elements of the bicluster found and L the set of
elements of the real bicluster, to measure such accuracy we
use two established metrics (Tu et al. 2011):

— Purity = |C N L|/|C| which represents how many ele-
ments of the solution belong to the real bicluster.

— InversePurity = |C N L|/|L| which represents how
many elements of the real bicluster have been found.

4.2 Validating the accuracy of the QUBO model

For each of the 75 matrices of the dataset, the QUBO form
has been solved by using the CPLEX library (V12.6) and by
applying 24 different weights w (constant for each O; ; ; x)
to the similarity measure (4), for a total of 1800 tests.

Here, we present the results of Purity and Inverse Purity
as a function of the noise level. For each noise level, we
analyzed and set the parameters of the procedures with the
values that gives the best average result on the 15 matrices
with that noise level. Please note that the optimal value of w,
which influences the size of the ideal biclusters, depends on
the data context and has to be determined empirically. Solv-
ing each instance takes milliseconds; hence, the overhead to
determine the optimal value of w is not an issue. Note that this
is the same protocol used in Denitto et al. (2017). Results in
Fig. 7 show that our QUBO model significantly outperforms
BICRELS and FLOC3 in terms of quality of the bicluster
extracted.

4.3 Sparsification of the model

We can observe that the model exhibits some degree of redun-
dancy. In particular not all the edges in the inner graph, that is
all the similarity measurements between points of the input
matrix, affect with the same weight the selection of the opti-
mal solution. For example, assume we know the sub-matrix
that forms the most coherent bicluster, intuitively many of
the edges internal to such sub-matrix will have a low value
(because the elements of the bicluster are coherent); hence,
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most of such edges could be removed from the model. For
this reason, we tested the removal of different percentages of
edges from the inner graph of the 1800 instances previously
described, namely we removed from 0 to 90% (with steps of
10%) of the edges for a total of 18,000 tests.

Note that sparsification is only intended to be a practi-
cal heuristic to address larger matrix, but we cannot provide
any guarantees on how this affect optimality. In contrast, our
aim is to investigate whether simple sparsification heuris-
tics could maintain a good level of accuracy while providing
significant reductions in space for the model. While assess
which edges are redundant (without knowing the bicluster) is
not straightforward, the empirical evaluation shows that some
simple heuristics do provide a significant gain. In more detail,
our procedure for sparsification computes a value for each
internal edge and then sort edges according to such value.
We then remove the first X% (where X € {0, 10, 20...90})
of these edges. We tried different values for the edges that
are all based on a combination of the function O; ;i and
the values of the matrix entries that relates to this func-
tion (i.e., a; j, as k, ai k» 4, j). Moreover, we compare such
heuristics with a random approach where we remove X%
(where X € {0, 10, 20...90}) of the total edges choosing
randomly between all internal edges in the model. Figure 8
reports a comparison of the best heuristic with the random

approach. The values computed by this heuristic is the ratio:
O j1k

i, jtarktaiktarj ) o .

ple heuristic, one can achieve similar level of accuracy with

approximately half the edges of the QUBO model.

. Overall, our results confirm that with a sim-

4.4 Evaluation on benchmarking data-set (Prelic
et al. 2006)

We evaluated our model on the benchmarking synthetic
dataset introduced in Preli¢ et al. (2006).2 The matrices pro-

2 Available at http://www.tik.ee.ethz.ch/sop/bimax (Scenario I—
Noise).
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Fig. 9 Performance evaluation on benchmarking dataset as explained
in Sect. 4.4

posed in that dataset contains 100 x 50 entries. Such matrices
cannot be directly analyzed by our approach due to the space
complexity associated with our model (see Sect. 3.3). How-
ever, following previous approaches (Denitto et al. 2014), we
can extract biclusters from sub-matrices and then aggregate
the results. In particular, in our experiments, we consider a
10 x 10 window that selects a portion of the data matrix
and we shift this windows over the data with a full cover-
age and an overlap degree of 5 rows/columns. We call each
sub-matrix a kernel. The proposed protocol consists of the
following three steps:

1. Generate the bicluster set We extract one bicluster from
each kernel using the additive coherence.

2. Aggregate the results We group the biclusters provided
by step 1 by using a similarity based clustering algo-
rithm [Affinity Propagation (Frey and Dueck 2007)]. We
defined as similarity between two biclusters the number
of rows/columns they share.

3. Retrieve the final bicluster Please notice that the coherency
in biclusters obtained at the previous step is not guaran-
teed. For this reason, we assign to each bicluster a score,
exploiting the objective function (Eq. 2), i.e., evaluat-
ing the objective function for such bicluster. This step is
repeated for all groups obtained in step 2 and by keeping
the best solution (according to the objective function) we
keep the most coherent solution.

The accuracy of the resulting biclusters has been assessed
with the same metrics used in Preli¢ et al. (2006) (i.e., the
Gene Match Score). Results in Fig. 9 shows that our method is
competitive with other state-of-the-art approaches [see Fig.
2a in Preli¢ et al. (2006)], confirming the potentials of the
proposed approach.
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5 D-Wave experiments

In this section, we report results of experiments performed
on a D-Wave 2X™ machine. The D-Wave 2X™ machine
that we used is hosted at NASA Ames Research Laboratory
and has 12 x 12 unit cells for a total of 1152 qubits,3 see
Denchev et al. (2016) for more details on its hardware and
performance.

First, in Sect. 5.1, we describe the embedding of the prob-
lem into the D-Wave 2X™ hardware. In Sect. 5.2, we make
some considerations about the criteria for the tractability of
the biclustering problem with this quantum annealer. Then,
in Sect. 5.3, we discuss the results of the embedding phase,
and finally in Sect. 5.4, we describe the outcomes obtained
with this machine.

5.1 Embedding the QUBO model on the D-Wave
architecture

As previously mentioned in Sect. 2.2 in order to solve a
QUBO model on a D-Wave machine, we need to adapt the
formulation of a problem to the physical fixed architecture of
the quantum processor. Different problems require different
connectivity and in order to embed a problem into the archi-
tecture we can either formulate the QUBO model taking into
account the fixed structure of the hardware graph, or create
a logical formulation (as we did in our QUBO model) and
then embed the logical graph into the physical one through
the minor embedding technique.

The minor embedding process determines a mapping of
the physical qubits into the problem’s variables, i.e., which
physical qubits should represent which variable of the logi-
cal QUBO formulation. Heuristics in order to determine this
mapping has been developed and more details on the minor
embedding techniques for the D-Wave can be found in Cai
et al. (2014). Note that, even if the number of nodes of the
model is smaller than the number of qubits of the processor,
it is not always possible to find a valid embedding. In par-
ticular, the embedding into the hardware architecture usually
requires more variables, since some nodes are represented
by several physical qubits (a “chain” of qubits) due to the
sparse connectivity of the hardware graph. All the experi-
ments described here have been performed by applying the
embedding process to our model using the official D-Wave
libraries.

The parameters we used in the embedding are those stan-
dard provided by the D-Wave. Moreover, we perform only
a single embedding attempt with standard parameters. This
approach, also followed in other papers, e.g., O’Gorman et al.
(2015b), is based on the Cai heuristics mentioned before
which may be very suboptimal. As done in Venturelli et al.

3 Note that only 1097 of 1152 qubits are operational.
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Fig. 10 Graph of the complete model for N =1 and M =1

(2015), Pudenz (2016) and Perdomo-Ortiz et al. (2015), we
could study an optimal choice of the parameters that is more
appropriate for the biclustering problem. This may lead to a
better performance of the D-Wave on our problem.

5.2 Suitability of D-Wave for biclustering problem

Before tackling an optimization problem with a quantum
annealing device, it is crucial to ensure that the problem
shows (King et al. 2017):

— global frustration,* i.e., it requires a non trivial combi-
natorial optimization,

— local ruggedness, i.e., the problem presents a landscape
with tall and thin barriers.

As biclustering is known to be NP-complete, we expect
that its logical Ising/QUBO formulation straightforwardly
displays global frustration. In fact, it is possible to show
such a behavior even in the limit of a 1-dimensional matrix
biclustering, which can be seen as the building block of any
biclustering instance, cf. Fig. 10.

In this trivial case, the geometry of the problem is reduced
to acomplete graph with three vertices. A frustrated behavior,
with two ferromagnetic couplings and an anti-ferromagnetic
one, prevails when the magnitudes of the weights associated
with the three edges become of the same order,’ i.e., when
the B parameter is significantly larger than V.

If we consider an arbitrary N x M biclustering instance,
frustration increases because of the presence of N - M of
the triangular loops of Fig. 10 which share vertices among
themselves. Moreover, as we can see from Eq. (9), since B
has a linear dependence on N and M, while V does not, this

4 AnIsing model is frustrated when the competition between ferromag-
netic and anti-ferromagnetic couplings leads to a ground state where
the interaction energies between spins cannot be simultaneously mini-
mized.

> Note that parameter G can always be chosen close to B.
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automatically pushes the modelina V <« B highly frustrated
regime when increasing N or M.

Usually, the complex landscape typical of frustrated sys-
tems only guarantees the presence of many local minima
and maxima and it does not imply that barriers separating
them are tall and narrow enough for QA to work properly. In
our biclustering model, such condition of local ruggedness is
ensured by the QUBO formulation, since the geometry of the
problem guarantees the formation of clusters of nodes which
are internally ferro-magnetic coupled (King et al. 2017). This
feature, from the point of view of the energy landscape, trans-
lates into the presence of high and narrow barriers separating
minima. To summarize, the complexity of our biclustering
model ensures a macroscopically interesting landscape with
multiple local minima (global frustration) and the particu-
lar geometry of the problem guarantees the high and narrow
barriers in the landscape (local ruggedness).

5.3 Embedding phases

For the real experiments, we randomly generated the follow-
ing instances (matrices) for the biclustering problem:

— 100 instances of a size of 4 x 4 and with bicluster of 2 x 2

— 100 instances of a size of 5 x 5, 50 of which with a
bicluster 2 x 3 and 50 with a bicluster 3 x 2

— 100 instances of a size of 6 x 6 and with bicluster of 3 x 3

All these instances are without noise and from these we
generated the QUBO models using the additive coherence
measure (Eq. 4) with a weight parameter w = 1. Results of
the number of physical qubits required after this embedding
phase can be observed in the histograms with a Gaussian
distribution fit in Fig. 11a for the 4 x 4 instances, Fig. 11b
for the 5 x 5 instances and Fig. 11c for the 6 x 6 instances.
Also in Table 1, we report the aggregated results with mean
and standard deviation.

Table 1 Results of the embedding phase: number of physical qubits
required to embed an instance

Size Min Max " o

4 x4 94 139 112.03 8.45
5x5 220 321 271.33 20.90
6x6 511 757 634.37 49.41

We can observe that the number of physical qubits
required grows significantly as the instance size increases.
With just a starting matrix of 6 x 6, we already require
almost half of the available physical qubits. As previously
mentioned, this is due to the fact that the few available con-
nection between physical qubits on the D-Wave architecture
necessarily lead to the use of a high number of physical
qubits to represent a single logical qubits. In fact, our biclus-
tering model consists of fully connected sub-components
which lead to a quadratic overhead even for the most effi-
cient embedding (Boothby et al. 2016). More details on the
number of physical qubits required to represent a single log-
ical one after the embedding phase can be observed in Fig.
12a for the 4 x 4 instances, Fig. 12b for the 5 x 5 instances
and Fig. 12c for the 6 x 6 instances. Also in Table 2 we
report the aggregated results with mean and standard devia-
tion. As reported in all the cases, for some logic qubits, the
embed requires a minimum of 1 physical qubits; however,
the maximum number required grows as the instance dimen-
sion increases. Specifically, the maximum number required
for some qubits in the 6 x 6 instances is 30, which it is three
times the maximum required number for the 4 x 4 instance.

5.4 D-Wave experiments results
The objective of this experimental phase is to determine

whether the D-Wave 2X™ machine is able to retrieve the
optimum solution of the QUBO objective functions of the
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Table 2 Results of the embedding phase: number of physical qubits
per logical qubit varying instance size

Size Min Max % o

4 x4 1 10 4.67 1.72
5x5 1 17 7.75 3.04
6x6 1 30 13.22 5.37

instances previously described. The D-Wave takes as input
the number of reads a num_reads parameter which identi-
fies the number of states (output solutions) to read from the
solver in each programming cycle (which we set as described
later) along with other hardware specific parameter which
we kept as the default values of the machine (e.g., the default
annealing time for every read of 20 microseconds). In this
experimental phase, we solved every instance previously
described with the following protocol:

— We solved the QUBO instance using the CPLEX library
in order to find the configuration that gives the optimum
of the objective function.

— We run the instance on the D-Wave 2X™ machine.
Specifically, we run a programming cycle asking for
10,000 reads. Hence, the D-Wave samples the objective
function 10,000 times and returns the 10,000 solutions.

— We process the sampled solutions comparing them to
the one obtained with CPLEX, in order to check if the
optimum has been found.

— If the optimum has not been found, we repeat the process
with a new programming cycle (we set the maximum
iteration to 1000 cycle; however, it was not necessary to
perform so many cycles as can be seen in the following
results).

Regarding the 4 x 4 instances, as we can observe in Fig.

13, we obtained most of optimum solution in just one pro-
gramming cycle and no more than 4 cycles was required to
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Fig. 13 Histogram of the number of instances where the optimum of
the objective function has been found after a specific number of pro-
gramming cycles, varying the instance size

solve all the 100 instances. As expected, the number of cycles
required grows as the instance size increases. In more details,
regarding the 5 x 5 matrices, we also obtained most of the
times the optimum in one cycle and solved all 100 instances
in no more than 55 cycles and regarding the 6 x 6 we always
obtained the optimum solution in less then 550 cycles. Specif-
ically, just one 6 x 6 instance required 550 runs, we solved
all the other 99 instances in up to 228 cycles. We also report
in Fig. 14 the average number of cycles required per instance
size. These results lead to the conclusion that it was always
possible to get the optimal solution for all generated QUBO
instances.

As previously done in Rieffel et al. (2015), we compute the
probability of success Ps for a 20 s annealing time (which
is the annealing time we used for a single read). For each
set of instances of the same dimension, we then compute the
expected number of runs k = mf'(;}s)) required to obtain a
99% success probability and multiply it for 20 s to compute
the total annealing time required to obtain a 99% success.
Results are shown in Fig. 15.
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6 Conclusions and future works

In this paper we investigated, the possible use of quantum
annealing for solving biclustering problems. In particular,
we introduced a novel QUBO model for the one-bicluster
problem and show its correctness. As for the practical appli-
cability of quantum annealing to biclustering, we have tested
our model by means of real experiments on a D-Wave 2X™
machine. Results suggest that the use of a quantum anneal-
ing approach is feasible only for small matrices. This is due
to the current D-Wave architecture. We believe that further
developments of the D-Wave machine including the use of a
larger number of qubits with higher connectivity could allow
us to practically use quantum annealing for hard real-world
problems involving biclustering. Thus, this paper takes a first
important step toward the effective use of quantum annealing
for solving the biclustering problem.

Our future works includes: (1) the investigation of dif-
ferent formulations of the QUBO model that do not require
auxiliary variables in order to embed larger instances; (2) the
use of sophisticated representations techniques to ameliorate
the limitations imposed by current experimental hardware
(Bian et al. 2014). Moreover, we will investigate the use of

frameworks to test the statistical significance of the discov-
ered biclusters by filtering the solutions with state-of-the-art
statistical tests (Henriques and Madeira 2018).
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