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a b s t r a c t 

The recent increasing availability of fine-grained electrical consumption data allows the exploitation of 

Pattern Recognition techniques to characterize and analyse the behaviour of energy customers. The Pat- 

tern Recognition analysis is typically performed at group level, i.e. with the aim of discovering, via clus- 

tering techniques, groups of users with a coherent behaviour – this being useful, for example, for targeted 

pricing or collective energy purchasing. In this paper we took a step forward along this direction, inves- 

tigating the possibility of discriminating the behaviours of single users – i.e., in a biometrics sense. This 

aspect has not been properly addressed and would pave the way to crucial operations, such as the deriva- 

tion of alternative advertising schemes based on behavioural targeting. To investigate the uniqueness of 

the load profiles (i.e. the daily consumption of electrical energy), in our study we used the raw data (the 

original energy consumption time series) as well as different types of features such as frequency coeffi- 

cients and normalized load shape indexes, together with various classification schemes. Results obtained 

on two real world datasets suggest that the load profile does contain significant distinctive information 

about the single user. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past two decades, power and energy systems have

een experiencing a huge transformation, due to the increase of

mportance of renewable energy sources such as solar, hydroelec-

ric and wind power. In this perspective, the balancing of power

ources and consumer demand becomes a serious challenge that

annot totally rely on local production and energy storage sys-

ems, but rather requires non isolated grids and intelligent reversal

f the load flows, following customer needs. This drastic change

pens new and challenging problems for intelligent control sys-

ems which must face a number of new interesting issues: in this

ense Pattern Recognition tools [1] may be of paramount impor-

ance, being able to provide solutions to problems such as forecast-

ng of energy prices, optimal dispatching, consumer segmentation,

nd energy demand allocation [2–5] . In particular, the availability

f fine-grained electrical consumption data (due to the recent large

cale deployment of intelligent metering infrastructures), coupled

ith an increasing and worldwide energy market liberalization, re-

ults in a growing interest in discovering and categorizing groups of

sers which share similar behaviours. This is usually done via clus-
∗ Corresponding author. 
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ering of the so called user load profiles , i.e., the users’ consump-

ion of electrical energy over a given period, as measured by the

o called Advanced Metering Systems (AMS). Interestingly, this has

o do with models taking into account the dynamics and the mag-

itude of the consumption and the ability to capture in the models

xogenous factors (type of appliances, insulation) or context factors

occupancy, weather, seasons, holidays). With reference to Fig. 1 , a

ypical processing scheme includes the following steps [6] : 

• temporal aggregation; 
• context filtering; 
• metadata generation; 
• data analysis. 

In this scheme, temporal aggregation is used to define the tem-

oral granularity of the data consumption collection (hourly, daily,

tc.) while the context filtering stage takes into account specific

actors such as holidays, seasons and temperatures. Metadata gen-

ration is probably the most critical step in the proposed process-

ng scheme. In fact, starting from a coherent set of temporal mea-

ures (load profiles), a number of quantitative descriptors can be

erived; in the literature, these descriptors are often denoted as

eature functions [6] because they act on the load profiles trans-

orming the original time representation into a more compact or

ore discriminative representation. Examples of quantitative de-

criptors are the load factor and the night/lunch impact [7,8] ; the

https://doi.org/10.1016/j.patcog.2017.09.039
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Fig. 1. Typical processing scheme of data collected from AMS. 
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Fast Fourier Transform is another example of data manipulation

giving evidence to the content, in the frequency domain, of the

original time representation. 

The final analysis step is typically devoted to the clustering of

the various load profiles, in order to detect coherent groups of

users. This task can be very difficult due the number of groups

which is generally unknown and the number of users that can be

very high in real applications. 

Different approaches have been proposed to face this prob-

lem: for example, in [7] authors propose a framework to char-

acterize groups of users based on simple load descriptors. They

also prove the robustness of the proposed method with respect

to missing data and outliers. Carpaneto and colleagues [9] pro-

pose a scheme based on the frequency domain. In contrast, other

approaches [10,11] consider each load profile as time sequence of

load measurements and apply various unsupervised learning tech-

niques for clustering (Self Organizing Maps, K-means and Hidden

Markov Models among others). A good overview of applicable pat-

tern recognition tools is given in [12] ; this paper also includes a

detailed description of most interesting clustering methods and

proposes several consistency measures adequate to evaluate the

performance of these methods. Another review is given in [13] ,

discussing in particular how the number of categories can vary

depending on locations and type of loads (public, industrial, res-

idential). A deep investigation of clustering methods applied to the

domestic sector in Ireland has been recently presented in [14] ; au-

thors consider few profile categories and a customer is essentially

defined by a vector of likelihood coefficients, showing the statisti-

cal association of the customer to each of the profile groups de-

fined. 
Even though the above work represent an impressive progress

n this area, there is an urgent need for advanced analysis of

nergy usage data. For example energy companies are becoming

ore and more interested in targeted advertisement, personal tar-

fication [15] or even in detecting frauds [16] and changes in the

omposition of the group of people living in a given house. Ana-

ysts have begun to use these data for different goals, such as for

xample the optimal allocation of the energy flows and the reduc-

ion of purchase prices, or to help retailers designing new pricing

odels for implementing more accurate demand and supply pro-

les [8,10,11] . For all these applications, methods which work at

roup level are not enough, since the characterization and discrim-

nation should be done at the user level : in other words, there is

 need for automatic systems able to characterize and discrimi-

ate every user related to a single metering system: this crucial as-

ect has never been investigated in the literature, and represents

he main goal of this paper. In particular, starting from some pre-

iminary and encouraging results [17] , this paper investigates dif-

erent types of metadata and classification schemes to understand

f an answer exists to the following key question: does every sin-

le user have a unique behaviour when consuming electrical energy?

r, in different terms, can the electrical energy consumption related

o a single AMS be considered as a distinctive behavioural trait? As

etter explained in the following, an answer to this question may

pen the possibility of devising novel targeting strategies and at

he same time it would spur an important discussion on important

rivacy issues. 

To answer the above question, in this paper we develop a clas-

ification system to identify a specific user (or, more precisely, a

pecific AMS) among several users, on the base of the electrical

onsumptions over a given period of time (i.e., a load profile).

e investigate different metadata characterizing load profiles, in-

luding raw measurements, frequency characterizations and typical

oad shape indexes. We also investigate two classification schemes:

he former is based on the classical Nearest Neighbour rule (i.e.,

t assigns an unknown object to the class of its Nearest Neigh-

our); the second scheme follows the classical Bayesian classifi-

ation [1] , based on Hidden Markov Models (HMM – [18] ). This

robabilistic approach has been widely used to characterize se-

uential data, and has been recently applied to the problem of

lustering load profiles (in particular to characterise relationships

etween consumers’ preferences or behaviours and electricity con-

umption [11] ). The empirical evaluation is based on two databases

omposed of real load profiles, collected in the UK and in Portugal

rom several hundreds of metering systems. The system is trained

n a known set of profiles, and tested on an hold out set. Our clas-

ification results suggest that the energy load profile does indeed

ontain user-specific discriminative information. 

The rest of the paper is organized as follows: Section 2 details

he problem of personal tarification and behavioural targeting, un-

olding the complexity of the problem and the potential benefits

f a behavioural analysis, also from an economic point of view.

ection 3 presents the proposed approach, also in relation to re-

ated works, detailing both the choice of metadata and the pro-

osed classification scheme. The empirical evaluation of the pro-

osed approach is given in Section 4 , while Section 5 concludes

he paper. 

. Personal targeting for the energy market 

In this section we provide some considerations on the impact

hat the distinctiveness of the user load profiles may have on

he energy market. In particular, we are convinced that the be-

avioural peculiarities of the load profile may lead to the so-called

ehavioural targeting (BT) [19] in the energy market. BT is a kind

f advertising that is based on the analysis of the peculiar and dis-



M. Bicego et al. / Pattern Recognition 74 (2018) 317–325 319 

t  

t  

t  

F  

i  

t  

$  

p  

s  

a  

m  

c  

d  

c  

t  

a  

b  

a  

d  

t

 

t  

b  

g  

b  

a  

i  

h  

p

 

a  

i  

i  

i  

T  

a  

t  

t

 

i  

i  

e  

t  

s  

m  

i  

h  

h  

c  

s  

w  

l  

t  

e  

f

 

a  

t  

p  

q

3

 

t  

l  

Fig. 2. Examples of load profiles. 
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1 Note that a small level of Gaussian smoothing is applied in order to remove 

some fluctuations due to the sampling intervals. 
2 Actually, different types of normalization, including the z-score normalization 

have been evaluated; results are not shown here but the normalization schemes 

decreased the performance of the classification approach in all the experiments. 
inctive behaviour a user shows in a specific context. Starting from

he seminal analysis of Grossman and Shapiro in 1984 [19] , the in-

erest of economics literature on this field has grown significantly.

rom a market perspective, it should be also noted that advertis-

ng using behavioural targeting is becoming an important indus-

ry: eMarketer estimated that online advertisers spent more than

1.3 billion in targeted advertising in 2011, and the figure was ex-

ected to rise to more than $2.6 billion in 2014 [20] . Usually, when

peaking about BT, we refer to media frameworks. Platforms (such

s Google), have access to technologies allowing to gather infor-

ation on the behaviour of platform users, making it possible to

ustomize consumers (see [21] ). Advertisers may submit bids that

epend, for instance, on the correspondence between the website’s

ontent and the advertisement, but also on data about the loca-

ion of the consumer (obtained through the Internet Protocol IP

ddress). This kind of advertisement makes sense also because the

ehaviour of people in Internet contains distinctive traits (for ex-

mple, it has been shown that it is possible to distinguish between

ifferent users on the basis of the browsing histories [22] or even

he way they marked as favourite Flickr pictures [23] .) 

The introduction of new technology, such as modern AMS, in

he electricity market allows to collect data related to the possi-

ly distinctive energy consumption style – this typically results in

roup-based targeting/pricing. We are convinced that this would

e pushed even more, by effectively applying behavioural targeting

lso in this non-internet-based system; clearly, as a crucial start-

ng point, the energy load profile should contain distinctive be-

avioural information – and this represents the main scope of the

resent work. 

From the economic point of view, as pointed out by De Corniére

nd Nijs [21] , the disclosure of this behavioural information can

mprove the match between advertisers and consumers; however

t remains crucial to reply to the following two questions: i) is

t profitable for the advertisers? ii) is it good for the consumers?

he first reply is quite simple if we observe the data. As reported

bove, the eMarketer estimated that online advertisers spent more

han $1.3 billion in targeted advertising in 2011 (rising to more

han $2.6 billion in 2014 [20] ). 

The situation is quite different for the consumers. On the pos-

tive side, the advertiser can condition their contract proposal on

nformation about consumers, the better the information deliv-

red to the advertiser, the more focused the proposal. In short,

he matching between the supply (advertiser) and the demand

ide (consumers) will be efficient. On the negative side, since good

atches correspond to higher marginal revenues for advertisers,

t can be shown that disclosure of personal information leads to

igher prices for consumers. The fact that disclosure can lead to

igher prices, for [21] , comes from the observation that the firms

an condition their proposal on consumers’ characteristics: more

pecifically, the disclosure of information leads to a situation in

hich firms expect their ads to reach only the consumers with a

ow price-elasticity of demand (the good matches). Firms then ra-

ionally set higher prices ex ante. Moreover, as outlined by Esteban

t al. [24] , there is the possibility that higher prices can derived

rom the higher costs of the targeting. 

Whether positive effects compensate negative effects remains

n open issue, to be investigated in a more economic oriented fu-

ure work. However, trying to understand whether electricity load

rofiles can be used to identify user-specific behaviours is a key

uestion and is the main focus of this work. 

. The classification scheme 

In this paper we aim at discriminating single users based on

heir load profile and to this end we focus on a classification prob-

em. As mentioned in the introduction, several works in the litera-
ure consider the analysis of users in the energy domain, proposing

 wide spectrum of approaches, various types of metadata and sev-

ral techniques [6,14] . However, all these approaches focus on the

lustering problem, i.e. on the aggregation of users in few groups.

oreover, several studies reveal that the consistency of user ag-

regation can vary significantly depending on various characteris-

ics (such as season, features of the house and behaviours of users

6] ). This interesting analysis suggests that the energy load pro-

le might be a powerful trait to discriminate users. Specifically, in

his section we detail our methodology for user identification. The

tarting point is the “electricity load profile”, that is the recorded

nergy consumption of each user throughout the 24 h of the day

typically every 15–30 min). According to this definition, a single

rofile is a vector of measurements and a single user is charac-

erized by a set of profiles, one for each day. Fig. 2 gives a visual

epresentation of such load profiles for different users and differ-

nt days (data from the EnergyUK dataset – see the experimental

art). 

As previously stated, the load profile can be characterized by

onsidering various metadata. In particular we employ here three

ifferent representations based on time, frequency and load shape

ndexes [7,25] . Given these metadata, two different classification

chemes are proposed: the former based on the Nearest Neighbour

pproach and the second based on probabilistic HMM. Since the

pplication of HMM is specific to sequential data, only time repre-

entation is used in the second classification scheme. 

.1. Metadata definition 

Time. The full load profile is used, namely the T -dimensional

ector returned by the acquisition device. Note that this choice is

uite common in clustering energy profiles – e.g. [10,11] . 1 The sig-

als are not normalized (for example by applying z-score normal-

zation), so to maintain all possible information on the energy of

he signal (the absolute scale of the consumption profile) which

ight be useful to differentiate among users. 2 

Frequency. In order to investigate how the frequential content

ay be helpful to discriminate among users, Fast Fourier Trans-

orm is applied to the load profile. After a careful evaluation of the
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frequency content of the profiles, only the first 10 coefficients have

been retained. 

Normalized load shape indexes. These feature functions derive

from the load profile a compact set of values (indexes). These in-

dexes are effective in the characterization of groups of users, as

recently shown by Figueireido and colleagues [7,25] . Since they are

widely used in various studies, shape indexes are included in the

present work: in particular, a selection of three indexes suggested

in [7] is applied: 

1. Load factor : 

LF = 

P a v ,day 

P max,day 

(1)

where P av, day is the average consumption computed through-

out the whole day, and P max, day represents the highest recorded

peak of consumption. 

2. Night impact : 

NI = 

1 

3 

P a v ,night 

P a v ,day 

(2)

where the average consumption during the night, P av, night is re-

lated to the data recorded from 11 p.m. to 7 a.m. (8 h in total).

3. Lunch impact : 

LI = 

1 

8 

P a v ,lunch 

P a v ,day 

(3)

where the average of the profile during the lunch time P av, lunch 

is assumed to last from 11.30 a.m. to 2.30 p.m. (3 h in total). 

The three shape indexes above are computed for every load

profile; a single day of a given user is thus characterized as a 3-

dimensional feature vector. 

3.2. Classification 

The goal of the proposed study is to investigate the uniqueness

of the electric load profile of a given user. To do that, a key issue is

the design of a classification scheme, that is a method to assign a

given unknown profile into one over a set of predetermined users.

In what follows we detail the two classification schemes adopted

(both are basic, well known approaches) and their application for

load profile classification. 

Nearest Neighbour scheme . In the Nearest Neighbour scheme,

the classifier assigns an object to the class of its Nearest Neigh-

bour; the definition of a suitable distance measure (can be ei-

ther based on ”similarity” or ”dissimilarity” features) is therefore

crucial. The distance metrics adopted in the present work are in-

troduced in the following, together with the motivations behind

these choices. Note that the L1 and the L2 norms (the Manhat-

tan and the Euclidean distances, respectively) are the first distance

metrics introduced. In fact these metrics are very common, widely

applied for Pattern Recognition purposes, and also specifically ap-

plied to clustering problems in the energy domain (see for in-

stance [10] ). Given two profile representations p = p 1 , . . . , p T and

q = q 1 , . . . , q T , L1 and the L2 norms are defined as follows: 

L1 norm (Manhattan distance) : 

L 1(p , q ) = 

∑ 

i 

| p i − q i | (4)

L2 norm (Euclidean distance) : 

L 2(p , q ) = 

√ ∑ 

i 

(p i − q i ) 2 (5)

It is worth noting that L1 and L2 norms make sense for all the

considered metadata; on the other hand we also investigate several
dditional metrics specifically designed for the time signal repre-

entation and based on the concept of signal correlation, which is

 standard and widely used method to compare time series [26] . 

Given two profiles p = p 1 , . . . , p T and q = q 1 , . . . , q T , standard

ero Lag Cross Correlation (ZLCC) is defined as: 

Zero Lag Cross Correlation : 

C 0 (p , q ) = 

∑ 

i (p i · q i ) 

‖ p ‖‖ q ‖ 

(6)

This is the first additional metric adopted. The second metric

nvestigated, again based on signal correlation, takes into account

he fact that activities characterizing a specific user in different

ays may not be completely overlapped but there can be a small

ime lag; for example this could happen if an early departure for

ork leads to anticipate a number of activities with respect to a

egular day. In order to capture this behaviour, cross correlation

an be computed by allowing some time steps of lag, and retaining

t the end the maximum of the correlations. Following this ratio-

ale, two lag-based measures have been adopted: 

Max (1-lag) Cross Correlation : 

C 1 (p , q ) = max 
m ∈{−1 , 0 , 1 } 

∑ 

i (p i · (q i + m )) 

‖ p ‖‖ q ‖ 

(7)

Max (2-lag) Cross Correlation : 

C 2 (p , q ) = max 
m ∈{−2 , −1 , 0 , 1 , 2 } 

∑ 

i (p i · (q i + m )) 

‖ p ‖‖ q ‖ 

(8)

Finally, we also investigated the fact the lags displacement in

he daily activities can vary depending on the kind of activity car-

ied on; for example the way people watch the TV or have a din-

er can be similar but watching the TV and having a dinner can

ake place at different hours in different days. In order to cap-

ure this behaviour we repeated the computation of the Max 2-lag

ross correlation (as defined above) for small overlapping windows

asting 4 h and overlapping for two hours. This strategy allows to

est align consumptions related to different parts of the day, tak-

ng at the end the mean or the max computed correlation value.

ore precisely, defining as z the total number of overlapped sub-

indows w i ( · ) extracted from a given profile and lasting exactly

 h, two additional measures have been defined as: 

Mean Windows Max (2-lag) Cross Correlation : 

 C MeanW 2 (p , q ) = 

1 

z 

z ∑ 

i =1 

C C 2 (w i (p ) , w i (q )) (9)

Max Windows Max (2-lag) Cross Correlation : 

C MaxW 2 (p , q ) = max 
i ∈{ 1 , ... ,z} 

CC 2 (w i (p ) , w i (q )) (10)

Hidden Markov Model-based Bayesian classification . This

cheme revives the classical Bayesian decision scheme [1] , which

ssigns an unknown pattern to the class which shows the high-

st posterior probability, or, assuming equiprobable classes, the

ighest class conditional probability. In our case, class condi-

ional probabilities are modelled using Hidden Markov Models

18] , a probabilistic technique whose effectiveness has been shown

n various recognition scenarios. In few words, a discrete-time

rst order HMM [18] is a probabilistic model that describes a

tochastic sequence O = (O 1 , O 2 , . . . , O T ) as being an indirect ob-

ervation of a hidden Markovian random sequence of states Q =
(Q 1 , Q 2 , . . . , Q T ) , where Q t ∈ { 1 , 2 , . . . , N} (the set of states), for

 = 1 , . . . , T . Associate to each state there is a probability function,

alled emission probability function, which describes the probabil-

ty of emitting a given symbol from such state. A HMM is then

ompletely specified by a set of parameters λ = { A , B , π} where

 = (a i j ) is the transition matrix ( a ij is the probability of passing
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rom state i to state j ), π = (πi ) is the initial state probability dis-

ribution ( π i is the probability that system starts from state i ) and

 = ( b i ) is the set of emission probability functions, i.e. b i ( o ) is the

robability of emitting the symbol o when the system in state i . In

he considered case, the observations are continuous, therefore we

ssume that each b i is a Gaussian probability density function. 

Given a set of sequences { o ( i ) }, the training of the model per-

its to estimate the best parameters λ = { A , B , π} , i.e. the param-

ters that maximize the probability P ({ o ( i ) }| λ). This step if typically

erformed by using the Baum-Welch re-estimation technique [18] .

iven a sequence o , it is possible to evaluate how well this se-

uence is modelled by the HMM, using a procedure called evalua-

ion . In particular, using a procedure called forward-backward pro-

edure [18] it is possible to estimate the log probability log P ( o | λ),

iven a model λ and the sequence o to be evaluated. 

To summarize, given a C -class problem, our Bayesian classifica-

ion scheme is realized in the following way: for every class c , cor-

esponding to a given user, a HMM λc is trained; to this purpose

nly the training sequences (profiles) belonging to such class are

sed, obtaining as a result the set of C models λ1 , . . . , λC . In the

ubsequent testing phase, an unknown load profile o = (o 1 , . . . , o T )

s assigned to the class whose model shows the highest likelihood

note that to each class is assigned the same prior probability). 

. Experimental evaluation 

This section contains the empirical evaluation for our approach.

e first describe our empirical methodology and then present a

ide set of results, investigating different representation schemes

nd different versions of the recognition approach. Subsequently,

e introduce an analysis on how well the introduced schemes

cale with the size of the dataset. Further, we propose some con-

iderations and experiments on how it is possible to aggregate

ore days to characterize a given user. Finally, we present some

onsiderations on how sensible these results are with respect to

he different seasons. 

.1. Empirical methodology 

The data employed in our experiments derive from two sources,

oth related to settings typically employed in the domain of col-

ective energy purchasing, where the goal is to find group of en-

rgy consumers in order to purchase electricity at more convenient

ares [27,28] . 

More precisely, in the first dataset (called EnergyUK ), a load pro-

le contains the recording of the consumption of energy in a given

ousehold at fixed intervals (half hour); data have been recorded

ver a period of one month, in 2009, for several houses in UK. In

ig. 2 we provide some examples of load profiles, covering differ-

nt customers in different days. The second dataset, which we call

nergyPT , contains again daily consumption, but now recorded ev-

ry 15 min (for a total of 96 values per day), related to several

ifferent Portuguese clients recorded during the period 2011–2014

29] . 

Most of the tests have been performed by using the first dataset

 EnergyUK ): actually, the fact that all the load profiles have been

athered during the same month allows to investigate only person-

pecific characteristic behaviours, leaving aside the possible pres-

nce of discriminant traits due to seasonality. However, to inves-

igate a larger temporal domain, we also performed some experi-

ents on the EnergyPT dataset, in order to understand how diffi-

ult is to classify profiles while changing seasons. 

As in any classification test, it is important to keep separated

he data used for training the system from the data used to test

t. Here, for the ( EnergyUK ) dataset, we employed as training set
he first 2 weeks of the month, using the remaining days as test-

ng set. For what concerns the EnergyPT dataset, – as it will be

learer later – we employed signals derived from one season to

rain the system, whereas testing is performed with signals deriv-

ng from the other seasons. Our analysis employs the so-called Cu-

ulative Match Curve (CMC); this represents a widely used per-

ormance indicator, typically employed when testing behavioural

iometrics [30] and is more informative than the error of the clas-

ification scheme. To compute such measure, for every testing load

rofile a ranking of the identities matched by the system is deter-

ined: clearly, the top matched identity (i.e. the identity for which

he matching score is maximum) represents the class assigned to

uch testing profile. Given the ranking, the CMC at abscissa k indi-

ates the percentage of times at which the correct identity is found

ithin the top k matches: k is spanned along all possible values

from 1 to the number of classes). In order to summarize the CMC,

ypically the normalized Area Under the Curve (nAUC) is measured.

his parameter, similarly to what is done for the ROC curve, rep-

esents an useful summarizing measure: the higher this value, the

etter the recognition capabilities of the investigated system. 

For what concerns Hidden Markov Models, in all the experi-

ents the training has been carried out using the classical Baum-

elch procedure [18] ; this iterative procedure stops when the log

ikelihood reaches a stable value. The Baum-Welch procedure per-

orms a local optimization, therefore it is highly sensible to the

nitialization of the parameters. Following a classical approach em-

loyed in different applications dealing with Continuous Gaussian

MM, the parameters have been initialized via clustering, employ-

ng a Gaussian Mixture model. A free parameter of Hidden Markov

odels is represented by the number of states, which drives the

omplexity of the model. Here we adopted an automatic scheme

escribed in [31] , which determines the best number using only

he training set. 

.2. First experiment: comparing different features and classification 

chemes 

In the first group of experiments we focused on a set composed

y 100 users extracted from the EnergyUK dataset, which we anal-

sed by using various metadata and various versions of the 2 clas-

ification approaches. In this case, the main objective is to deter-

ine the best configurations, usable in the subsequent tests. To

mooth the raw profile (when applied), we employed a Gaussian

ltering – sigma varies between [0.6 and 2.2]. The nAUC values,

or all cases, are reported in Table 1 . In the best case, the nAUC is

.927: considering that the signal is a behavioural trait, this repre-

ents a reasonably high value – please compare with [32] , which

nalyses more established traits (like voice or gait). Among the

wo classification schemes, the Bayesian approach seems to per-

orm best, being able to capture, via the learning phase, the unique

haracteristics of every subject. Nonetheless, also the NN scheme is

easonably accurate, except when used with the correlation mea-

ures, which probably are too flexible. For what concerns metadata,

t seems evident that the Load Shape Indexes, a good choice for

eneral data-mining [7,25] , is not sufficient to capture the differ-

nces between subjects. 

.3. Second experiment: scalability 

Here we study the capabilities of the presented strategies to

cale in a reasonable way while increasing the number of the con-

idered subjects. To conduct the experiments we selected the two

est schemes, as determined in the previous section (“Smooth TR

 L1 + NN” and “TR + HMM”), evaluating them with 20 0, 30 0

nd 400 users of the EnergyUK dataset. Obtained results are pre-

ented in Table 2 – where, for sake of clarity, we presented also the
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Table 1 

( EnergyUK dataset): Results with 100 users: “TR” stands for Time Representation, 

“FR” for Frequency Representation, ‘LSI’ for Load Shape Indexes. 

Nearest Neighbour schemes 

Metadata Classifier nAUC 

TR L1 + NN 0.855 

TR L2 + NN 0.798 

TR CC 0 + NN 0.725 

TR CC 1 + NN 0.752 

TR CC 2 + NN 0.755 

TR CC MeanW 2 + NN 0.780 

TR CC MaxW 2 + NN 0.699 

Smooth TR L1 + NN 0.868 

Smooth TR L2 + NN 0.839 

Smooth TR CC 0 + NN 0.759 

Smooth TR CC 1 + NN 0.766 

Smooth TR CC 2 + NN 0.763 

Smooth TR CC MeanW 2 + NN 0.781 

Smooth TR CC MaxW 2 + NN 0.749 

FR L1 + NN 0.848 

FR L2 + NN 0.845 

LSI L1 + NN 0.722 

LSI L2 + NN 0.722 

HMM schemes 

Metadata Classifier nAUC 

TR HMM + Bayes Rule 0.927 

Smooth TR HMM + Bayes Rule 0.905 

Table 2 

( EnergyUK dataset): Scalability results. 

Classes 100 200 300 400 

NN approach 0.868 0.866 0.860 0.860 

HMM approach 0.927 0.931 0.932 0.929 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

( EnergyUK dataset): Enriching the scope. ‘NN’ and ‘HMM’ represent the two ap- 

proaches experimented – see the text – ‘Av’ stands for Average, ‘Co’ stands for Con- 

catenation. 

Days 1 2 3 4 5 6 7 

NN Av. 0.868 0.893 0.904 0.921 0.927 0.939 0.941 

NN Co. 0.868 0.876 0.872 0.886 0.875 0.872 0.892 

HMM Av. 0.927 0.906 0.901 0.893 0.905 0.900 0.910 

HMM Co. 0.927 0.945 0.953 0.957 0.960 0.971 0.963 

100 subjects 

Days 1 2 3 4 5 6 7 

NN Av. 0.866 0.888 0.901 0.915 0.920 0.937 0.933 

NN Co. 0.866 0.872 0.869 0.878 0.866 0.875 0.877 

HMM Av. 0.931 0.905 0.905 0.897 0.902 0.904 0.901 

HMM Co. 0.931 0.948 0.960 0.965 0.967 0.972 0.970 

200 subjects 

Table 4 

( EnergyPT dataset): Test on the different seasons, for (top) the HMM scheme and 

(bottom) the NN scheme. 

Training season Testing season 

Winter Spring Summer Autumn 

Winter – 0.950 0.889 0.950 

Spring 0.959 – 0.956 0.951 

Summer 0.908 0.948 – 0.922 

Autumn 0.965 0.959 0.919 –

Hidden Markov Model scheme 

Training season Testing season 

Winter Spring Summer Autumn 

Winter – 0.985 0.955 0.974 

Spring 0.989 – 0.992 0.974 

Summer 0.962 0.983 – 0.959 

Autumn 0.986 0.985 0.975 –

Nearest Neighbour scheme 
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values obtained with 100 users: interestingly, the performances do

not drop when increasing the number of subjects considered. 

4.4. Third experiment: aggregating several days in the load profile 

In this section we investigate the possible effects of character-

izing a subject by aggregating more days: actually, it is possible

that the consumption of energy varies according to the different

day of the week (e.g. working days vs. weekend). To do that, we

consider as user signature 2, 3,... , 7 consecutive days. These pro-

files are aggregated by averaging (resulting again in a signature of

length T) or by concatenation (obtaining a longer signature). In the

former case we possibly remove noise (reducing variation inside

the class), while in the latter we can have a larger set of (maybe

noisy) data. Experiments were conducted using 10 0 and 20 0 sub-

jects of the EnergyUK dataset, again with the “Smooth TR + L1 +
NN” and “TR + HMM” selected in the previous sections. Table 3

presents the obtained nAUC. 

In general, aggregating more days is beneficial for both ap-

proaches, with the performances raising from 0.868 to 0.941 for

the Nearest Neighbour approach and from 0.927 to 0.971 for the

HMM approach. The former scheme gains more with signal averag-

ing, whereas the latter prefers signal concatenation. This is some-

how expected: the averaging operation produces more robust in-

stances, which are essential for the NN scheme, based on pairwise

comparisons; at the same time, however, the number of training

instances is decreased, this makes the HMMs training less robust,

being affected by the lower cardinality of the training set. 

As a final picture of the performances for this dataset (Ener-

gyUK), we present in Fig. 3 the CMC curves for the two best sit-

uations: NN (with averaging) and HMM (with concatenation). The
gure clearly confirms the potentialities of our suggestion (i.e. that

he user’s load profile contains discriminative information): in the

MM case, by employing a single day, the correct identity of a

iven user can be identified within the top 20 answers in the 89.4%

f the cases. When using more days, such percentage increases

ven more (94.5% with 7 days). Please note that a random classi-

er would present a 20% recognition rate. Similar conclusions can

e drawn also in the case of 200 subjects (where the random clas-

ifier would obtain 10%). 

.5. Fourth experiment: considering seasons 

In this section we investigate the robustness of the proposed

pproach to changes in seasons: in particular, we investigate the

apability of the system to recognize a load profile collected in

 specific season using a system trained with load profiles gath-

red in a different season. To do so we employed the signals of

00 users of the EnergyPT dataset, recorded during the year 2012.

e split the signals in four sets, each one (approximately) related

o a season (January, February and March for Winter, April, May

nd June for Summer, and so on). We then train the system us-

ng a given season (e.g. Winter), testing it using another season

aken from the remaining ones (e.g. Spring, Summer and Autumn).

e repeated the experiments testing all seasons, again with the

Smooth TR + L1 + NN” and “TR + HMM” selected in the previous

ections – here we used a single day for the load profile. Table 4

resents the obtained nAUC. 

Interestingly, the recognition rates are very high: the system

oes not suffer too much for the change in the season, but it is

ble to capture the true traits of a given load profiles. Reasonably,
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Fig. 3. ( EnergyUK dataset): CMC curves, for 100 (top) and 200 (bottom) subjects. The 20-rank rate is represented by a vertical dotted line. Left column is for the Nearest 

Neighbour, right column for HMM. 
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he worst performances are obtained for winter/summer pairs. It

s also interesting to note that the Nearest Neighbour technique

utperforms the HMM-based scheme (whereas for the EnergyUK

ataset we got the opposite behaviour). Probably, since here the

emporal span of the training set is larger (3 month with respect

o 15 days), the local NN, which takes the decision based on few

rofiles, is more suitable than the global HMM, which extracts a

ingle models from all the profiles – which can be somehow dif-

erent, spanning three months. 

In any case, also this experiment clearly confirms the poten-

ials of using load profiles to discriminate users: in the NN case,

or the pair Spring/Summer, the correct identity of a given user

an be identified within the top 20 answers in the 99.65% of the

ases, and within the top 5 in the 94.76% of the cases. 

. Conclusions 

The deployment of AMS results in a large amount of fine-

rained data that can provide crucial information for the energy

istribution process. In this paper we focus on the discrimina-

ive power of energy load profile and specifically, we investigate
hether the electricity load profile can provide distinctive infor-

ation, to be exploited by intelligent control systems for advanced

asks such as forecasting, balancing of energy loads, monitoring

nd optimization of consumptions as well as targeted initiatives.

ur work provides empirical evidence that confirms the unique-

ess of the behaviours of the users and proposes a practical clas-

ification scheme that allows to detect such unique patterns. This

epresents a preliminary viable tool that can be used by energy

arket societies to perform advanced analysis of the energy do-

ain. 
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