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Abstract—Pattern Recognition techniques have been success-
fully exploited for the biomedical analysis of NMR spectra. In
this context, it is crucial to derive a suitable representation for the
data: among others, a successful line of research exploits the Bag
of Words representation (called here “Bag of Peaks”). However,
despite its success, the Bag of Peaks paradigm has not been fully
explored: for example, appropriate probabilistic models (such as
topic models) can further distill the information contained in
the Bag of Words, allowing for more interpretable and accurate
solutions for the task-at-hand. This paper is aimed at filling this
gap, by investigating the usefulness of topic models in the analysis
of NMR spectra. In particular, we first introduce an unsupervised
approach, based on topic models, that performs soft biclustering
of NMR spectra – this kind of unsupervised analysis being new in
the NMR literature. Second, we show that descriptors extracted
from topic models can be successfully employed for classification
of NMR samples: compared to the original Bag of Words, we
prove that our descriptors provide higher accuracies. Finally, we
perform an empirical evaluation involving a complex dataset of
spectra derived from fruits, and two datasets of medical NMR
spectra: our analysis confirms the suitability of such models in
the NMR spectra analysis.

I. INTRODUCTION

High-resolution proton nuclear magnetic resonance (NMR)
spectroscopy [1] represents an invaluable tool in biomedical
research, as it provides data on the metabolic composition
of biofluids, and conveys information on their perturbations.
These data, produced by standard spectrometers, in the sim-
plest form are available as 1-D traces: depending on several
biological factors, distinct peak patterns originate from the
mixtures of metabolites in different samples. In recent years,
Pattern Recognition techniques have become of paramount
importance for the automated analysis of NMR spectra [2],
[3], allowing for example the classification of diseased from
healthy subjects [4], [5], or assisting experts to gain insights
into which metabolites have altered concentrations in the
biofluids of diseased subjects (usually by performing peak
selection / clustering [6]). Several approaches have been
proposed in the past (see for example the reviews [7], [2],
[3]), each one characterized by different features like speed,
accuracy, interpretability and so on. Among others, a success-
ful line of research exploited the Bag of words representation
[8], a famous and well known paradigm firstly introduced in
the linguistic scenario and subsequently exploited with success
in many other different scenarios. In the NMR scenario, the
Bag of Words vector representation has been renamed “Bag of
Peaks” [9], and has proved to be very suitable: on one hand,

classifiers based on this representation achieved state-of-the-art
accuracy performances; on the other hand, the representation
can be easily interpreted, allowing interaction with experts, for
example to fine tune the dictionary or interpret peaks-words
[9], [10].

However, not all the potentialities of this paradigm have
been explored. In particular, it has been shown in many
other contexts (see [11], [12], [13] just to cite a few) that
the Bag of Words representation can be largely enriched by
exploiting probabilistic models such as topic models [14].
This exploitation, in the NMR scenario, is currently missing,
and represents the main goal of this paper. In particular we
propose to use probabilistic models for NMR spectrometry
mining, in order to further distill the information contained in
the Bag of Peaks vector. We will focus on the class of topic
models [14], which have been specifically designed to model
the Bag of Words representation. Even if they have been firstly
introduced in the context of text mining, these models have
been extensively exported and tailored for a wide variety of
applications in Computer Science (see for example the survey
in [14]). Their usage is motivated by their expressiveness and
efficiency, by the interpretability of the solution provided [15],
and by state of the art results achieved in classification tasks.

In this paper we will demonstrate the usefulness of topic
models to analyse NMR spectra in two ways. First, we
introduce an unsupervised approach, based on topic models,
that performs soft biclustering of NMR spectra. Please note
that this kind of unsupervised analysis is rather new in the
NMR analysis scenario. In fact, typically, in NMR spectra
analysis / metabolomics a clustering approach is devised i)
for clustering spectra, in order to unravel complexities of the
dataset ([16], [17], [18], [19], [20], just to cite a few, or
the recent [21] and references therein), or ii) for clustering
peaks, in order to discover metabolites or interesting correlated
peaks (see [22] – and all references therein – and [21]).
On the contrary, our proposed unsupervised approach based
on topic models allows the simultaneous grouping of peaks
and samples (thus, biclustering), in order to identify the most
relevant peaks for each cluster. Moreover it is a soft approach,
i.e. it permits to assign each sample/peak to different groups,
this being quantified via a membership function.

As a second contribution, we show that descriptors extracted
from topic models can be successfully employed for classi-
fication of NMR samples: we will prove that the proposed
descriptors are better fit for the task than the original Bag of
Words representation (on top of which they are built).978-1-5386-3788-3/18/$31.00 c⃝2018 IEEE
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Both contributions have been experimentally validated using
real datasets, involving a complex dataset of spectra derived
from fruits, and two datasets of medical NMR spectra. Ob-
tained results confirm that i) topic models can unravel the
complexity of the dataset by highlighting different aspects of
the analysed data and ii) they permit to extract discriminant
signatures, able to properly classify NMR spectra.

The rest of the paper is organized as follows: in Sect. II
the needed background on Bag of Peaks and Topic Models
is introduced; Sect. III then introduces how to exploit topic
models for biclustering NMR spectra in a soft fashion. In
Sect. IV we will describe how these models can be employed
for NMR spectra classification. Finally, Sect. V concludes the
paper.

II. BACKGROUND

In this section we introduce the relevant background
on NMR spectra characterization using the Bag of Peaks
paradigm [9] and on topic models.

A. Bag of Peaks

The Bag of Peaks representation has been introduced in [9]
to characterize NMR spectra on the basis of visible peaks.
Briefly, the Bag of Peaks approach works in two steps:
dictionary building and spectra characterization.

In the first step (dictionary building), given a training set
of NMR spectra, for every trace the most prominent (i.e.
highest) peaks are extracted. We can extract a fixed number
of such peaks, or all the peaks which are above a given
threshold. In all of our experiments, we adopted the first
solution. Then we cluster the peak locations into 𝐾 groups.
Different clustering techniques can be used: in [9] the Basic
sequential algorithmic scheme (BSAS) approach is used; in
our experiments, we employed the Hierarchical Complete
Linkage method. The main reason is to avoid fluctuations,
due to the random ordering of BSAS (which depends on the
initialization, similarly to Kmeans). Finally, the centers of the
𝐾 clusters represent the words of the dictionary.

In the second step (spectra characterization), given a trace
𝑡, a set of most prominent peaks is extracted (typically,
using the same strategy used to build the dictionary – i.e.
extracting a fixed number of peaks per trace). For every peak
𝑝𝑖, the location and the height (𝑙𝑖, ℎ𝑖) are stored. Then, the
nearest word (i.e. the nearest peak, in terms of location) in
the dictionary is looked for. By making an analogy with the
linguistic scenario, where the idea is to count words that
appear in a document, we can state that such “word” is present
in the trace, with a level of presence (i.e. count) equal to the
height ℎ𝑖. Please note that if two (or more) peaks of the trace
are assigned to the same word/peak of the dictionary, the level
of presence of such word/peak is the sum of the two (or more)
heights. In the end, the trace is characterized by a vector of
length 𝐾 (the size of the dictionary), which in every entry
contains the level of presence of a given dictionary word/peak
in the trace. Note that such level can be also 0, if the word/peak
is not present in the trace.

B. Topic Models

Topic models [14] have been originally introduced in the
text analysis community, in order to describe and model a set
of documents, represented as Bag of Words vectors. The basic
idea underlying these methods is that a document may be char-
acterized by the presence of one or more hidden topics (e.g.
sports, finance, politics), each one inducing the presence of
some particular words. Here we used the probabilistic Latent
Semantic Analysis (pLSA – [23]), one of the first and widely
applied models in this family. Given a set of documents, we
can learn a pLSA model (via the Expectation Maximization
algorithm) in order to obtain two complementary sets of
probabilities: 𝑝(𝑧𝑘∣𝑑𝑡) and 𝑝(𝑤𝑖∣𝑧𝑘), where 𝑧𝑘 are the different
topics, 𝑑𝑡 the documents, 𝑤𝑖 the words. Intuitively, given
a topic 𝑧𝑘, 𝑝(𝑧𝑘∣𝑑𝑡) measures how much the 𝑘-th topic is
“spoken” in the document 𝑑𝑡, whereas 𝑝(𝑤𝑖∣𝑧𝑘) measures how
much the word 𝑤𝑖 is used when speaking about the topic 𝑧𝑘.

Due to lack of space, the complete derivation of the pLSA
model is not detailed here, and interested readers can refer to
[23].
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Fig. 1. Scheme of the proposed approach.

III. TOPIC MODELS FOR SOFT BICLUSTERING OF NMR
SPECTRA

Topic models are built on top of Bag of Words represen-
tations [8]. Clearly the Bag of Peaks represents a “Bag of
words” representation: in this case a parallelism is established
between the linguistic and the NMR scenarios. Reasonably,
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it seems appropriate to establish the correspondence between
traces/documents and peaks/words. Actually every spectrum
(document) is characterized by the different presence of dif-
ferent peaks (the words). To learn a pLSA, documents should
be represented with an occurrence matrix (count matrix),
where each entry counts the number of times a given word
occurs in a given document. This is similar to what the Bag
of Peaks representation provides: the level of presence of a
given word/peak 𝑖 in a trace 𝑡 can be reasonably intended
as the count value for that word and document1. Given this
parallelism, we can learn a pLSA to model the input dataset.

It is important to note that pLSA has been seen recently
as a biclustering algorithm [24], able to characterize groups
of documents and words (i.e. biclusters). The usage of bi-
clustering algorithms in the NMR analysis scenario is rather
new. Typically, clustering algorithms in NMR spectra analysis
/ metabolomics are employed for clustering spectra to unravel
complexities of the dataset ([16], [17], [18], [19], [20], just
to cite a few, or the recent [21] and references therein) or for
clustering peaks, in order to discover metabolites or interesting
correlated peaks (see [22] – and all references therein – and
[21]). pLSA may allow to simultaneously cluster both peaks
and samples, therefore permitting a more deep understanding
of the information contained in the data.

Following [24], we can say that every topic represents a
bicluster, active in different samples and involving the presence
of different words. The bicluster memberships are expressed
via probabilities, thus permitting a more fine analysis of
the spectra. However, there are situations where we need
to know which spectra belong to a given bicluster (hard
assignment). Even if some strategies to face this problem have
been investigated in [24], the problem remains almost open:
here we introduce a novel method, based on a statistically
sound randomization test, which permits us to get a p-value
for a word 𝑤𝑖 belonging to a topic 𝑧𝑘 (the same reasoning
can be applied for a topic 𝑧𝑘 “spoken” by document 𝑑𝑡). The
main idea is to compare the obtained probability 𝑝(𝑤𝑖∣𝑧𝑘) with
random generated ones 𝑝1(𝑤𝑖∣𝑧), . . . , 𝑝𝑅(𝑤𝑖∣𝑧), counting how
many times 𝑤𝑖 is assigned to topic 𝑧 with equal or higher
probability than the obtained 𝑝(𝑤𝑖∣𝑧𝑘). In other words, we are
measuring the chance of obtaining a value 𝑝(𝑤𝑖∣𝑧) equal to
or more extreme than what was actually observed: and this
represents exactly the definition of p-value. More specifically,
we first notice that the distribution 𝑝(𝑤∣𝑧𝑘) is multinomial
(by construction of the pLSA model [23]); thus, the random
values of 𝑝(𝑤∣𝑧) are sampled from a Dirichlet distribution with
uniform parameters, simulating the process of data generation
that the pLSA is modeling. In our experiments, the p-value is
obtained after 100,000 randomization tests. For more details
on how to use pLSA for biclustering please refer to [24].

A. Experimental Results

We tested the proposed biclustering scheme on a complex
dataset involving 12 different varieties of cherry, collected in

1A similar parallelism has been established for gene expression data [24],
[12].

TABLE I
DETAILS OF THE FRUITS DATASET.

Sample Cultivar Ripening Brix pH Hardness
1 sandra early 13.12 3.897 57.757
2 early bigi early 12.70 3.790 44.367
3 francese early 13.24 3.792 48.146
4 milanese late 15.82 3.530 79.770
5 durone rosso late 16.62 3.660 57.632
6 bella italia late 16.91 3.610 55.485
7 sandra tardiva late 18.02 3.600 55.670
8 van late 17.20 3.740 62.850
9 giorgia late 15.93 3.650 67.400

10 ferrovia late 17.78 3.693 60.543
11 kordia late 17.57 3.697 61.260
12 regina late 20.05 3.720 60.670

North-East Italy. The list of the samples, together with some
other metadata, is reported in table I. A detailed description
of orchard area, sampling plan and analytical procedures is
reported in [25]. In few words, the dataset includes NMR-
based metabolomics data of fruits from three early ripening
and nine late ripening sweet cherry cultivars. The fruits were
also assessed for the following quality parameters: hardness,
degrees Brix (depending on the sugars accumulated within the
fruits) and pH (depending on organic acids accumulated within
the fruits).

On this dataset we applied the proposed scheme: we ex-
tracted 20 peaks from each trace, and we built the Bag of
Peaks representation with a dictionary of length 30. On top
of this we trained a pLSA model, using 5 topics and stopping
the learning after likelihood convergence. In our approach the
pLSA model has been trained via a variational EM algorithm,
starting from a clever initialization. In particular, it is known
that choosing a good initialization for word-topic probabilities
is crucial for a proper learning [26]. Typically, this is done at
random, with the risk of solution convergence to poor local
minima. In order to overcome this issue, following [27] we
cluster words into Z groups (where Z represents the number
of topics) using the complete link algorithm, which performs
an agglomerative clustering. Then, we initialize the topic-
word probabilities so that each topic has high probability of
generating the words inside its cluster, and low probability of
generating words outside the cluster.

The result of the application of our approach is reported in
Fig. 2. In particular, for every topic we plot the distribution
𝑝(𝑧∣𝑑) among all samples; in bold we highlight samples for
which the p-value is over 0.01. All the potentialities of the pro-
posed scheme can be deduced if we intersect these plots with
the metadata presented in Tab. I: in particular we can observe
how the different topics are able to capture different aspects
of the proposed dataset. Topic 5 completely characterizes the
early ripening cultivars: all significant samples belong to that
family; at the same time, it also characterizes samples with
the highest pH. In topic 2 all significance samples have high
hardness; finally almost all the significant samples of topic 3
have a large Brix.

Different information can also be evinced from the com-
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Fig. 2. Relative topic frequencies for distinct samples of the fruit data
collection.

plementary analysis of the 𝑝(𝑤∣𝑧). In particular, considering
the dictionary and analysing the most important “words“ for
the different topics we can observe different things. Actually,
the words correspond to a spectral region that shows intense
signals from carbohydrates (glucose, fructose and xylose)
and free amino acids (aspartate, valine, threonine, alanine,
asparagine). Due to the fact that carbohydrates display an
elevated number of peaks, their signals are represented in
several words, but each word may correspond to accumulated
contributions from distinct molecules. Thus, while some words
spoken in topic 3 can be attributed exclusively to glucose
and xylose, a word spoken in topic 5 has contributions from
asparagine and fructose, the majority of words cannot be
explained in terms of single or couples of metabolites, but may
be associated with several molecules. It is indeed an advantage
of the NMR method that individual metabolite peaks need not
to be separated while still contributing to the observed spectral
profile.

IV. TOPIC MODELS FOR NMR SPECTRA CLASSIFICATION

In this section we want to show the potentialities of topic
models for classification of NMR spectra. Even if topic
models have been introduced for clustering purposes, different
strategies has been proposed in recent years to employ them
in classification tasks. The main strategy is to employ a hybrid
generative-discriminative classification scheme [28], [29], a
class of approaches which merge the best characteristics of
generative and discriminative paradigms: once learned from
data, a generative model (good in describing the problem) is
exploited to project every object of the problem in a feature
space (often called generative embedding space), in which a
discriminative classifier can be used. Here we learned a single
pLSA model on the whole training set of spectra (different
possibilities are still available – see [30]), performing inference
to get distributions on the testing set. Then we employed two
schemes to get signatures: the first, called Topic Proportions,
simply encodes an object by using the probabilities 𝑝(𝑧∣𝑑)
– this represents the first and most used method [11]. As
a second scheme we encode the recent Free Energy Score
Space (FESS) approach [31]: in few words, – interested
readers are referred to [31] – the FESS vector is able to
capture how well each object of problem fits the different
parts of the generative model, modelled via the variational free
energy (which represents a lower bound of the negative log-
likelihood). It has been shown in [31] that such representation
is highly informative for classification, permitting to reach
state-of-the-art results in different bioinformatics and computer
vision problems.

A. Experimental Results

Here we tested the classification strategy using two sets
of NMR spectra. The first, recently used in [32], derives
from a study investigating the urine metabolome of patients
affected by immunoglobulin A nephropathy, the most common
form of primary glomerulonephritis worldwide. The NMR
spectral fingerprints of 24 patients were compared to those
of 68 healthy matched controls to verify the occurrence of
a urine metabolic signature of the disease. In the paper the
classification task is solved by using a Principal Component
Analysis plus Correlation Analysis approach. The second
dataset concerns the detection of diabetes in children [9]. In
particular, the study involved 35 Sardinian under 10-year-old
children. The goal was to classify the NMR traces derived
from their urine samples in two classes (children having or not
Type I diabetes). The NMR traces were characterized by using
the above described Bag of Peaks representation, and then
classified using different standard classifiers (nearest neighbor,
Support Vector Machines and so on).

To be comparable with the two papers we used the same
experimental protocol (10 fold cross validation with 100
repetitions for [32] and Leave One Out cross validation for
[9]). For [32] we used the same classifier in the representation
space (the 5-Nearest Neighbor), whereas for [9] we choose
the 1-Nearest Neighbor classifier, since it showed the averaged
best performances in such paper. Classification performances
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have been assessed by measuring classification accuracies.
For what concerns pLSA and Bag of Peaks we performed a
thorough evaluation, by varying the number of extracted peaks,
the dimension of the dictionary and the number of topics. The
pLSA model has been trained as described in the previous
section, namely via a variational EM algorithm initialized via
clustering.

To get a first glance of the results we reported in table
II the classification accuracies obtained by using the best
parametrization for every variant of the method on the two
datasets, comparing the results with the method proposed in
[32] and in [9]. Even if many other methods for NMR spectra
classification are present in the literature [2], [3], here we focus
on the techniques employed on these datasets, taking baseline
results from the papers in which the two datasets have been
introduced [32], [9]. For what concerns the results on the first

TABLE II
COMPARATIVE RESULTS: (A) RESULTS ON DATASET OF [32]; (B)

RESULTS ON DATASET IN [9].

Method Accuracy
Bag of Peaks 89.45%
PLSA (Topics Prop.) 92.86%
PLSA (FESS) 92.53%
PCA + Canonical Analysis [32] 88.00%

(a)

Method Accuracy
Bag of Peaks 93.75%
PLSA (Topics Prop.) 100.00%
PLSA (FESS) 96.875%
PCA (99.9% variance) [9] 84.00%
PCA (Scree Test) [9] 87.00%
Multidimensional Scaling [9] 84.00%

(b)

dataset [32] (table II(a)), we can observe the improvements
in the accuracies obtained when employing topic models with
respect to the classic Bag of Peaks. It is important to note that
the proposed scheme also significantly outperforms the method
proposed in [32], suggesting that Bag of Peaks and topic
models can be a good alternative to standard schemes. Please
note that the accuracy can be increased even more if we adopt a
more complex classifier: for example, if we use a linear SVM2,
the accuracies raise to 92.09%, 93.41% and 96.70% for Bag of
Peaks, PLSA (Topics Prop.) and PLSA (FESS), respectively.
In this case it is also clearer the advantage got when using
the FESS classification scheme. Similar observations can be
derived from the results of the analysis on the dataset of
[9], shown in II(b). Also here it is evident the gain obtained
when using the topic models, as well as the improvement over
competing standard schemes.

As a second analysis we investigated the relation between
Bag of Peaks and topic models when varying the parameters
(i.e. number of peaks and dictionary size). Such analysis is
reported in Fig. 3: the plots in the left column refer to the

2The parameter 𝐶 has been set by performing a crossvalidation analysis
on the training set.

number of peaks, whereas those in the right column are related
to the size of the dictionary. The first row the analysis is for the
dataset in [32], whereas the second is for the dataset of [9]. In
such curves we display the best classification accuracy of the
Bag of Peaks and the two topic models variants when using a
particular value of the analysed parameter. At a first glance, we
can note that the methods based on topic models consistently
outperform those based on Bag of Peaks for almost all values
of the parameters, thus confirming the observations reported
above. For what concerns the number of extracted peaks,
it seems that the best behavior is obtained when using a
number of peaks in the middle of the range. Probably, too few
peaks do not contain enough information to characterize the
traces, whereas with too many peaks also noisy information is
extracted. On the other side, it is more difficult to find a trend
in the curves related to the dictionary size. However, it seems
that the Bag of Peaks tends to deteriorate when increasing
the size of the dictionary. This seems reasonable, since when
increasing the dimension of the dictionary we increase the
dimensionality of the space where the classifier is trained –
thus being more prone to have problems linked to the curse
of dimensionality. This is not true for topic models, where the
dimensionality of the space does not depend on the size of the
dictionary, but on the number of topics.

V. CONCLUSION

In this paper we investigated the usefulness of topic mod-
els in the context of NMR spectroscopy. In particular we
presented an unsupervised method, based on such models,
able to perform soft biclustering of NMR spectra – this kind
of unsupervised analysis being new in the NMR literature.
Second, we investigated the usefulness of descriptors extracted
from topic models for classification of NMR samples. The
quantitative and empirical evaluation, involving a complex
dataset of spectra derived from fruits, and two datasets of
medical NMR spectra, confirms the suitability of such models
in the NMR spectra analysis.
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