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Abstract. Biclustering, which can be defined as the simultaneous clus-
tering of rows and columns in a data matrix, has received increasing
attention in recent years, being applied in many scientific scenarios (e.g.
bioinformatics, text analysis, computer vision). This paper proposes a
novel biclustering approach, which extends the dominant-set clustering
algorithm to the biclustering case. In particular, we propose a new way
of representing the problem, encoded as a graph, which allows to exploit
dominant set to analyse both rows and columns simultaneously. The pro-
posed approach has been tested by using a well known synthetic microar-
ray benchmark, with encouraging results.

1 Introduction

Biclustering, also widely known as co-clustering, can be defined as the simul-
taneous clustering of both rows and columns of a given data matrix [5,12,17].
With respect to clustering, the main differences of biclustering consist in the
exploitation of local information (instead of global) to retrieve subsets of rows
sharing a “similar” behaviour in a subsets of columns, and vice versa (instead of
subsets of rows sharing a similar behaviour among whole the columns). Although
bi-clustering was born and mainly applied to analyse gene expression microarray
data [5,22], it has been recently exploited in a more various range of applications
from clickstream data [18], passing by recommender systems [19], to different
Computer Vision scenarios (such as facial expression recognition [16], motion
and plane estimation [8]).

Different biclustering techniques have been proposed in the past – for a com-
prehensive review please refer to [12,17,22,23] – each one characterized by dif-
ferent features, such as computational complexity, effectiveness, interpretability
and optimization criterion. Various of such previous approaches are based on
the idea of adapting a given clustering technique to the biclustering problem, for
example by repeatedly performing rows and columns clustering [10,14].

This paper follows the above-described research trend, and proposes a novel
biclustering algorithm, which extends and adapts to the biclustering scenario
the dominant-set based clustering. The concept of dominant set can be depicted
from various points of view, since it involves optimization theory, graph theory,
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game theory and pattern recognition. Approaching it from a clustering perspec-
tive, given a set of objects V to group, a dominant set C ⊆ V is a subset of
objects with two well-defined properties: (i) all elements belonging to C should
be highly similar to each other, and (ii) no larger cluster should contain C as a
proper subset. Thus, C can be informally expressed as a maximally coherent set
of data items [4,21]. Practically, a dominant set C is represented by a charac-
teristic vector x where an entry xi represents how likely the object vi belongs to
the retrieved cluster. In [4,21] authors provide a clustering algorithm based on
dominant sets which is theoretically solid and supported by several experimen-
tal evaluations. Differently from classical clustering approaches, dominant-set
clustering does not provide a partition of the data, and it can be successfully
exploited in highly noisy contexts or scenarios with outliers. Moreover, dominant-
set clustering can be exploited also in cases where the similarity matrix between
objects is asymmetric. These two last considerations provide a solid link between
dominant-set and classical biclustering approaches which, in most of the cases, do
not provide a partition of the data matrix, and deal with non-squared matrices
(hence, not symmetric) [17].

A first step toward the usage of dominant sets in the biclustering scenario
has been presented in [26]. In this case authors propose to retrieve the bicluster
by iteratively sorting and shifting the rows/columns of the given data matrix.
Such sorting and shifting is made according to the dominant-set characteristic
vector. However this algorithm do not exploit the potential of dominant set to
group both rows and columns simultaneously, which is the core of classic biclus-
tering algorithms and of this paper. Another approach similar in spirit is the one
presented in [9]. In fact, authors of [9] tackle biclustering by retrieving bi-cliques
on a bipartite-graph adjacency matrix. Although the technique derived shows
some similarities with the one proposed in this paper, the resulting technique
does not provide dominant sets as results and for this reason we do not present
its details in this manuscript.

For this reason we decided to investigate how the concept of dominant set
can be extended to the biclustering scenario. Among the different biclustering
algorithm typologies, one branch involves the representation of the problem as
a edge-cutting problem in a weighted bipartite graph, where one set of nodes
represents rows and the other represents the columns [1,13]. However, a dom-
inant set from a graph theory perspective is equivalent to maximal clique [4],
and thus it cannot be applied directly on a bipartite graph (since a maximal
clique in a bipartite graph is composed by only two nodes). We thus provide a
novel simple graph representation for the biclustering problem. This involves the
exploitation of data matrix entries as a similarity measure between rows-columns
couples. The intuition behind this usage of the data matrix comes from the con-
sideration that in various biclustering scenarios (such as recommender systems,
gene expression analysis, clickstream data) the information encoded in the data
matrix represents how much a row “is important” for that particular column.
Moreover, to obtain a theoretically appropriate dominant set, we modified the
bipartite graph adjacency matrix following the baselines provided in [21,29].
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We evaluate the performance of the proposed approach on both synthetic
and real datasets, favourably comparing with the current the state-of-the-art.

The remainder of paper is organized as follows: Sect. 2 introduces the
dominant-set clustering approach, clearing the connections with other fields;
our algorithm is then described in Sect. 3, whereas the experimental evaluation
is given in Sect. 4; finally Sect. 5 concludes the paper.

2 Dominant Set Clustering

In this section we summarize the contributions provided in [4], providing the
background knowledge concerning the dominant-set clustering algorithm.

Clustering is the problem of organizing a set of data elements into groups in a
way that each group satisfies an internal homogeneity and external inhomogene-
ity property. Differently from classical clustering approaches the dominant-set
algorithm faces the problem from a game theory perspective, instantiating a
non-cooperative clustering game where the notion of a cluster turns out to be
equivalent to a classical equilibrium concept from (evolutionary) game theory,
as the latter reflects both the internal and external cluster conditions [4]. As
discussed in Sect. 1, the internal condition asserts that elements belonging to
the cluster should have high mutual similarities, whereas the external prop-
erty claims that a cluster cannot be further extended by introducing external
elements.

Formally, let G = (V,E, ω) be a weighted graph representing a clustering
problem instance, where V = {1, . . . , n} is a finite set of vertices (representing
the objects to group), E ⊆ V × V and ω : E → R. We adopt Aij = ω(i, j) to
denote the graph adjacency matrix, representing the objects similarities. Given
a non-empty subset of objects C ⊆ V , we define the average weighted in-degree
of i ∈ V with respect to C as:

awindegC(i) =
1

|C|
∑

j∈C

Aij ,

where |C| is the cardinality of C. Also, if j ∈ C we define

φC(i, j) = Aij − awindegC(j),

which is a measure of the relative similarity of object i with object j with respect
to the average similarity of object j with elements in C. Let us define the weight
of an object i with respect to a set C:

WC(i) =

{
1, if |C| = 1∑

j∈C\{i} φC\{i}(i, j)WC\{i}(j), otherwise.

Please note that such definition is inductive and not circular, since in the sum
j takes belongs to C excluding the interested point i. Now, we define the total
weight of C as:

W (C) =
∑

i∈C

WC(i).
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The weight WC(j) captures the strength of the coupling between vertex j and
the other elements in the set relative to the overall coupling among the vertices.
Such properties of the weighting are the basis for the formalizations of the notion
of dominant set as a notion of a cluster.

Definition 1. A non-empty subset of objects C ⊆ V such that W (T ) > 0 for
any non-empty T ⊆ C, is said to be a dominant set if

1. WC > 0, for all i ∈ C,
2. WC∪i(i) < 0, for all i /∈ C.

This definition provides conditions that correspond to the two main properties
of a cluster: the internal and external conditions mentioned above.

Such formulation of clustering has connections with other scientific fields
(namely optimization theory, graph theory and game theory), this links have
been theoretically proven in [4]. The understanding of these links are needed
to perceive how authors in [4] decide to compute a dominant set/cluster from
the similarity matrix A. Moreover, the basis of how we decided to extend such
approach to biclustering are theoretically founded in the theorems lying behind
such connections.

Summarizing, in [4] they show that:

– with respect to optimization theory : a dominant set can be can be character-
ized in terms of local solutions pf the following standard quadratic program

maximize f(x) = xTAx

subject to x ∈ Δ ⊂ R
n, (1)

where

Δ =

⎧
⎨

⎩x ∈ R
n :

∑

j∈V

xj = 1 and xj ≥ 0 for all j ∈ V

⎫
⎬

⎭ .

And, particularly, they show that if C is a dominant set of A, then its charac-
teristic vector xC is a strict local solution to (1). Conversely, if x∗ is a strict
local solution to (1) then its support σ = σ(x∗) is a dominant set of A. Where
σ(x) is defined as the index set of the positive components in x.

– with respect to graph theory : a dominant set of A corresponds to a maximal
clique in the corresponding graph. This means that the nodes corresponding
to the support vector of xC are a maximal clique, and thus they are all
connected to each other and such clique cannot be expanded.

– with respect to game theory : if C a dominant set of A, then its characteristic
vector xC is an Evolutionary Stable Strategy of the corresponding clustering
game1.

1 The idea is to setup a symmetric, non-cooperative game, called clustering game,
between two players. Data points V are the strategies available to the players and
the similarity matrix A encodes their payoff matrix.
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Please for all the details and demonstration concerning these connections refer
to [4].

Finally, once the problem has been theoretically instantiated, the authors of
[4] provide two different approaches to retrieve a dominant set from A. Both
strategies have roots in the game theory domain and it should not be surprising
that methods developed in this context can be used to find dominant sets, given
the tight relation that exists between dominant sets and the game-theoretic
notion of equilibrium. The first involves replicator dynamics [24], whereas the
other concerns infection and immunization dynamics [3].

3 Biclustering with Dominant Set

In this Section we provide our formulation of the biclustering problem, including
the details of how dominant set are extended to such scenario.

As mentioned in Sect. 1, biclustering aims at the simultaneous clustering of
rows and columns of a given data matrix. Formally, we denote as D ∈ R

n×m

the given data matrix, and let R = {1, . . . , n} and K = {1, . . . ,m} be the set of
row and column indices. We adopt DTL, where T ⊆ R and L ⊆ K, to represent
the submatrix with the subset of rows in T and the subset of columns in L.
Given this notation, we can define a bicluster as a submatrix DTL, such that
the subset of rows of D with indices in T exhibits a “coherent behavior” (in
some sense) across the set of columns with indices in L, and vice versa. The
choice of coherence criterion defines the type of biclusters to be retrieved (for a
comprehensive survey of biclustering criteria, see [17,20]).

In this paper we propose to tackle biclustering exploiting the principles of
dominant set definition. Although a preliminary approach toward this direc-
tion has already be presented in literature, authors of [26] present an iterative
rows/columns clustering algorithm which does not fully exploit dominant set
potentials. Specifically, the technique proposed in [26] defines a weighted cor-
relation measure adopted to build a similarity matrix between the rows of the
given data matrix. On such matrix authors apply dominant-set clustering and
they exploit the characteristic vector xC to sort the data matrix rows. This
result in a data matrix where rows belonging to the bicluster are shifted to the
bottom. At this point they compute a similarity matrix for the columns adopting
xC as weight for the correlation, giving more importance to the rows belong-
ing to the biclusters. At this point dominant-set clustering is applied on the
columns similarity matrix. The idea is that weighting the columns correlation
with respect to the characteristic vector (computed on the rows) should help in
retrieving a subset of columns acting similarly in that particular subset of rows.
Columns are then shifted according to their characteristic vector and such opera-
tions is iteratively repeated twice for the rows and twice for the columns [26]. The
resulting data matrix now contains the bicluster in the bottom-right position. To
retrieve the actual bicluster authors compute the correlation between consecutive
rows (starting from the bottom), and they stop when such correlation is below
a certain threshold (same procedure applies for retrieving bicluster columns).
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Hence, in [26], authors exploit the result of dominant-set clustering to itera-
tively order rows and columns to obtain a data matrix where the bicluster is
isolated in the bottom-right portion of the matrix.

One branch of techniques exploits the weighted bipartite graph representation
to face biclustering. In this context the common choice is to represent with two
distinct sets of nodes the rows R and the columns K of the data matrix. Then,
connect with edges only nodes belonging to different sets, and the weights are
none other than the data matrix entries. Given this graph, the problem is thus
formulated as an edge cutting problem where the surviving edges define the rows
and the columns belonging to the bicluster [1]. Such cutting is obviously guided
by a pre-defined objective function.

Alternatively to what previously presented, what we propose in this paper
is to adopt a graph where rows and columns are represented by a unique set of
nodes. Hence, given a data matrix D, we instantiate the biclustering problem
as a graph G = (V,E, ω) where the vertices V = {1, . . . , n + m} represent the
rows ({v1, . . . , vn}) and columns ({vn+1, . . . , vn+m}) of D. With this represen-
tation, we can easily encode the bipartite graph mentioned above. In fact, this
can be obtained by introducing the data matrix D in correspondence of the
positions connecting rows and columns in the adjacency matrix A. Practically,
A([1, . . . , n], [n+1, . . . , n+m]) = D and, to obtain a consistent adjacency matrix,
we also define A([n + 1, . . . , n + m], [1, . . . , n]) = DT . The other portions of A,
representing row-row and column-column similarities, are set to 0 (resulting in
no edges connecting such vertices).

Once the bipartite graph is represented through a squared similarity matrix,
we can now exploit dominant set definitions (usually applied in clustering con-
text) to obtain a bicluster. In fact, since the built adjacency matrix contains high
values only in row-columns positions (assuming a positive data matrix D), we
expect the dominant set to be a group of rows presenting high similarities in a
subset of columns (and vice versa). However, recalling the link between dominant
set and graph theory (presented in Sect. 2), a dominant set of A is equivalent to
a maximal clique in the correspondent graph. Hence, since the graph is bipartite
(no row-row/column-column edges), a maximal clique is composed by just two
nodes: one row and one column. Particularly, by adding another node we cannot
have a clique since the subset of nodes will lack of one edge.

To overcome this, we add a negative value −α (where α ≥ 0) on the main
diagonal of the similarity matrix A. This has been proved to be equivalent to
solve a standard quadratic problem where the values of the off-diagonal entries of
A are increased by α, and the main diagonal is set to 0 [21,29]. Note that adding α
on the off-diagonal entries introduces edges between row-row and column-column
nodes, resulting in a classic graph (not bipartite). Thus applying dominant set
on this latter version of A results in an actual maximal clique, where a subset of
rows will be selected simultaneously with a subset of columns. We depicted how
the similarity matrix A is built in Fig. 1.

Intuitively, this is obtained because, independently by value adopted for
α, the actual information is still contained in the rows-columns portions of A
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Fig. 1. Scheme of the algorithm

(in fact the value of α is the same for all the entries, and hence it is not infor-
mative). It has also been theoretically proved that increasing the value of α will
increase the dimension of the resulting clique [4,21,29], as shown in Fig. 2.

Fig. 2. Different results varying alphas

Summarizing, given a data matrix D with n rows and m columns we rep-
resent the biclustering problem as a graph having n + m vertices, where the
first n represent the rows and the remaining m represent the columns. Rows and
columns are connected to each other with weights corresponding to the entries of
D, whereas row-row and column-column edges have weights equal to α. A dom-
inant set in such graph is a maximal clique isolating group of rows presenting
high similarities in a group of columns, hence a bicluster.

To obtain such bicluster/dominant set we resort to replicator dynamics. The
replicator dynamics are deterministic game dynamics that have been developed
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in evolutionary game theory. It considers an idealized scenario whereby individ-
uals are repeatedly drawn at random from a large, ideally infinite, population to
play a two-player game. In contrast to classical game theory, here players are not
supposed to behave rationally or to have complete knowledge of the details of
the game. They act instead according to an inherited behavioral pattern, or pure
strategy, and it is supposed that some evolutionary selection process operates
over time on the distribution of behaviors. Particularly, we adopt the iterative
discrete-time replicator dynamics, which are given by

xi(t + 1) = xi(t)
(Ax(t))i

x(t)TAx(t)
, (2)

for i ∈ V . For further details concerning the theoretical basis relying under the
connections between replicator dynamics and dominant set, we refer interested
readers to the recent summary [4].

The resulting algorithm – called Dominant Set Biclustering (DSB) – is thus
parsimonious in terms of space O(n+m) and efficient in terms of time of execu-
tion O(n + m). The parameters of such approach are: (i) the off-diagonal value
α, (ii) the convergence of the replicator dynamics (which can be defined with a
maximum number of iterations or with a threshold between consecutive changing
of x.

Please note that, although the method recovers one bicluster at a time (as
widely exploited in literature [2,6,7]), there exists different heuristic to “mask”
the obtained bicluster and to look for the next one. Specifically, to mask the
retrieved bicluster we put zeros in the corresponding positions inside the adja-
cency matrix A.

4 Experimental Evaluation

The proposed approach has been evaluated using two sets of synthetic datasets
and one Computer Vision dataset divided in two problems.

4.1 Synthetic Experiments

The two synthetic benchmarks are created to simulate gene expression matri-
ces containing a single bicluster. In the first dataset the implanted biclusters
are constant valued bicluster (we call this “Constant Bicluster Benchmark”),
while in the second dataset additively coherent biclusters were used (we call this
“Evolutionary Bicluster Benchmark”).

In both cases, each matrix has been generated using the following procedure:
(i) we generate a 50×50 matrix containing random values uniformly distributed
between 0 and 1; (ii) we insert a constant valued (or additively coherent valued)
bicluster, whose dimension was 25% of the matrix size, the bicluster was inserted
in a random position; (iii) finally, the entire matrix has been perturbed with
Gaussian noise. The standard deviation of the Gaussian noise is a percentage
of the difference between the mean of the entries belonging to the bicluster and
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the mean of the background. 5 different noise levels (i.e. percentages) were used,
ranging from 0 (no noise) to 0.2 (high noise). For each noise level, 30 matrices
have been generated, resulting in a total of 75 matrices.

The quality of the retrieved biclusters have been assessed using two standard
indices, also employed in [28]: (i) purity : percentage of points retrieved by the
algorithms which actually belong to the real bicluster; (ii) inverse purity : per-
centage of points belonging to the true bicluster which have been retrieved by
the algorithms. Calling C the bicluster found by the algorithm and L the ground
truth, the indices are calculated as follows:

Purity =
|C ∩ L|

|C| , Inverse Purity =
|L ∩ C|

|L| .

The proposed approach has been compared with four other biclustering algo-
rithms, including the preliminary one adopting dominant set (mentioned in
Sect. 1). The results for the OOB, EBG and BAP algorithms have been taken
from [8], whereas for WCC (the first approach resorting to dominant set) we
implemented the code following the indications presented in [26] and adopting
the suggested values for the parameters.

The results for the Constant and Evolutionary Bicluster benchmarks are
shown in Fig. 3, where purity (a, c) and inverse purity (b, d) are displayed for
the different methods, while varying the noise level. Each point represents the
average over the 30 runs of the given noise level. In the plot, a full marker
indicates that the difference between the considered method and the proposed
approach is statistically significant2.

The results evidently show that the proposed approach significantly outper-
forms the current state-of-the-art, especially when the level of noise increases,
thus confirming the potentials of dominant sets in complex highly noisy situa-
tions. Concerning WCC, it is expectable that the performances on the constant
bicluster benchmark are influenced by the exploitation of the weighted corre-
lation coefficient. In fact, supposing to correctly select the columns involved in
the bicluster, the behaviour of the bicluster in the selected columns and the
one of the background is similar (since the value of the bicluster is constant).
Thus, it is difficult for the method to differentiate between these two situa-
tions. This is also confirmed by the better performance of WCC in the evo-
lutionary bicluster benchmark, where background and bicluster have different
behaviours (background is constant and the bicluster evolves). However, in both
cases the proposed approach provides better quality results, demonstrating that
the exploitation of a more solid framework involving dominant set is sound.

Multiple Structure Recovery Dataset. Multiple structure recovery (MSR)
concerns the extraction of multiple models from noisy or outlier-contaminated
data. MSR is an important and challenging problem, which emerges in many
computer vision applications [11,15,27]. In general, an instance of an MSR

2 We performed a t-test for each noise level (on the result of the 30 matrices), we set
the significance level to 5%.
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Fig. 3. Purity (a, c) and Inverse Purity (b, d) for matrices with constant (a, b) and
additive coherent (c, d) biclusters

problem is represented by a preference matrix containing, in one dimension,
the points under analysis, and in the other, the hypotheses/structures to which
points should belong. The entry (i, j) in this matrix indicates how well a certain
point i is represented by the given hypothesis/structure j.

The Adelaide dataset, which has been already exploited for assessing quality
of biclustering algorithms [8], involves two type of MSR problems: motion and
plane estimation. Given two different images of the same scene, where several
objects move independently, motion segmentation aims at recovering subsets of
point matches that undergo the same motion. Given two uncalibrated views of
a scene, plane segmentation consists in retrieving the multi-planar structures by
fitting homographies to point correspondences. The AdelaideRMF dataset3 is
composed of 38 image pairs (19 for motion segmentation and 19 for plane seg-
mentation), with matching points contaminated by strong outliers. The ground-
truth segmentations are also available. As in [8,25], we adopt the misclassification
errors to assess the results.

3 https://cs.adelaide.edu.au/∼hwong/doku.php?id=data.

https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Table 1 presents the results. We report two different results for DSB; we run
the algorithm varying the parameters, and on the basis of the considered results
the performances can slightly vary. The last columns of Table 1 (DSB best) shows
the results for DSB where we consider for each different matrix the best per-
formance with respect to the misclassification error (varying the parameters).
The results in the sixth column (DSB best set), which are slightly worse than
the previous, are obtained by selecting the best set of parameters values mini-
mizing the misclassification error (one for the motion segmentation and one for
the plane estimation). Please note that two columns slightly differs, demonstrat-
ing that dominant sets strongly resist to both noise and the massive presence
of outliers. With respect to other techniques, Table 1 shows that the proposed
approach improves the results of the state-of-the-art in the plane segmentation
dataset, and that we also provide comparable result on the motion segmentation
dataset.

Table 1. Misclassification error (ME %) for motion segmentation (above) and planar
segmentation (bottom). k is the number of models and % out is the percentage of
outliers.

k %out T-lnkg RCMSA RPA
DSB

best set
DSB
best

biscuitbookbox 3 37.21 3.10 16.92 3.88 10.42 6.17
breadcartoychips 4 35.20 14.29 25.69 7.50 5.48 5.48
breadcubechips 3 35.22 3.48 8.12 5.07 5.21 5.21
breadtoycar 3 34.15 9.15 18.29 7.52 11.44 11.44
carchipscube 3 36.59 4.27 18.90 6.50 4.24 4.24
cubebreadtoychips 4 28.03 9.24 13.27 4.99 9.48 9.48
dinobooks 3 44.54 20.94 23.50 15.14 14.16 14.16
toycubecar 3 36.36 15.66 13.81 9.43 16.00 16.00
biscuit 1 57.68 16.93 14.00 1.15 16.36 16.36
biscuitbook 2 47.51 3.23 8.41 3.23 2.63 2.63
boardgame 1 42.48 21.43 19.80 11.65 8.96 8.96
book 1 44.32 3.24 4.32 2.88 10.69 10.69
breadcube 2 32.19 19.31 9.87 4.58 11.57 9.50
breadtoy 2 37.41 5.40 3.96 2.76 3.12 3.12
cube 1 69.49 7.80 8.14 3.28 3.31 3.31
cubetoy 2 41.42 3.77 5.86 4.04 4.81 4.81
game 1 73.48 1.30 5.07 3.62 1.71 1.71
gamebiscuit 2 51.54 9.26 9.37 2.57 4.57 4.57
cubechips 2 51.62 6.14 7.70 4.57 7.04 7.04

mean 9.36 12.37 5.49 7.96 7.62
median 7.80 9.87 4.57 7.04 6.17

k %out T-lnkg RCMSA RPA
DSB

best set
DSB
best

unionhouse 5 18.78 48.99 2.64 10.87 25.00 25.00
bonython 1 75.13 11.92 17.79 15.89 4.04 4.04
physics 1 46.60 29.13 48.87 0.00 2.83 0.94
elderhalla 2 60.75 10.75 29.28 0.93 5.14 2.80
ladysymon 2 33.48 24.67 39.50 24.67 10.54 10.54
library 2 56.13 24.53 40.72 31.29 13.95 13.95
nese 2 30.29 7.05 46.34 0.83 0 0
sene 2 44.49 7.63 20.20 0.42 0.40 0
napiera 2 64.73 28.08 31.16 9.25 13.24 13.24
hartley 2 62.22 21.90 37.78 17.78 3.12 1.56
oldclassicswing 2 32.23 20.66 21.30 25.25 8.44 8.44
barrsmith 2 69.79 49.79 20.14 36.31 51.03 51.03
neem 3 37.83 25.65 41.45 19.86 25.72 15.76
elderhallb 3 49.80 31.02 35.78 17.82 25.88 18.82
napierb 3 37.13 13.50 29.40 31.22 20.84 20.84
johnsona 4 21.25 34.28 36.73 10.76 20.37 20.37
johnsonb 7 12.02 24.04 16.46 26.76 19.87 19.87
unihouse 5 18.78 33.13 2.56 5.21 3.69 3.69
bonhall 6 6.43 21.84 19.69 41.67 38.76 38.76

mean 24.66 28.30 17.20 15.41 14.19
median 23.38 29.40 17.53 13.24 13.24

5 Conclusions

In this paper we proposed a novel algorithm facing the biclustering problem.
Such algorithm extends the definition of dominant sets (already exploited for
clustering) to the biclustering scenario. It involves a novel paradigm to repre-
sent the problem, coupled with solid theoretical basis. Dominant sets represent-
ing the bicluster are efficiently computed resorting to discrete-time replicator
dynamics. The algorithm performances have been assessed on both synthetic
and real datasets, providing better quality solutions when compared with the
state-of-the-art.
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