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ABSTRACT

We propose an automatic system aimed at discovering rel-
evant activities for aquatic drones employed in water moni-
toring applications. The methodology exploits unsupervised
time series segmentation to pursue two main goals: i) to sup-
port on-line decision making of drones and operators, ii) to
support off-line analysis of large datasets collected by drones.
The main novelty of our approach consists of its unsupervised
nature, which enables to analyze unlabeled data. We investi-
gate different variants of the proposed approach and validate
them using an annotated dataset having labels for activity
“upstream/downstream navigation”. Obtained results are en-
couraging in terms of clustering purity and silhouette which
reach values greater than 0.94 and 0.20, respectively, in the
best models.
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1 INTRODUCTION

Aquatic drones are increasingly used for autonomous mo-
nitoring of catchments. In this context robotic boats must
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navigate rivers and lakes to acquire real-time data concerning
important water parameters. While human operators are
usually involved in such data collection activities, direct
tele-operation of the drones is often not an option for an
entire mission, hence autonomous navigation capabilities are
required [3].

A promising research area in this context concerns the
automatic identification of events [7], activities [1, 4] and
situations [5] of interest from the analysis of large datasets
collected by unmanned vehicles using artificial intelligence
and statistical learning methods [8]. This paper follows this
line of research and aims at developing an unsupervised ac-
tivity recognition system for unmanned vehicles involved in
water monitoring. Activities are here considered as states of
the drone in the environment, such as, “the drone is navi-
gating upstream” or “the drone is blocked”. Manual data
labeling is usually expensive and time consuming in this
context hence automatic techniques that can extract states
from unlabeled data represent crucial tools for water drone
control and data analysis. The proposed approach exploits
time-series segmentation methods to automatically detect
time intervals in which data have similar properties: it repre-
sents a statistically grounded way to identify primitive states
directly from sensor readings.

This paper provides three contributions to the state-of-the-
art: i) a formalization of the activity recognition problem in
the context of autonomous water monitoring; i) a first unsu-
pervised learning system based on Gaussian Mixture Models
(GMMs) [2], Hidden Markov Models (HMMs) [9], K-Means
(KM) [2] and Affinity-Propagation (AP) [6] for generating
a model of water drone states from unlabeled datasets; %)
the successful evaluation of this model on the activity up-
stream/downstream navigation and a first interpretation of
segments identified.

The next section introduces the system architecture and
describes datasets, drone states and clustering setup. In Sec-
tion 3 the methodologies are tested and evaluated. Section 4
outlines future developments.

2 MATERIAL AND METHODS

System overview. Aquatic drones, displayed in Figure 1,
are equipped with sensors able to detect: i) GPS coordinates,
11) water properties, ii7) commands to propellers, iv) battery
voltage. Signals from different sources are integrated and
synchronized. A data matrix of variables (rows) and time
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steps (columns) is thus generated which we aim to annotate
with state labels (shown in the bottom of Figure 1).
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Figure 1: System overview: main elements of the pro-
posed activity recognition system.

Dataset. Data collection was performed in two different
parts of a river. The first dataset, called ESP2, has 2831 sam-
ples (collected in 47 mins), the second dataset, called ESP5,
has 3615 samples (collected in 60 mins). Sampling interval
is of 1 sec. Both the datasets have 13 features, namely time,
latitude, longitude, altitude, speed, electrical conductivity,
dissolved oxygen, temperature, battery voltage, heading, ac-
celeration, command to propeller 1 and 2. From each dataset
we generated two matrices used for model training: the ma-
trix of raw data (RAW), containing all variables except time,
latitude and longitude (namely, 10 variables in total) and the
matrix of processed data (PRO) containing both the moving
means and standard deviations of the variables in the raw
matrix over a sliding window of 10 seconds (20 variables in to-
tal). Both normalized (NORM) and unnormalized (UNORM)
versions of these matrices were used for model generation.
Normalization was performed by scaling each variable to the
range [0, 1].

Activities. Aquatic drones perform different activities dur-
ing their missions. Manual labeling was performed for five
activities. Here we focus on upstream/downstream naviga-
tion (UDN) which is crucial in water monitoring because it
influences sensor readings and therefore provides important
contextual information for both decision making and data
analysis. Labeling was performed in a partial way, namely,
experts analyzed georeferenced path images and videos and
they labeled time intervals in which specific states clearly
occurred. They left unlabeled (i.e., label “” in Figure 2) time
intervals in which the state of the drone was not completely
clear.

Clustering/segmentation setup. Sensor time series were
processed via four clustering/segmentation techniques to de-
termine groups of points with coherent behavior. GMMs [2]
generated models having from 2 to 8 clusters. The algorithm
was re-initialized 300 times and the model with maximal
log-likelihood was used. Initial component means were gen-
erated by the k-means algorithm, initial mixing proportions
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were set to uniform, initial covariance matrices defined diag-
onal. Parameter learning was performed by the Expectation-
Maximization (EM) algorithm (< 100 iterations). HMMs
[2] generated models having from 2 to 8 hidden states. Ob-
servation models were set to single component multivariate
Gaussian distributions (with one dimension for each observed
variable). The initial state distribution was set to uniform,
the initial transition matrix was set to random stochastic,
initial means and covariance matrices were computed by k-
means. The model was trained by the EM algorithm (< 20
iterations) and the Viterbi algorithm [2] was used to generate
the most likely sequence of hidden states (i.e., drone states)
given the observed sequence of sensor readings. K-means [2]
used Euclidean distance || - ||?, number of clusters between 2
and 8 and it was re-initialized 300 times. AP [6] used prefer-
ence parameter from 30 to 180 (step 30) times the value of
the median of the similarity matrix.

Performance evaluation. To assess the performance of
our framework we employed two measures, purity and sil-
houette. Purity is a measure of the extent to which clus-
ters contain a single class, and it is computed by formula
P(C) = &Y ke max |k N d|, where C is a clustering, N is

the total number of points, K is the set of clusters and D
is the set of classes. Purity values close to 1 identify cluster-
ings having almost one label for each cluster. Silhouette is
an internal measure that contrasts the average distance to
elements in the same cluster with the average distance to
elements in other clusters. Given the i-th data point, it is
computed as S(i) = %, where a(4) is the average
dissimilarity of point ¢ with all other data within the same
cluster and b(¢) is the lowest average dissimilarity of point
i to any other cluster, of which i is not a member. Values
close to 1 indicate points belonging to perfectly compact and
separated clusters.

3 RESULTS

We generated clustering models according to five dimensions
of analysis, namely, 4) clustering methods GMM, HMM, KM,
AP, ii) datasets ESP2, ESP5, iii) RAW and PRO data, iv)
NORM and UNNORM data, v) number of clusters from 2
to 8 for GMM, HMM and KM, and preference coefficient
from 30 to 180 (step 30) for AP. A total of 324 models were
generated and evaluated on purity (related to the detection
of upstream/downstream navigation) and silhouette.

For each experiment we selected the four models, one
for each clustering method, having the best performance in
terms of purity. Table 1 shows the performance of selected
clusterings and Figure 2 the best segmentations, in terms
of both purity and silhouette, for each experiment. In fact,
we used the mean silhouette of the clustering to select the
most significant clusterings among those having highest pu-
rity. The clusterings having best performance are C4 for
ESP2 and C7 for ESP5 (see bold values in Table 1). Their
purities/silhouettes are 0.94/0.20 and 0.98/0.21, respectively.

As a case study we analyze model C7 which is the best
clustering for activity UDN. It was generated by k-means



ESP2
Method Data Norm. # Cl. Pur. Sil
Cl GMM RAW UNORM 8 0.97 0.01
C2 HMM PRO UNORM 2 1.00 0.00
C3 KM RAW  NORM 7 0.95 0.16
C4 AP RAW  NORM 6 0.94 0.20
ESP5
C5 GMM RAW UNORM 5 0.86 0.04
Cé HMM PRO NORM 8 0.98 0.11
Cc7 KM PRO UNORM 7 0.98 0.21
C8 AP PRO UNORM 8 0.98 0.12

Table 1: Performance of the best purity models for
each method (i.e., GMM, HMM, KM, AP) on up-
stream/downstream navigation (UDN).
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Figure 2: Best clusterings for experiments ESP2 and
ESP5. In manual labeling, label ’-’ (red) means “no
label available”.

using processed (PRO) and un-normalized (UNORM) data,
and it has 7 clusters. The cluster which best matches down-
stream navigation is cluster 3 (with 58% of coverage of the
path manually labeled as downstream navigation) while the
cluster which best matches upstream navigation is cluster
1 (with 67% of coverage of the path manually labeled as
upstream navigation).

We compare these two clusters to identify the properties
that characterize upstream and downstream navigation in
experiment ESP5. The variables that show different means
between cluster 1 and 3, according to Student’s t-test (p-value
i0.05) are: mean heading h, mean values of commands to
propellers m; and mo, standard deviation of battery voltage
¥, mean electrical conductivity éc, standard deviation of
dissolved oxygen do and standard deviation of heading h.

Differences between mean headings of cluster 1 and 3 have
an intuitive interpretation since upward and downward nav-
igation have opposite directions. Different mean values of
commands to propellers point out that full power was pro-
vided during upstream navigation to contrast the water flow
(cluster 1), while low power was provided during downstream
navigation, when the boat was propelled also by the water

842

flow. Standard deviation of battery voltage was higher in up-
stream navigation (cluster 1) than in downstream navigation
(cluster 3) because battery voltage decreases more sharply
when the boat moves upstream than when it moves down-
stream. The mean electrical conductivity had lower values in
upstream navigation than in downstream navigation, prob-
ably because the relative movement between the boat and
the water influences electrical conductivity sensor reading. A
similar behavior was observed for the standard deviation of
dissolved oxygen which is higher in upstream navigation than
in downstream navigation, probably because of increased tur-
bulences produced by the boat during upstream navigation.

4 CONCLUSIONS AND FUTURE
WORK

This work can be extended in several directions. As for the
selection of the most significant clusters we aim at sorting
all clusters (generated by different methods and parameter
settings) according to their silhouette and merge them in a
hierarchical structure. The capability of the activity recogni-
tion system to interact with humans should be also enhanced
in two ways: i) by enabling the system to suggest new activ-
ities and acquire from humans new knowledge about them
(human-in-the-loop), #i) by enabling humans to understand
the knowledge contained in the system (eXplainable AT).
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