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A B S T R A C T

Coalition formation is a fundamental approach to multi-agent coordination, and a key challenge in this context
is the coalition structure generation problem, where a set of agents must be partitioned into the best set of
coalitions. This problem is NP-hard and typical optimal algorithms do not scale to more than 50 agents: efficient
approximate solutions are therefore needed for hundreds or thousands of agents. In this paper we propose a
novel heuristic, based on ideas and tools used in the data clustering domain. In particular, we present a coalition
formation algorithm inspired by the well known class of hierarchical agglomerative clustering techniques
(Linkage algorithms). We present different variants of the algorithm, which we call Coalition Linkage (C-Link)
and demonstrate how such algorithm can be adapted to graph restricted coalition formation problems (where
an interaction graph defined among the agents restricts the set of feasible coalitions). Moreover, we discuss how
we can provide an upper bound on the value of the optimal coalition structure, and we show that for specific
characteristic functions we can provide such bounds while maintaining polynomial computational costs and
memory requirements. We empirically evaluate the different variants of the C-Link algorithm on two synthetic
benchmark data-sets, as well as in two real world scenarios, involving a collective energy purchasing and a ride-
sharing application. In these settings C-Link achieves promising results providing high quality solutions and
solving problem involving thousands of agents in few minutes.

1. Introduction

The formation of collectives or coalitions is central to many
practical applications that involve coordinating large numbers of
agents as in emergency management scenarios (Ramchurn et al.,
2010), manufacturing (Sabar et al., 2009), crowdsourcing (Peleteiro
et al., 2015) and collective purchasing of goods or services (Vinyals
et al., 2012). The coalition formation problem has been addressed from
several perspectives: analysing how agents can form coalitions when
operating in an environment where knowledge is distributed (Billard
and Pasquale, 1995), designing algorithms to organize the agents into
the most beneficial coalitions (i.e., Coalition Structure Generation or
CSG) and distributing payoffs to agents so that formed coalitions are
stable (Elkind et al., 2013; Saad et al., 2011). In this paper we focus on
CSG, which involves partitioning the set of all agents so as to maximise
the sum of the values (as given by a characteristic function) of the
chosen coalitions.

To date, a number of approaches employed in this domain aim to
solve the CSG problem optimally, ranging from Integer Programming

to Branch-and-Bound techniques (Rahwan et al., 2009) through
Dynamic Programming (DP) (Yun Yeh, 1986; Rahwan and Jennings,
2008b; Rahwan et al., 2012) (see Section 2 for more details). However,
none of these solutions are scalable given that their complexity grows
exponentially in the number of agents. Hence these optimal approaches
can handle relatively small sets of agents (i.e., fewer than 30 Rahwan
et al., 2009), excluding practical applications, such as, for example,
collective energy purchasing or ride sharing, where thousands of agents
might be involved.

A feasible alternative is to develop algorithms that scale to
hundreds and thousands of agents at the expense of optimality.
Along this line, previous approaches include Genetic Algorithms (Sen
and Dutta, 2000), swarm intelligence (Dos Santos and Bazzan, 2012)
and Meta-heuristics (Di Mauro et al., 2010), but these typically do not
provide guarantees on convergence and solution quality for generic
CSG problems and depend on several domain specific parameters to be
tuned by the system designers.

Against this background, in this paper we propose a novel approach
to CSG, that aims at providing near-optimal solutions along with
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quality guarantees (in the form of upper bounds on the optimal
solution). The proposed approach is based on ideas and techniques
coming from the data clustering research field, where the goal is to
partition a data-set into groups (or clusters), based on the concept of
similarity. Clustering approaches offer a wealth of solutions that have
been developed and empirically validated in several practical applica-
tions involving large datasets (e.g., thousands of data points)
(Theodoridis and Koutroumbas, 2008). Among the large number of
clustering algorithms proposed in the past, here we concentrate on a
specific class of algorithms called hierarchical agglomerative clustering
schemes, and in particular on the Linkage algorithms (Ackerman et al.,
2010). A linkage algorithm is a greedy strategy which starts from
clusters formed by single data points and iteratively merges the
“closest” pair of clusters – different choices of the cluster similarity
criterion (called in some contexts the “linkage function” Ackerman
et al., 2010) lead to different linkage algorithms. Our proposed
approach exploits the idea of linkage algorithms for the CSG scenario:
in particular, we tailor the linkage scheme to the CSG context by
proposing a set of linkage functions that are based on the coalition
characteristic function and specifically on the concept of gain.

In more detail, this work makes the following contributions to the
state of the art. First, we propose a linkage approach (C-Link) that
starts off from singleton coalitions and iteratively merges the most
suitable pair of coalitions. The criterion used to evaluate whether
coalitions should be merged is based on the concept of the gain that
two coalitions would achieve if they merge. On this basis we devise
different criteria, taking inspiration from standard linkage approaches
used in the clustering domain (such as single-link, complete-link and
average-link) but also pursuing new ideas, resulting in a novel criterion
(Gain-Link) which takes advantage of the full characteristic function,
significantly improving the quality of solutions. One key design concept
for C-link is the simplicity of the proposed scheme which is based on
one of the most basic clustering approaches. The use of a simple
scheme allows us to analyse several properties of the approach.
Specifically, we show that the C-Link approach is guaranteed to
converge in N iterations at most (where N is the number of agents),
and when using the Gain-Link criterion, it is anytime.1 Moreover, we
also provide a refinement of C-Link, able to solve the CSG problem
when feasible coalitions are defined by an interaction graph2

(Chalkiadakis et al., 2016; Voice et al., 2012, 2012).
Second, we show how we can provide guarantees on the quality of

the solution for the CSG problem, by giving an upper bound on the
value of the optimal coalition structure. Crucially, we can provide such
guarantees while maintaining polynomial computational costs and
memory requirements for a class of characteristic functions that can
be expressed as a sum of a super-additive and a sub-additive
components (called m+a functions). In recent work in CSG it has been
shown that several characteristic functions have this m+a structure,
and specifically the collective energy purchasing characteristic function
we consider here (Bistaffa et al., 2014). Building on these results, we
show that, for the collective energy purchasing domain, our approach
can provide guarantees for a very large number of agents (more than
2700).

Third, we validate the C-Link approach in different data-sets: (i)
two synthetic benchmarks, one employing uniform distribution for
coalition values (Di Mauro et al., 2010) and the other with Normally
Distributed Coalition Structures (NDCS) (Rahwan et al., 2009); (ii) a
coalition formation problem where users can form groups to buy

energy at discounted prices (Vinyals et al., 2012); and (iii) a ride-
sharing scenario where commuters arrange one-time rides, forming
groups to minimize transportation costs (Bistaffa et al., 2014). We
compare the quality of solutions generated by the different variants of
our approach against the optimal solution (computed using standard
Integer Programming) when this is computationally feasible: C-Link is
shown to provide high quality solutions. Moreover, we show that, in
general, our approaches require much less memory and time to achieve
good-enough solutions and therefore provide the first benchmarks for
large-scale approximate CSG algorithms. Crucially, our C-Link ap-
proach can provide high quality solutions and it is able to solve
problems involving thousands of agents (more than 2000) in few
minutes (less than 4) for both the collective energy purchasing and
ride-sharing scenarios.

2. Background and related work

In this section, we provide some background to our work including
concepts from cooperative game theory, the Coalition Structure
Generation problem, and data clustering techniques.

2.1. Characteristic function games

Cooperative Game theory provides abstract mathematical models to
study scenarios where agents interact and cooperate (Chalkiadakis
et al., 2011). In this framework, one of the most widely-studied model
for cooperative games are Characteristic Function Games (CFG). A
CFG is defined by a set of N agents A a a= { ,…, }N1 and a characteristic
function v: 2 →A which specifies a value (i.e., a real number) for each
coalition C A⊆ of agents. An outcome for CFG is formed by two
elements: (i) a partition of the agents into coalitions: (i.e., a coalition
structure) and a payoff vector which distributes the value of each
coalition among its members. In more detail, we represent with the
set of all partitions of the set A, and we indicate withCS ∈ a specific
coalition structure (i.e., CS ⊂ 2A) where for any C C CS, ∈i j , with i j≠ ,
C C∩ = ∅i j (i.e., no agent is assigned to more than one coalition) and

C A∪ =C CS∈ (i.e., each agent is selected in at least one coalition). A
payoff vector X x x= 〈 ,…, 〉N1 assigns a payoff to each agent. A key
question within cooperative game theory is to identify outcomes that
have desirable properties such as fairness (i.e., the payoff of an agent
should reflect its contribution) and stability (i.e., agents should have
incentives to stay in the coalition structure). There are several solution
concepts that focus on such properties (such as the Shapley Value or
the Core respectively) and relevant literature in this area typically
focuses on devising a distribution of the payoffs that ensures such
properties (Chalkiadakis et al., 2011). Since here we focus only on the
CSG problem and not on the payoff distribution we will not consider
such solution concepts in the rest of the paper.

In contrast, for the CSG problem the form of the characteristic
function v is a key concept that significantly impacts on the classes of
possible solution techniques. Notice that, in general there is no
indication or restriction on how the characteristic functions v is
defined. In fact in most related work such function is provided as a
table that associates a value for each coalition. However, there are
notable classes of CFG where v has specific properties, in particular a
well known class of CFG is that of super-additive games where the
characteristic function is super-additive: v C S v C v S({ ∪ }) ≥ ( ) + ( ) for
every pair of disjoint coalitions S C A, ⊆ . In super-additive games it is
always beneficial for groups of agents to form larger coalition hence the
grand coalition is the best coalition structure. Therefore, while this
class of games has been widely studied as the basis for the construction
of stable and fair payoff schemes, they are not is not interesting for the
CSG problem as the optimal coalition structure is simply the grand
coalition (Chalkiadakis et al., 2011). Another notable class of char-
acteristic functions that has been recently considered are the m+a
characteristic functions (Bistaffa et al., 2014). Given a coalition C an m

1 Notice that anytime approaches for CSG problems are very valuable and several
previous work focus on this aspect (Dang and Jennings, 2004; Rahwan and Jennings,
2008a; Rahwan et al., 2009).

2 Notice that, the term synergy graph has also been used (for example in Voice et al.,
2012; Bistaffa et al., 2014, 2015) to refer to a concept that is essentially equivalent to the
interaction graph. Here we use the term interaction graph to be in line with most recent
literature.
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+a characteristic function can be expressed as the sum of a super-
additive v C( )+ and sub-additive component v C( )− , 3 hence we have that
v C v C v C( ) = ( ) + ( )+ − . In contrast to super-additive characteristic func-
tions, the best coalition structure for CSG with m+a functions is not
always the grand coalition hence the CSG problem is not trivial.4

However, branch and bound approaches for CSG can exploit the
structure of m+a functions to provide efficient solution techniques
with quality guarantees for large scale systems (thousands of agents).

Finally, in many scenarios the formation of some coalitions might
be restricted by specific property of the environment, for example the
communication infrastructures or social relationships might impose
constraints on which coalitions can be formed. In particular, the model
of graph restricted games proposed by Myerson (1977) focuses on the
use of an interaction graph that captures relationships among the
agents and restricts the feasible coalitions. Specifically, agents are the
vertices of an undirected graph and edges represent peer to peer
relationships, a coalition C is feasible if the vertices that corresponds to
the agents form a connected subgraph of the interaction graph (i.e., the
subgraph has a path connecting every pair of nodes). For example,
consider a communication graph, where agents connected in the graph
can communicate directly. In this case two agents that cannot com-
municate directly cannot form a coalition on their own but could be
part of the same coalition if a third agent that can communicate with
both of them is included. Another example is a network describing
social relationships, where two agents are connected only if they know
each other. Again, agents that do not know each other cannot form
coalitions but can be part of the same coalition if they have a common
friend. This model has been widely used both focusing on stability
(Chalkiadakis et al., 2016) and on CSG (Voice et al., 2012, 2012;
Bistaffa et al., 2014, 2015).

2.2. The coalition structure generation problem

Considering the notation introduced in Section 2.1 The optimal
coalition structure generation problem involves finding the solution to
the following maximization task:

∑ v Carg max ( )
CS C CS∈ ∈ (1)

i.e., finding the coalition structure that maximizes the sum of the values
of the coalitions. A key property of the characteristic function that we
consider here is that the value it defines for one coalition is indepen-
dent of the memberships of any other coalition selected in the coalition
structure. Specifically, we assume no externalities. This property allows
us to look at each coalition in isolation and therefore evaluate the
benefits of merging one coalition with another using simple arithmetic
operations. Given this, we can exploit this function in a similarity
criterion that can be, in turn, used in large-scale data clustering
algorithms (which we describe in Section 2.3). We next describe the
exact and approximate approaches to solving the CSG problem and
differentiate them from our work. For a more thorough analysis of such
approaches, we point the reader to Chapter 8 in Elkind et al. (2013).

2.2.1. Exact approaches
The first solution to the CSG problem was based on a solution to the

set partitioning problem using dynamic programming by Yun Yeh
(1986). This complete algorithm grows in O (3 )N but is not anytime. In
turn, Sandholm et al. (1999) and Dang and Jennings (2004) showed
how anytime solutions could be computed with quality guarantees.
However, their solutions do not scale (growing in O N( )N ). More

recently, in a series of papers on the subject, Rahwan and Jennings
(2008a), Rahwan et al. (2009), Rahwan et al. (2012) were able to
improve on DP by avoiding certain redundant operations (in the
Improved-DP algorithm or IDP) and by supplementing such an
approach with an anytime algorithm (IP) to solve the problem even
more efficiently in the IDP-IP* algorithm (the current state of the art).
They also showed how to distribute the solution on multiple cores, and
how to solve CSG on the GPU (Michalak et al., 2010). These advances
have made it possible to solve CSG optimally, anytime, on multiple
cores and with quality guarantees. However, these solutions are limited
to tens of agents (30 at most) due to their large memory requirements.
In particular, a key drawback of the above approaches is that they need
to hold all coalition values in memory (O (2 )N ) during the search. We
address this issue in our approach and show that our representation of
the problem has minimal memory requirements as it needs to hold at
most N2 coalition values (beyond the input).

In an attempt to combat this complexity, several other paradigms
that aim to restrict the number of feasible coalition structures have
been proposed. For example, Ohta et al. (2009), unpack the coalition
value function to define constraints on memberships of agents to
coalitions and values associated with these constrained coalitions.
Similarly, Rahwan et al. (2011) constrain the combination of agents
that may exist in coalitions and provide a compact representation of the
problem, proposing solution algorithms that outperform the approach
proposed by Ohta et al. (2009), for small numbers of agents (no more
than 30). Following the seminal paper by Myerson (1977) on graph
restricted games, Voice et al. (2012) restrict feasible coalitions to be the
connected sub-graph of an interaction graph that mirrors real-world
social networks. By exploiting such sparse synergies, they provide novel
(distributed) algorithms to compute coalition values and extend the
IDP algorithm to generate the optimal coalition structure. While their
approach is not anytime, they can optimally solve the CSG problem for
about 50 agents in sparse networks. Along the same line, Voice et al.
(2012) consider coalition formation over graphs, however in this work
they focus on a specific class of valuation functions which are
independent of disconnected members (IDM).

In this setting, authors provide complexity analysis, and algorithms
that guarantee linear time bounds (when the treewidth of the graph is
bounded). While this is an interesting result, the IDM property might
not hold in several practical applications whenever adding an agent to a
coalition has a cost that is typically not dependent on whether the
agents are connected or not, but it is given by the specific application
domain (Shehory and Kraus, 1998).

Along this line of research, Bistaffa et al. (2014, 2015) propose
CFSS (Coalition Formation with Sparse Synergies), a branch and
bound approach for coalition formation explicitly designed for inter-
action graphs. Authors show that, for m+a functions, CFSS can provide
anytime solutions with quality guarantees for large scale systems
(thousands of agents). Notice that, the m+a functions do not need in
general to respect the IDM property. For example, the collective energy
characteristic function considered in Bistaffa et al. (2014) (and that we
use in our experiment) includes cost penalties for adding agents to the
coalitions that are not dependent on whether the agents are connected
or not, hence the IDM property is not valid in this case. The
performance of CFSS is strongly dependent on the structure of the
interaction graph, and on the possibility to efficiently provide tight
bounds for the characteristic function. In Section 5 we compare the
quality of solution of our approach with CFSS in the ride-sharing
scenario (a characteristic function for which Bistaffa et al. devised a
specific bounding technique) showing that CFSS is superior when the
number of agents is very large (i.e., from 1500 to 2000) and when a
social network constrains possible coalitions. However, our approach
provides significantly better results when such social networks are not
present.

Recently, Wang and Jiang investigated the use of communities to
regulate cooperation of agents (Wang and Jiang, 2014). Specifically,

3 Similar to the super-additive characteristic function for sub-additive characteristic
functions we have that v C S v C v S({ ∪ }) ≤ ( ) + ( ) for every pair of disjoint coalitions
S C A, ⊆ .

4 While investigating the tractability of the CSG problem when using m+a functions is
definitely an interesting topic, it falls outside the scope of the current contribution.
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they propose a model for task assignment where agents can form
groups to cooperate only with members of their communities. Their
model is relevant to our work as we also consider relationships among
agents (expressed as interaction graphs) to restrict possible coalitions.
However, we explicitly focus on the CSG problem, while they propose a
model for task assignment and do not provide an approach to partition
the agents into coalitions.

Finally, in a recent paper, Chalkiadakis et al. (2016) investigate the
complexity for computational tasks associated with the core solution
concept. While this work focuses on providing stable outcome for
characteristic function games (rather than on CSG as we do in this
work), their work is relevant as they consider non super-additive
settings and focus on interaction graphs considering different graph
topologies. Specifically, they show interesting tractability results for
specific topologies (such as lines, trees, cycles, bounded tree-width
graphs and graphs with bounded degree). While this is definitely an
important contribution to derive tractable algorithms for the CSG
problem, in this work we take a different perspective and aim at
designing efficient algorithms that provide near-optimal solutions in
general settings, i.e., when the CSG may not restricted by an interaction
graph or when such interaction graph is similar to a social network.

2.2.2. Heuristics and approximate solutions
Very few heuristic solutions to the CSG problem exist. For example,

Sen and Dutta (2000) propose a solution based on genetic algorithms
while Dos Santos and Bazzan (2012) propose an approach based on
swarm intelligence (the bee clustering algorithm) for task allocation in
the RoboCup Rescue domain. Meta-heuristic approaches to CSG have
also been investigated, for example Di Mauro et al. (2010) use a
stochastic local search approach (GRASP) to iteratively build a coali-
tion structure of high quality. Similar to what our approach does, such
GRASP-based method tries to build a coalition structure of good
quality by merging coalitions. However, in contrast to C-Link, this
GRASP-based approach does not consider the comparative benefit of
merging two coalitions (against not merging), but it only considers the
value of the best merge of two coalitions. Moreover, such approach
considers other operations beyond coalition merging (such as, for
example, splitting a coalition in two and exchanging a pair of agents
between two coalitions) and it performs randomized search. While this
helps the algorithm to escape from local minima, it prevents the
algorithm from providing guarantees on performance (e.g., it is not
anytime). In general, all previous heuristic approaches are typically
dependent on several domain specific parameters and, most impor-
tantly, they are not able to provide guarantees on the solution quality.

More recently, Service and Adams (2010, 2011) presented new
approaches to approximating the CSG problem using the DP algorithm
to find optimal solutions for parts of the search space. Thus, they are
able to guarantee constant factor approximations within O (3 )N (2

3 in

O N( 2. 587 )N and 1
4 in O N( ))2 . Their approach is shown to find high

quality solutions in reasonable time for up to 27 agents. However, their
algorithm requires similar worst case memory requirements to DP (i.e.,
O (3 )N ). Moreover, their runtimes are distribution-dependent. In con-
trast, our proposed approach requires significantly lower memory
(O N( )2 ) beyond the input and its run-time does not depend on the
distribution of coalition values. In fact, our algorithm is guaranteed to
complete in O(N). The only trade-off is that the quality guarantees are
distribution dependent but, as we show in our evaluation, these
guarantees are, in particular settings, of high quality.

Note that an initial version of this paper appeared in Farinelli et al.
(2013). However, here, we provide more results on the performance of
our algorithms on benchmark distributions and on the ride-sharing
scenario. Moreover, we now present analytical results that prove the
performance guarantees of the C-Link approach. Finally, we show how
the algorithm can be adapted to work on interaction graphs maintain-
ing its performance guarantees.

2.3. Data clustering

The huge amount of data clustering approaches proposed in the
past can be broadly divided in two main families (Theodoridis and
Koutroumbas, 2008): partitional clustering and hierarchical clustering.
In the former class, the typical output is a partition of the original
dataset, whereas in hierarchical clustering data is arranged in layers of
partitions, where each partition is merged in a partition of the
subsequent layer. Hence, a hierarchical clustering approach can be
conveniently represented by a dendrogram, a tree structure that
consists of layers of nodes, each representing a cluster, where lines
connect clusters that are merged in the next layer (see Fig. 1). An
important class of hierarchical clustering approaches is represented by
the linkage algorithms (Ackerman et al., 2010) (such as single/
complete/average-link), a class of agglomerative approaches which
start from clusters formed of single data points and iteratively merge
the closest pair of clusters; what distinguishes different linkage-based
algorithms is the definition of the similarity between clusters, which is
used to determine the clusters to be merged.

Here we decided to adopt hierarchical agglomerative clustering,
and in particular linkage algorithms, for two key reasons: (i) the most
widely used partitional clustering approaches (e.g., the popular k-
means clustering) are dependent on several system parameters (e.g.,
the number of groups to be formed) and on the choice of the initial
solution, whereas the behaviour of linkage approaches does not depend
on that; (ii) even if partitional clustering techniques are more efficient
in terms of memory and computation (deriving a single partition of the
dataset), we consider this efficiency not to be crucial here, as the
number of agents that our approach can handle is already significantly
beyond the capability of all current coalition formation approaches.
Finally, notice that, in standard linkage approaches, the merging
process always results in a single cluster containing all the elements
of the initial data-set. Hence to obtain the best suited data partition, the
system designer must choose when to stop the merging process, i.e., at
which level the dendrogram should be cut. This is typically a complex,
domain dependent problem, for which no general and widely accepted
solution exists, especially because of the inherent vagueness in the
definition of a cluster, and the difficulty in defining an appropriate
similarity measure and objective function (Von Luxburg et al., 2012).
Nevertheless, in the approach proposed in this paper, a natural and
meaningful stopping criterion for the cluster merging process can be
automatically derived, as we will detail in Section 3.3.

Fig. 1. An exemplar dendrogram representing a possible hierarchical clustering process
for 10 agents. The horizontal dashed line represents a cut of the dendrogram and defines
the coalition structure a a a a a a a a a a{{ , , , , }, { }, { , , }, { }}6 7 2 9 3 1 5 8 10 4 .
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3. The coalition link approach

The coalition link (C-Link) algorithm starts and develops over the
linkage approach for clustering. Instead of data points (as discussed in
Section 2), as in standard linkage algorithms, here we consider
coalitions C (including those of single agents) as the entities to be
assembled into coalition structures CS. Hence, starting from a set of
agents, the algorithm aims to produce a sequence of nested coalition
structures or partitions CS CS CS, ,…, L0 1 . A partition CSi is nested into a
partition CSj if every component of CSi is a subset of a component of
CSj. Given a partition at level i, the algorithm evaluates each new
partition to be formed by determining the value of all the possible
merge operations (i.e., the union of two coalitions into one); the level i
+1 is then formed by merging the most suitable coalitions. In the
clustering scenario, this value is typically defined by the so called
linkage function: the choice of this function leads to the different
versions of the linkage algorithm (as described in Section 2). In the
next section we provide a description of possible linkage functions
(involving different computational costs) that can be used in a linkage
algorithm to solve the CSG problem. Building upon this, we then
describe the C-Link algorithm.

3.1. Linkage functions for CSG

In this section we introduce four different linkage functions: three
of them are based on concepts and ideas peculiar of the well known
Single Link, Complete Link and Average Link variants of the clustering
Linkage algorithm, whereas the fourth fully exploits the particular
Coalition Formation context. In any case, all of them are based on the
concept of Gain, which can be defined for any pair of coalitions Ci, Cj
as:

G C C v C C v C v C( , ) = ({ ∪ }) − ( ) − ( )i j i j i j (2)

where v(C) is value of the characteristic function v for coalition C. In
other words, this gain function captures the value of synergies between
coalitions and is computed in constant time. Please note that, if the
coalition value function is strictly super-additive, the gain is always
positive, while if the coalition value function is strictly sub-additive
(i.e., v C S v C v S({ ∪ }) < ( ) + ( )), the gain is always negative.

A first straightforward possibility for the linkage function is to
directly exploit and adapt the well known Single Link, Complete Link
and Average Link variants, which define the value of a merged pair of
clusters (namely the closeness) by analysing the pairing of individual
data points belonging to the two clusters. In particular, the closeness of
two clusters is measured as the closeness of the nearest pair of objects
(for Single Link), the closeness of the farthest pair (for Complete Link),
and the averaged closeness of all pairs of objects (for the Average Link).
Here we translate these concepts to the coalition formation case: this
means defining the value of merging coalitions based on the value of
pairing agents together. In more detail, we defined the following
linkage functions for our algorithm, calling them single-link (SL),
complete-link (CL), and average-link (AL), respectively:

lf C C G a a( , ) = max ( ({ }, { }))SL i j
a C a C

h l
∈ , ∈h i l j (3)

lf C C G a a( , ) = min ( ({ }, { }))CL i j
a C a C

h l
∈ , ∈h i l j (4)

∑lf C C
C C

G a a( , ) = 1
| |·| |

( ({ }, { }))AL i j
i j a C a C

h l
∈ , ∈h i l j (5)

where G a a v a a v a v a({ }, { }) = ({ , }) − ({ }) − ({ })h l h l h l , and represents
the Gain obtained while joining together two agents ah and al. Thus,
in the context of coalition formation lf (·)SL defines the value of a merge
as the value of the strongest pairing of agents from two coalitions, lf (·)CL
defines this value as the value of the weakest pairing between two
agents, and, finally lf (·)AL defines the average value of pairing all

possible combinations of agents from two coalitions. All these functions
can be computed in O N( )2 operations5 as they only consider pairwise
interactions between the agents (e.g., coalitions of size 2).
Consequently, to use the above linkage functions, we only need to
define a coalition value function for coalitions of size 1 and size 2
instead of 2N coalitions. While this represents a significant reduction in
the computational and practical task of defining coalition values, such
definitions are likely to lead to poor performance if larger coalitions
tend to be most valuable.

In order to capture gains from merges of coalitions rather than
pairings of agents, we define a new linkage function called the Gain-
Link (GL), that captures the synergy between coalitions using Equation
(2):

lf C C G C C( , ) = ( , )GL i j i j (6)

Notice that, the definition of the linkage function on the basis of the
gain (both considering only pairs of agents or general coalitions)
naturally provides an automatic stopping criterion for the C-Link
algorithm: the algorithm stops if there is no advantage in joining
together the “best” pair of coalitions, i.e., if the linkage function
evaluated on the best pair has a negative or zero value (i.e.,
lf C C( , ) ≤ 0i j ). As explained in the previous section, this is a crucial
difference between the linkage variants used in the clustering scenario
and our approach, as classical schemes always produce a full dendro-
gram: deciding where to place a cut to obtain the “best” clustering is a
key, domain dependent issue (see Von Luxburg et al., 2012;
Theodoridis and Koutroumbas, 2008 Chapter 13.6).

3.2. The C-Link algorithm

The C-Link approach is described in Algorithm 1. Essentially, the
algorithm is based on the definition of the linkage function lf C C( , )i j

that indicates how convenient it is for two coalitions C C CS, ∈i j to be
merged. The approach iteratively updates the Partition Linkage matrix
PL t( ), which stores the value lf C C( , )i j in the entry (i,j) (13–17).

In more detail, the approach starts from the completely disjoint
case: a partition where every coalition is composed of a single agent
(line 1), and initializes the PL matrix with the linkage value of agent
pairs (lines 2–5). Then, at every iteration, we compute the most
suitable pair of coalitions (see lines 6, 7 and 18, 19); if merging a
coalition pair is convenient for the system (line 9), namely if there is a
pair of coalitions for which the linkage function is positive, such
coalitions are removed from the current partition and replaced with
their union, in order to define the next level of the hierarchy (lines 11–
13). Otherwise the algorithm stops, and the current partition is
returned.

Algorithm 1. C-Link algorithm.

Input: A: the set of agents, lf (·): the linkage function.
Output: CSopt the optimal partition of A

// Initialize partitions to singletons
1: CS a a a= {{ }, { },…,{ }}N

(0)
1 2

// Initialize PL for each agent pair
2: for i,j=1 to N, i j≠ do
3: PL i j lf a a( , ) = ({ }, { })i j

(0)

4: end for
// Initialize self linkage to −∞

5: i PL i i∀ , ( , ) = −∞(0)

// Compute and store the best indices and best linkage value
6: ı j PL i j^, = argmax ( , )i j,

(0)

7: pa PL i j= max ( , )i j,
(0)

5Where we assume that computing or reading the value of a coalition is one operation
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8: t=0
// Main Loop: stop if best linkage value is negative or the
grand coalition was formed

9: while pa( ≥ 0) AND CS(| | > 1)t( ) do
10: t=t + 1;

// Update Partition: remove the two coalitions that should
be merged and add the merged coalition

11: define C C C= ∪ı j ı j^ ^

12: CS CS C C C= ⧹{ }⧹{ } ∪ { }t t
ı j ı j

( ) ( −1) ^ ^

// Update PL t( )

13: Delete rows and columns of PL t( ) relative to Cı̂ and C j , add
one row and one column for Cı j^ .

// Compute linkage value for each coalition Ck with the newly
formed coalition Cı j^

14: for C CS C C∈ , ≠k
t

k ı j
( ) ^ do

15: PL ı j k PL k ı j lf C C(^ , ) = ( , ^ ) = ( , )t t
ı j k

( ) ( ) ^

16: end for
// Set self linkage value to −∞

17: PL ı j ı j(^ , ^ ) = −∞t( )

// Update best indices and best value of linkage
18: ı j PL i j^, = argmax ( , )i j

t
,

( )

19: pa PL i j= max ( , )i j
t

,
( )

20: end while
21: return CS t( )

Fig. 2 shows an exemplar matrix update step for our C-Link
approach (using GL). In particular, Fig. 2(a) shows the dendrogram
and Fig. 2(b) the update of the PL matrix. Here we assume the optimal
coalition structure is a a a a{{ }, { }, { , }}1 2 3 4 . At every stage, our approach
evaluates all possible merge operations: in other words, in the situation
shown, it evaluates all the possible coalitions of size two, computing the
values reported in the left-hand side matrix in Fig. 2(b). Now, the best
option is to form the coalition a a{ , }3 4 and hence the algorithm updates
the PL matrix as shown in the right-hand side of Fig. 2(b). Notice that
in this new matrix all elements are negative and hence the algorithm
would stop processing in the next iteration.

3.3. C-Link analysis and discussion

The main properties of C-Link are the following:

Property 1 (Convergence). C-Link always converges in at most N
steps, where N is the number of agents.

This is because C-Link reduces by one the number of elements in CS
at each iteration (see Algorithm 1 line 12) and stops if the grand
coalition forms or if the best linkage value is non-positive (see
Algorithm 1 line 9).

Property 2 (Optimality). C-Link always returns the grand coalition
for super additive functions (i.e., it gives an optimal solution).

If the characteristic function is super-additive, the gain (as defined
in Equation (2)) cannot be negative. Hence, the entries of PL t( ) for all
the linkage functions defined in previous section and for all t are all
non-negative. Consequently, the approach stops only when the grand
coalition is formed (i.e., CS| | = 1N( ) ).

Notice that, as stated in Section 2.1 the CSG problem in super-
additive games is not interesting as in this context the grand-coalition
is always the optimal solution. However, it is interesting to consider
this property because in general an heuristic approach is not guaran-
teed to be optimal for super-additive games.

Property 3 (Anytime). The Gain-Link variant of C-Link is anytime
C-Link performs at most one merge at each step, and with the

Gain-Link function it performs the merge only if the gain (as defined
in 2) is positive. Hence, if we consider a partition CS t( ), the gain link
algorithm will either stop because no couple of coalitions in Ck

provides a positive gain, or produce a new partition
CS CS C C C= ⧹{ }⧹{ } ∪ { }t t

ı j ı j
( +1) ( ) ^ ^ (see Algorithm 1 line 12).

Consequently, if a new partition is formed then we have that
v C v C v C( ) − ( ) − ( ) ≥ 0ı j ı j^ ^ , and since the value of the new partition
can be written as V CS V CS v C v C v C( ) = ( ) − ( ) − ( ) + ( )t t

ı j ı j
( +1) ( ) ^ ^ we

have that V CS V CS( ) ≥ ( )t t( +1) ( ) , where V CS v C( ) = ∑ ( )C CS∈ .
Notice that this property does not hold, in general settings, for the

other approaches (i.e., single/complete/average-link), as those ap-
proaches use, as linkage function, an estimation of the gain based only
on pairwise relations.

In terms of computational complexity, following the analysis for
Generalised Agglomerative Schemes for clustering reported in
Theodoridis and Koutroumbas (2008) we can show that the C-link
approach requires in the worst case O N( )3 operations. As for memory
requirements, C-Link stores the PL matrix which has N2 entries.
Hence, the space complexity of C-Link is O N( )2 beyond the input.6

This contrasts sharply against typical optimal approaches (as discussed
in Section 2) that grow either exponentially in O N( )N (e.g., IP) or in
O (3 )N (e.g., IDP or IDP-IP*).

To further understand the behaviour of the C-Link approach it is
useful to compare its execution to the operations performed by the
Dynamic Programming approach on the coalition structure graph (see
Fig. 4 for an example) (Rahwan and Jennings, 2008a). The DP
approach first evaluates every possible movement on the graph (i.e.,
every possible split for coalitions of every size), then it starts from the

Fig. 2. Figures (a) and (b) describe an artificial example where the optimal coalition structure is a a a a{{ }, { }, { , }}1 2 3 4 and show one update step for the Gain-Link method: (a) shows the

dendogram and (b) shows how the PL matrix evolves.

6 If we also consider the memory required to specify the characteristic function, which
is the input to the CSG problem, and if such characteristic function is specified in a
tabular form (i.e., we store one value for each possible coalition as in Section 5.2), the
memory storage is exponential in the number of agents (O (2 )N ). However, this is not
related to the operations of the algorithm, which stores only the PL matrix.
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bottom node (i.e., the grand coalition) and moves upwards until an
optimal node is reached (i.e., a node from which no splitting is
beneficial). In comparison with DP, C-Link is essentially a myopic
version that progresses top down (i.e., from singleton coalitions
towards the grand coalition). In fact, at each level the C-link approach
only evaluates possible merges of coalition pairs and once a coalition is
formed it will never be split, hence the approach can be trapped in local
maxima of the objective function. Nevertheless, the results we discuss
in Section 5 show that the performance of the approach is extremely
promising.

3.4. Applying C-Link to interaction graphs

As mentioned in the introduction, recent approaches for coalition
structure generation such as Voice et al. (2012), focus on interaction
graphs where sparse synergies among the agents restricts the feasible
coalitions. These types of constraints are very common in practical
settings such as, for example, applications involving users that are
connected by a social network, hence it is crucial for a coalition
structure generation method to be able to operate considering such
constraints. Consequently, here we present an alternative version of
our C-Link algorithm that is able to operate in such settings. More
specifically, we present the C-Link algorithm for interaction graphs and
then an analysis of the C-Link algorithm when operating in such
settings.

In what follows, we assume that the interaction graph defining the
feasible coalitions is connected, i.e., there exists a path between any two
agents in the interaction graph. This has the important consequence
that the grand coalition is always part of the feasible coalitions, which is
crucial for some of the properties of the C-Link approach (as detailed
below). Notice that, if the graph is not connected we can isolate the
connected components of the graph and run C-Link on each of such
components independently. This is because, coalitions that belong to
different connected components will always be disjoint. Moreover,
finding the connected components of a graph is computationally easy
(i.e., polynomial in the number of vertices Cormen et al., 2001), hence
we can easily decompose the problem in separate sub-problems, one
for each connected component of the interaction graph.

Now, the main idea to adapt the C-Link approach for interaction
graphs is to consider the edges of the graph when deciding which pair
of coalitions to join. In particular, following Voice et al. (2012), we
represent the interaction graph with an undirected graph G V E= ( , )
where the vertices represent the agents, and edges correspond to
connections in the interaction graph. Given this representation,
feasible coalitions correspond to the set of connected subgraphs (i.e.,
subgraphs for which there is a path between any couple of nodes) as
originally proposed in Myerson (1977).

To ensure correctness of our C-Link procedure on interaction
graphs we must ensure that our approach will never produce a coalition
which is not feasible, i.e., a coalition whose members do not form a
connected sub-graph of the original interaction graph. To this end, at
each step of the C-Link algorithm we maintain a graph that represents
the connectivity for the current coalition structure. In particular, given
a coalition structure CS C C= { ,…, }k1 we have the graph
net V E= ( , )CS CS CS , where VCS is a set of vertices, with one vertex for
each coalition C CS∈i . Two coalitions Ci and Cj are connected by an
edge if, and only if, in the original interaction graph the members of
such coalitions are connected. Such graph can be easily built and
maintained by initialising netCS(0) with the interaction graph G, and
then updating such structure by performing an edge contraction
operation on the edge that connects the two coalitions that we decide
to join. For a pseudo-code description of the C-Link algorithm on
interaction graphs see the supplementary material.

Notice that the analysis for Algorithm 1 reported in Section 3.3
remains valid. Specifically, Property 2 (i.e., optimality for super-
additive functions) is still valid because, as mentioned above, we

assume that the interaction graph is connected. Consequently the
grand coalition is always part of the set of feasible coalitions and the C-
Link approach will always be able to find this coalition.

Moreover, the worst case complexity (in terms of memory and
computation) of the algorithm does not change. In fact, while the C-
Link algorithm applied on interaction graphs requires additional
memory and computation to store and update the netCS structure,
the netCS matrix must only store a polynomial number of Boolean
values in the number of agents and the algorithm must perform a
polynomial number of operations to update such structure.
Nonetheless, the C-link algorithm applied on interaction graphs does
not need to compute the linkage function for coalitions that are not
feasible. The most important benefit of such algorithm is the ability to
directly encode the constraints on coalitions defined by the interaction
graph without holding all feasible coalitions in memory. This renders
the algorithm particularly suitable for large-scale applications.

Notice that, C-Link does not analyze the topology of the graph. On
the one hand this prevents the approach to exploit known properties
for specific topologies: for example, it has been shown Chalkiadakis
et al. (2016) that the CSG problem is tractable over lines (for arbitrary
characteristic functions), however the C-Link approach would not
exploit this property and as such it might return a sub-optimal coalition
structure even when the problem is tractable. On the other hand the C-
Link algorithm was not designed for this specific cases but rather to
provide near-optimal solutions in general settings, e.g., for interaction
graphs defined by social networks, where this specific type of topologies
are unlikely to appear.

4. Bounds on solution quality

In this section, we show that we can provide an upper bound for the
value of the optimal coalition structure for a given instance of our CSG
problem. In more detail, following the basic ideas of the C-Link
approach, our guarantees on solution quality are based on the concept
of gain for a characteristic function and on an upper bound on the
maximum gain. Finding such an upper bound allows us to provide
guarantees on the solution quality that an heuristic approach can
provide because we can bound the distance between the quality of the
solution provided and the value of the unknown optimal solution (see
Section 5.3.1).

In more detail, given a specific instance of the CSG problem I and a
solution CS I( ) returned by any heuristic approach on such instance, we
can consider the Performance Ratio (PR) (Ausiello et al., 2012), a
standard measure to evaluate the quality guarantees of algorithms,
defined as the ratio between the provided solution and the optimal one
on the given instance. As computing the optimal solution for large
instances of the CSG is not possible, we define the Maximum
Performance Ratio (MPR) as the ratio between the heuristic solution
and the upper bound on the optimal solution UB(I):

⎛
⎝⎜

⎞
⎠⎟MPR I( ) = max ,V CS I

UB I
UB I

V CS I
( ( ))

( )
( )

( ( ))
. The MPR provides a significant quality

guarantee on the approximate solution CS I( ), since V CS I( )( ) cannot be
worse than by a factor of MPR(I) w.r.t. the optimal solution.

While for general characteristic functions the computation of an
upper bound on the value of the optimal coalition structure is not
tractable7 in this paper we provide a tractable procedure to compute
such upper bound for the m+a characteristic functions.

4.1. Upper-bound for the optimal coalition structure

We start by detailing the concept of gain for a coalition structure,

7 Following the results in Sandholm et al. (1999), to provide any bound for a general
characteristic function one should at least visit all coalitions, hence the required
computational effort would have an exponential element in the number of agents.
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on the basis of the hierarchy that the C-link algorithm builds (i.e., the
dendogram) and of the gain the system achieves when merging two
coalitions.

In more detail, consider a set of agents A and a partition CS of this
set with CS K| | = (and K A< | |), we indicate with the coalition
structure formed by the singletons (i.e., A| | = | |). We can always build
a hierarchy of coalition structures (i.e., a dendogram) such that, by
repeatedly joining two coalitions, we obtain CS from . That is, we can
build a sequence H CS L L L CS( ) = = , ,…, =A A K| | | |−1 such that,

k K A∀ ∈ [ ,…, | | − 1]:

L L C C C C= ⧹{ }⧹{ } ∪ { ∪ }k k i j i j+1

where k L∀ k is a partition of A and C C L, ∈i j k+1.
Notice that the index of each level k encodes the number of

coalitions that can be part of the coalition structure in that level, and
as the hierarchy goes from the singletons towards the grand coalition, k
decreases.

Moreover, observe that, for any coalition structure CS we can
always build a hierarchy H(CS) that connects the singletons with CS
(Algorithm 3 reported in the supplementary material provides a
procedure to build H(CS)).

For example, Fig. 3 shows one possible hierarchy for the coalition
structure CS = {{1, 2}, {3, 4}}.

We now define the gain for a given coalition structure CS as the sum
of the worth of each coalition minus the sum of the worth of the
singletons:

Definition 1 (Gain of a coalition structure).

∑ ∑G CS v C v a( ) = ( ) − ( )
C CS

V CS

a A

V

∈

( )

∈

( )

We can show that the gain of a coalition structure can be
decomposed into the sum of the gains for each level Lk along the
hierarchy previously defined. In more detail, we show that the
following theorem holds:

Theorem 1 (Gain sum decomposition). Given a CS with CS K| | =
(K A≤ | |), and given a specific hierarchy H(CS) we have that:

∑G CS G V CS V( ) = = ( ) − ( )
k K

A
k k

=

| |−1
+1,

(7)

where G G C C= ( , )k k
i j

+1, and Ci,Cj are the coalitions merged going
from level k+1 to level k of hierarchy H(CS).

Proof. See the supplementary material.

Next, we want to use this gain-sum decomposition to bound the
value of the found coalition structure. Before that, we consider the
following definitions to characterise the characteristic function in terms
of gain:

Definition 2 (Maximum gain for a coalition).

⎧⎨⎩
⎫⎬⎭G G C S S= max 0, max ( ⧹ , )C

S C⊂ (8)

where G (·) is the gain as defined in Eq. (2). Intuitively, Eq. (8)
expresses the maximum gain for all possible splits of a given
coalition C. For example, to compute the maximum gain for coalition
C = {1, 2, 3} we must find the maximum of all the following possible
splits of coalition {1, 2, 3}: {1}{2, 3}, {2}{1, 3}, {3}{1, 2}.

Based on this concept, we can define the maximum gain for a
characteristic function as:

Definition 3 (Maximum gain for a characteristic function).

G G= maxM
C A

C
⊆ (9)

Finally, using the above definition of gain and exploiting Theorem
1, we can provide an upper bound on the value of the optimal coalition
structure (that we indicate with CS*). Specifically, based on Theorem 1,
it is easy to see that the following lemma holds:

Lemma 1 (Maximum Gain Bound (use GM)).

V CS V A G( *) ≤ ( ) + (| | − 1) M

Proof. Intuitively, the lemma holds because the hierarchy of coalitions
starting from singletons can never have more than A(| | − 1) levels,
hence if we sum to the value of the singletons (i.e., the value at the
bottom of the hierarchy) an upper bound on the maximum gain
obtained by merging any two coalitions we clearly obtain an upper
bound on the value of the optimal coalition. See the supplementary
material, for a more detailed proof.□

A tighter bound can be obtained by exploiting the concepts of gain
for a characteristic function and the hierarchy built by C-Link. In
particular, we can decompose the gain along the hierarchy, deriving an
upper bound for the gain at each level of the hierarchy. Aggregating
these upper bounds for all the possible levels of the hierarchy we can
then provide a tighter upper bound on the optimal solution. The
interested reader can find further details on this upper bound, together
with an empirical evaluation, in the supplementary material (see
Section 7).

4.2. Estimating the maximum gain for m+a characteristic functions

The above analysis provides a bound for the optimal solution which
is based on the computation of the maximum gain for the characteristic
function (or its decomposition through the levels of the hierarchy).
However, for characteristic functions that do not exhibit any particular
structure (such as the uniform or the NDCS functions we use in Section
5), computing the maximum gain for all possible splittings of a
coalition (i.e., Definition 2) requires searching through all the subsets
of such a coalition. This results in a prohibitive computational effort.8

The computation of the refined bound (i.e. that based on hierarchical
decomposition of the gain) is less demanding, but it is still intractable
as it requires to iterate through all possible coalitions. Therefore, such
bound can not be computed for large scale systems.

In what follows, we focus on quality guarantees that can not be

Fig. 3. An exemplar hierarchy for the coalition structure CS = {{1, 2}, {3, 4}}.

8 One way to implement this is to use dynamic programming to compute all possible
splittings for all sizes of coalitions. This would result in an algorithm that has the same
computational complexity of DP (O (3 )n ) and that could return the optimal solution to the
problem, thus defeating the purpose of an upper bound.
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provided for general characteristic functions but that can be computed
for large scale systems. In particular, here we describe an approach to
efficiently estimate the maximum gain for m+a functions (Bistaffa
et al., 2014). We then consider a notable example of such class (i.e., the
collective energy purchase function) in Section 5.

Recall that for m+a characteristic functions we can decompose v in
the sum of a super-additive and sub-additive component
v C v C v C( ) = ( ) + ( )+ − . Let us consider the gain for the super-additive
part of such characteristic function and call this Partial Gain. We can
now give the following definition:

Definition 4 (Partial Maximum Gain for a coalition).

⎧⎨⎩
⎫⎬⎭G v C v C S v S= max 0, max ( ) − ( ⧹ ) − ( )C

S C
+

⊂
+ + +

next, we can show the following lemma:

Lemma 2 (Partial maximum gain is an upper bound for the gain). For
every coalition C A⊆

G G≤C C
+

Proof. Intuitively, the lemma holds because the partial maximum gain
discards the gain related to the sub-additive component of the
characteristic function, which is always negative. See the
supplementary material for a more detailed proof.□

Now, we consider the marginal gain of a coalition as the difference
between the worth of such a coalition with respect to the sum of the
worth of the singletons that form this coalition, i.e., v C v a( ) − ∑ ( )a C∈ ,
and we show that for every coalition, the marginal, partial gain of the
grand coalition is an upper bound of the partial gain of such coalition:

Theorem 2 (Partial marginal gain is an upper bound on partial
maximum gain).

∑G v A v a≤ ( ) − ( )C
a A

+ +

∈

+

Proof. See the supplementary material.

Theorem 2 together with Lemma 2 provide us with a tractable
method to compute an upper bound of the maximum gain for the
energy characteristic function:

∑G v A v a= ( ) − ( )M
a A

+

∈

+

(10)

Hence, based on the analysis provided in Section 4.1 we can use GM
(instead of GM) to compute an upper bound of the optimal solution.
We call this the Estimated Maximum Gain Bound (EMGB):
V A G( ) + (| | − 1) M .

More important, the computation of such an upper bound has no
exponential element, and it only requires computing the partial value of
the grand coalition and summing up the partial values of all singletons.
As such, it enables us to provide bounds for very large scale systems
(i.e., more than 2700 agents as shown in Section 5). Clearly, sinceGM is
an upper bound of GM, the tightness of such upper bound depends on
the shape of the characteristic function and we need an empirical

evaluation to establish the significance of this bound. We provide such
an analysis in the next section.

5. Empirical evaluation

Having described and proved the theoretical properties of C-Link,
we now evaluate it under various settings, in order to determine its
performance both on synthetic and real-world datasets. In particular,
our algorithm has been evaluated on four data sets: (i) a synthetic
benchmark data-set where the values of coalitions follow a uniform
distribution (Di Mauro et al., 2010), (ii) a synthetic data-set where the
values of coalition structures are normally distributed (Rahwan et al.,
2009), (iii) a collective energy purchasing scenario (Vinyals et al.,
2012) and (iv) a ride-sharing scenario (Bistaffa et al., 2015). Crucially,
our evaluation of CSG algorithms on two real-world large scale datasets
is the first of its kind, and hence is our main focus.9

5.1. Evaluation methodology

The main goals of the empirical evaluation are:

1. to validate the applicability of the C-link method in large scale
systems;

2. to evaluate the performance loss due to the myopic nature of the
approach;

3. to assess the relative performance of the different linkage functions
defined in Section 3.1, and

4. to evaluate the significance of the guarantees on the solution quality
detailed in Section 4.

To achieve these goals, it is important to compare C-Link against other
existing approaches for CSG. In our evaluation, we focus on the quality
of solutions, since the runtime (typically employed to validate current
optimal and approximate approaches) is not a concern for C-Link: it
terminates in fractions of a second for problems involving 30 agents
compared to the best anytime optimal CSG algorithm (IDP-IP*) which
is only shown to terminate in around 100 s.

The challenge here is that it is impossible to find the optimal
solution for large numbers of agents (since none of the optimal CSG
algorithms can solve for more than 30 agents).

Hence, we define three metrics of performance: the total gain value
for settings that are not solvable using optimal algorithms, and the
averaged gain/optimal ratio for settings involving small numbers of
agents and solvable using existing optimal or approximate algorithms
(e.g., MIP, IDP-IP, or Service and Adams):

• Total Gain Value (TGV) m is computed as:

=m v C v a
v a

∑ ( ) − ∑ ( )
∑ ( )

C CSm a A

a A

∈ ∈

∈
, where m is a coalition formation method

and CSm the coalition structure that the method returns. This

Fig. 4. A diagram of the coalition structure graph for 4 agents. The downwards arrows show the path followed by our approach. The darker the node, the higher the coalition structure
value at that node.

9 The matlab code for C-Link that we used in our experiments can be downloaded from
this link http://profs.sci.univr.it/~farinelli/CLink-Code.zip
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indicator measures how valuable it is for the system to form the
computed coalition structure as opposed to singleton coalitions. The
TGV is our main performance indicator for large numbers of agents
as it does not require running an optimal algorithm.

• Averaged Gain Ratio (AGR) is computed as:
m

opt , where
opt is

the optimal total gain value, i.e., the total gain value for the optimal
coalition structure (computed with a benchmarking algorithm). This
indicator measures how far the total gain of the computed solution is
from the maximum achievable total gain. This is our main perfor-
mance indicator for small numbers of agents since it requires
knowing the optimal solution.

• Averaged Optimal Ratio (AOR) is computed as: V CS
V CS

( )
( *)

m
, where

CSm is the coalition structure returned by the method m and CS* is
the optimal coalition structure. The AOR measures how far the value
of the coalition structures computed by the heuristic method is from
the optimal solution.

The AOR is similar to the AGR, however since the AGR removes the
sum of the values of singleton coalitions, it is less dependent on the
identity of the agents. This is particularly important in the energy
purchasing dataset, where the identity of the agents (i.e., which users
participate in the collective energy purchasing process) makes a
significant difference for the value of the coalitions. Consequently, if
we use the AOR to analyse the performance of the heuristic
approaches, our results would be significantly biased by which agents
we include in the empirical analysis, which is not an element we try to
optimize (i.e., we aim at evaluating how well the heuristic approaches
behave given a set of participating agents on which we have no control).
In contrast, for the synthetic datasets, where the value of the
characteristic function does not depend on the identity of the agents,
we use the AOR as it has been used in previous work (specifically in Di
Mauro et al., 2010) and hence it allows us to compare our results with
such previous approach. Finally, for the energy purchasing case, we
evaluate the tightness of the bounds proposed in Section 4, by
computing the Maximum Performance Ratio.

In our experiments we computed the optimal solution for the CSG
problem by using a standard linear programming formulation
(Rahwan, 2007) (see pages 38–39). In such formulation we have one
binary variable for each possible coalition xj where xj=1 indicates that
coalition Cj has been selected. The problem is then to maximize

v C x∑ ( )*j j j=1
2N

subject to the constraints a A y x∀ ∈ , ∑ * = 1j j i j j=1
2

,
N

where
yi j, is a binary variable and y = 1i j, if agent a C∈i j. The constraints
enforce that the selected coalitions form a partition of the set A. Our
implementation uses the CPLEX library V( 12.4).

5.2. Synthetic data-sets

Here, we discuss the results obtained in two synthetic datasets,
where the characteristic functions are built following specific distribu-
tions. In particular, in the first case the characteristic function follows
the uniform distribution, i.e., v C U a b( ) ∼ ( , ) where a=0 and b=1. This
distribution has been widely used, in particular in Di Mauro et al.
(2010) to evaluate the GRASP-based heuristic approach.

In more detail, Fig. 5(a) reports the AOR for the four C-Link
variants varying the number of agents from 10 to 18. We stop at 18
agents because our CPLEX implementation for the optimal bench-
marking algorithm runs out of memory when adding more agents.
Results are averaged over 100 repetitions of experiments with 100
different instantiations of the characteristic function. Error bars report
the 95% confidence interval.10 Based on these results we can see that C-
Link with the Gain-Link linkage function achieves solutions which are
very close to the optimal value, with a worst case AOR of 99% (in fact,

Gain-Link achieves exactly the optimal solution on average in 30% of
the cases), moreover the averaged optimal ratio is almost constant with
respect to the number of agents. These results suggest that the Gain-
Link variant of C-Link achieves similar performance when compared to
previous state-of-the-art heuristic approaches: according to Di Mauro
et al. (2010), in similar settings (i.e, a uniform distribution for the
characteristic function and a range of agents that goes from 14 to 20),
the GRASP-based approach achieves an AOR which is always above
99% (see Fig. 3 in Di Mauro et al., 2010). Hence, in this setting, the
GRASP-based approach is slightly superior to Gain-Link. This is not
surprising because, as mentioned in the introduction, GRASP offers a
richer variety of operations to build the coalition structure (e.g.,
coalition splitting and agent exchange) as well as a randomized search
component to avoid local minima. However, by using a simpler
mechanism to build the coalition structure, Gain-Link can provide
guarantees on performance while maintaining a high quality of the final
solution.

As for the comparison with the different C-Link variants, the Gain-Link
one clearly shows superior performance over the other approaches;
average-link and complete-link have comparable performance and single-
link clearly performs the worst. This behaviour can be explained by

Fig. 5. Averaged optimal ratio when varying the number of agents for: (a) Uniform
distribution and (b) NDCS.

10 When the error bars do not overlap, the null hypothesis (i.e., not equivalence in
performance) can be validated with α=0.05.
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considering the different linkage functions that define these approaches. In
particular, complete-link sets the suitability between Ci and Cj as the worst
pairwise case (the minimum of suitability between all possible pairs of
agents in Ci,Cj). Hence, two groups are likely to be joined together only if
for all pairs of agents we have a high suitability, that is a coalition is formed
only if it is convenient for all agent pairs. A similar reasoning applies to the
average-link scheme. In contrast, single-link uses the maximum operator,
hence if two agents of two different groups work very well together the two
groups will be merged no matter how well the other agents fit.
Consequently, single-link tends to form big coalitions (as Table 1 confirms)
and does not properly take into account the synergies between groups of
agents that are bigger than two.

The second synthetic data-set we consider uses the Normally
Distributed Coalition Structures (NDCS) proposed by Rahwan et al.
(2009), a challenging distribution for which it was shown to be difficult
to provide high quality anytime solutions.11 The authors showed that
NDCS can be generated as follows: v C μ σ( ) ∼ ( , ) where C is the
coalition, μ C= | | and σ C= | | . Fig. 5(b), reports the AOR for the four
C-Link variants, varying the number of agents from 10 to 18. Such
results confirm the good behaviour of Gain-Link (which achieves in the
worst case solutions that are about 90% of the optimal) and the relative
behaviours of the other variants (i.e., average-link and complete-link
have comparable performance and single-link performs the worst).

5.3. Collective energy purchasing domain

We now turn to the empirical results obtained in the collective
energy purchasing domain.

In more detail, in this setting, each agent is characterized by an
energy consumption profile that represents its energy consumption
throughout a day. In particular, a profile records the energy consump-
tion of a household at fixed intervals (every half hour in our case).
Hence each profile is a vector of T elements (where T=48 in our case).
In the following experiments we use a set of energy profiles collected,
over a month, from 2732 households in UK.

The characteristic function of a group of agents is the total payment that
the group would incur if they buy energy as a collective. A collective of
agents buys its aggregated demand (i.e., the point-wise sum of energy
profiles) in the electricity market and optimizes its buying strategy by
exploiting reduced tariffs available in the forward market.12

In particular, following Vinyals et al. (2012) the characteristic
function is defined as:

∑v C q C p T q C p κ C( ) = ( )· + · ( )· + ( )
t

T

S
t

S F F
=1 (11)

where C A⊆ , pS and pF represents the unit price of energy in the spot
and forward market respectively,13 q C( )F stands for the time unit
amount of electricity to buy in the forward market and q C( )S

t for the

amount to buy in the spot market at time slot t. These quantities are the
ones that optimise the buying strategy of the group while satisfying the
group electricity demand:

q C q C e t T( ) + ( ) ≥ ∀ = 1…S
t

F C
t

(12)

In other words, to compute the characteristic function for a
coalition C one has to solve a maximization task so as to optimize
the buying strategy of the group. However, this maximization task is
not a computational bottleneck for our coalition formation problem as
it can be easily solved by using a linear programming approach (with a
linear number of constraints) or the ad-hoc procedure proposed in
Vinyals et al. (2012). In our experiments we use this second method.

Finally, κ C( ) stands for a coalition management cost that depends
on the size of the coalition and captures the intuition that larger
coalitions are harder to manage. The definition of this cost depends on
several low level issues (e.g., the power network capacity of customers
in the groups, legal fees, and other costs associated to group contracts
etc.), hence a precise definition of this term goes beyond the scope of
the present paper. Here we use κ C C( ) = −| |γ to introduce a non-linear
element that penalizes the formation of big coalitions, so that the grand
coalition is not always the best coalition structure.

Following Bistaffa et al. (2014) we observe that v(C) can be
decomposed into the sum of two components:

⏟
∑v C q C p T q C p κ C( ) = ( )· + · ( )· + ( )
t

T

S
t

S F F

v C
v C=1

( )
( )

+
−

(13)

where, v C( )+ is super-additive and v C( )− is sub-additive. To see why
v C( )+ is super-additive, consider that by aggregating two energy
profiles we will always buy more (or the same amount) of energy in
the forward market, hence, since energy prices for the forward market
are lower than prices for the spot market, we can never pay more by
aggregating profiles. On the other hand, v C( )− is sub-additive by
definition (when γ ≥ 1). Hence, based on the analysis reported in
Section 4.2 for such characteristic function we can provide an upper
bound on the value of the optimal coalition with a tractable procedure
(see Section 5.3.1).

In all the following experiments, the results are averaged over 100
repetitions and, as before, in all figures the error bars represent the
95% confidence interval. In each run, a group of agents is randomly
sampled from the whole dataset (the size of each group is specified for
each experiment).

We performed various experiments to evaluate different aspects of
the C-Link approach. In particular, in the first experiment, we compare
the solution quality achieved by all variants of C-Link by measuring the
AGR and varying the number of agents from 10 to 18. The results
reported in Fig. 6(a), confirm the behaviours discussed in Fig. 5(b),
with Gain-Link consistently achieving solutions which are very close to
the optimal (98% of the optimal in the worst case).

To see whether the C-Link approach can provide significant results
for large numbers of agents, we now analyse how the total gain value
metric evolves when increasing the number of agents to more than
2700. In particular, Fig. 6(c) reports the total gain value (TGV) against
the number of agents, up to 2732 agents.14 As the plot shows, the total
gain value remains almost constant when increasing the number of
agents, indicating that Gain-Link can provide high quality solutions
even when the number of agents increases to thousands. Notice that
the absolute value of the TGV is between 0.003 and 0.006, which
indicates a small increment in this metric. However, such small

Table 1
Statistics for coalitions in the energy domain (18 agents, γ=1.3).

Optimal Gain L. Single L. Comp. L. Avg L.

Numb. of Coal. 7.9700 7.7700 1.7100 8.1900 7.0200
Avg Size 2.4166 2.4836 12.7350 2.2702 2.6717
Max Size 4.4700 5.1500 17.2900 4.1900 5.5300
Min Size 1.1500 1.1500 8.9900 1.0400 1.1000

11 Specifically, Rahwan et al. (2009) prove that the NDCS distribution ensures that
every coalition structure value is drawn from the same distribution, and hence it ensures
that the search space is not biased towards coalition structures that have specific features
(i.e., large or small coalitions).

12 In the forward electricity market agents can buy energy bulks in advance at reduced
tariffs (see Voice et al., 2011).

13 Unit prices are negative values to reflect the direction of payment; following Vinyals
et al. (2012) in our experiments we fixed p = −80S and p = −70F .

14 In this experiment we performed 200 repetitions for each number of agents. This is
because in some of these experiments we are selecting a relatively small number of agents
(i.e., from 10 to 50,) from a large data-set, and the profiles of the agents that we select
have a significant impact on the results. By performing more runs we managed to have an
acceptable standard error of the mean and significant results.

A. Farinelli et al. Engineering Applications of Artificial Intelligence 59 (2017) 170–185

180



increase in the TGV is not due to poor performance of Gain-Link but to
a specific feature of the collective energy purchasing scenario. This is
confirmed by our experiments in the ride-sharing scenario (see Section
5.4) where the TGV significantly varies when increasing the number of
agents.

We now evaluate the sensitivity of the C-Link variants to the γ
parameter. In particular, we fix the number of agents to 18 and vary γ.
Results reported in Fig. 6(b) largely confirm the behaviour of Gain-
Link, complete-link and average-link and show that the approaches are
not sensitive to this parameter. In contrast, single-link shows a strong
decrease in performance when γ increases. This is because, as men-
tioned before (see Section 5.2), single-link tends to form big coalitions
that get penalized when the γ parameter is increased, as clearly shown
in Table 1. From this table it is also evident that Gain-Link forms
coalition structures with a number of coalitions that is very similar to
the ones formed by the optimal approach.

To investigate the runtime requirements for Gain-Link when
scaling to large numbers of agents, we measure the runtime in seconds
for Gain-Link and the optimal linear programming approach, increas-
ing the number of agents from 10 to the total number of users in our
data-set (2732 agents). The results are reported in Figs. 7(a) and (b),
from 10 to 18 agents and from 20 to 2732, respectively.

These results show that Gain-Link can provide solutions for
thousands of agents in few minutes (about 4 min for 2732 agents).
To put this in context, IDP-IP*, the current state of the art algorithm to
solve CSG optimally in the NDCS data-set is reported to take nearly
2 min for 25 agents (Rahwan et al., 2011) while C-Link terminates in a
few milliseconds for the same number of agents and the same data-set.

Finally, we evaluate the quality of solutions returned by all C-Link
variants when feasible coalitions are restricted by a social network that
connects the agents, as discussed in Section 3.4. To this end, we fix the
number of agents to 18 and vary the type of social network that
connects the agents. In more detail, following Voice et al. (2012), we
consider a scale-free network (using the Barabasi-Albert model) and
vary the connectivity parameter from 1 to 5. Results reported in
Fig. 7(c) confirm that Gain-Link is superior to all the other approaches
and show that it is not sensitive to the sparsity of the network. Single-
link performs better than complete/average-link when the network is
very sparse. This is because, as mentioned before, the bad performance
for single-link is mainly due to its tendency to form big coalitions but
this is mitigated by the presence of the interaction graph that
constrains coalitions that can be formed.

5.3.1. Bounds on solution quality
Here we discuss results concerning the guarantees on solution

quality that we can provide by using the bounds defined in Section 4.
Recall that we provided two classes of bounds: the general Lemma 2,
which however suffers from computational issues, and its computa-
tionally tractable version, which uses Eq. (10) to approximate GM. This
last approximation holds only when the characteristic function exhibits
a m+a nature, as in this collective energy purchasing context. In this
subsection we use the Maximum Performance Ratio (MPR) (See
Section 4) to evaluate the tightness of such bounds.

In particular, we compare the MPR obtained with the Estimated
Maximum Gain Bound (EMGB, see Equation (10)) and the MPR
obtained with the Maximum Gain Bound (MGB, see Lemma 1) –
clearly this can be done only for very few agents. We report such results
in Fig. 8(a) and (b). In this case we can see that the EMGB is less tight
than the MGB, however the computation of such bound is very cheap
(from a computational standpoint) and hence we are able to provide
such bound for more than 2700 (i.e., 2732 which is our full data set).

When taken together, our results show that we can provide
significant optimality guarantees for more than 2000 agents, which
goes well beyond the current state of the art. Again, following
Sandholm et al. (1999) we can provide any bound only after looking
at all the coalitions. This is clearly impractical for 2700 agents, and in

Fig. 6. Energy Experiment, results for the Averaged Gain Ratio varying: (a) the number
of agents (γ=1.3); (b) the parameter γ (18 agents). Figure (c) reports the Total Gain Value
for Gain-Link varying the number of agents (γ=1.3).
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fact most existing approaches cannot do so for anything more than 30
agents (Service and Adams, 2011; Rahwan et al., 2012).

5.4. Ride-sharing

As a final test, we evaluate our approach on another challenging real

world scenario, related to the car sharing domain. In such domain each
agent is a commuter that must reach a desired destination from its
current position by moving on a road network. Commuters can form
car and share rides aiming at minimizing the transportation cost (e.g.,
fuel). Hence the underlying Coalition Structure Generation problem is
that of forming coalitions of commuters (i.e., join in a car) so that each
agent can reach its destination while minimizing the transportation
cost. In particular, here we focus on the model provided by Bistaffa
et al. (2015) where users can be connected by a social network, and
therefore the problem is a Graph Constrained Coalition Formation,
where the interaction graph (i.e., the social network) restricts the
coalitions that may be formed.

In particular, the ride-sharing problem we consider here is defined
by a set of riders r r= { ,…, }R1 , and a set of drivers ⊆ . Every
driver r ∈i can host up to s r( )i riders in his car, including himself,
where the function s: → + provides the number of seats of each car.
Given a set of riders C ⊆ , C is said to be a valid coalition if at least
one rider is a driver and owns a car with enough seats for all the riders.
Moreover, here we consider also that each car will have at most one
driver (i.e., a driver always drive his/her car). As mentioned in Bistaffa
et al. (2015) this is an additional constraint that holds in several
established real-world services (e.g., Uber). The road network is
represented as a graph = ( , ), where each node is a geographical
location and a path over such graph is represented as an n-tuple of
locations (i.e., P ∈ n). Each rider r ∈i has a starting point (pi

a) and
a destination point (pi

b). Given a valid coalition C we indicate all valid

Fig. 7. Energy Experiments: run time (seconds) for Gain-Link and our optimal benchmark-
ing approach varying the number of agents: (a): results from 10 to 18 agents (y axis in log-
scale); (b): results from 20 to 2732 agents (x and y axis in log-scale). Averaged Gain Ratio
when varying the kind of Barabasi Network: 18 agents, with γ=1.3 (c).

Fig. 8. Guarantees on solution quality, Maximum Performance Ratio (MPR) varying the
number of agents for (a) the energy domain (up to 18 agents), and (b) the energy domain
for the full data-set (up to 2732 agents).
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paths for such locations as C( ), where a path P is valid for a
coalition C if P goes from the driver's starting point to its destination,
and for each rider in C, its starting point precedes its destination. The
characteristic function for a coalition C is then defined as:

⎧⎨⎩v C
cost P C
k C

( ) = ( ), if ∩ ≠ ∅
( ), otherwise.

C

(14)

where (based on Kamar and Horvitz, 2009) PC is the optimal path for C
and cost P( ): →C

n − is a negative cost function which typically
involves different costs (such as the time cost, the cognitive cost and
the fuel cost of driving through a given path). Moreover, k r({ })i is the
cost for a rider to use public transportation.15

Furthermore, PC is defined as follows:

P cost P= argmax ( )C
P C

i
∈ ( )i (15)

As described in Bistaffa et al. (2015) the cost model considers only
fuel expenses, i.e., v C K P( ) = ·fuel C , where PC represents the length of PC
in km, K = −0.06 €/kmfuel (considering a fuel cost of −1 € per litre and
an average consumption of 1 litre of fuel every 15 km) and
k r r({ }) = −3 € ∀ ∈i i , which represents the average public transpor-
tation cost, i.e., a bus or a train ticket. Moreover, we assume that each
car has a capacity of 5 seats, i.e., s r r( ) = 5 ∀ ∈i i .

In order to test how C-Link behaves in this specific context, we used
the same data-set defined in Bistaffa et al. (2015). Briefly such data-set
considers realistic data, both for the map and the social network. In
particular, the map is a realistic representation of the city of Beijing,
derived from the GeoLife16 dataset provided by Microsoft, which
comprises 17621 trajectories with a total distance of about 1.2 mil-
lion km, recorded by different GPS loggers and GPS-phones with a
variety of sampling rates. This pool of trajectories is adopted to sample
random paths used to provide the start and destination points of the
riders in our experiments.

Given this scenario, in the first experiment we compare the solution
quality achieved by all variants of C-Link by measuring the AGR and
varying the number of agents from 10 to 18. Here we use as interaction
graph a subgraph of a large crawl of the Twitter social network in 2010.
The results reported in Fig. 9(a), confirm the behaviours of C-link
observed in the previous experiments, with Gain-Link consistently
achieving solutions which are very close to the optimal (91% of the
optimal in the worst case).

Fig. 9(b) compares the total gain value (TGV) for Gain-Link against
the TGV achieved by CFSS, the solution approach used in Bistaffa et al.
(2015). CFSS is designed for CSG where the coalitions are restricted by
an interaction graph, and is an anytime approach that has been shown
to perform well beyond state of the art competitors in the ride-sharing
scenario. Specifically, here we let Gain-Link run until termination and
then we let CFSS run for the same amount of time used by Gain-Link.
In these experiments the number of agents varies from 1000 to 2000,
and we again used a large crawl of Twitter as an interaction graph.
Results show that Gain-Link can provide solutions of better quality up
to 1500 agents, but then its performance degrades and CFSS signifi-
cantly outperforms Gain-Link for 2000 agents. This is due to the greedy
nature of Gain-Link coupled with the restriction imposed by the
Twitter social network: Gain-Link can not recover from greedy choices
that do not result in high quality solutions because the possible choices
on coalition merges are limited by the social network. In contrast CFSS,
which is based on a Branch-and-Bound method, exploits the presence
of the network to reduce the search space and can search for better
solutions.

This behaviour is largely confirmed by the results shown in Fig. 9(c)

Fig. 9. Ride-sharing experiments: (a) reports the Averaged Gain Ratio for the four
variants of C-Link varying the number of agents from 10 to 18 (using Twitter network);
(b) compares the Total Gain Value for Gain-Link and CFSS (Bistaffa et al., 2015) varying
the number of agents from 1000 to 2000 (using Twitter network); (c) compares the Total
Gain Value for Gain-Link and CFSS varying the number of agents from 50 to 2000
(without any social network).

15 Notice that, based on previous discussion if a coalition does not contain any drivers
(i.e., C ∩ = ∅) then C must be formed by a single rider without a car, hence its cost is
provided by k (·).

16 http://research.microsoft.com/en-us/projects/geolife
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where we compare the TGV between Gain-Link and CFSS varying the
agent numbers from 50 to 2000 without imposing any social network.
In this case, Gain-Link is significantly superior to CFSS and its
performance increases when the number of agents increases.

As a final observation, notice that, as discussed in Bistaffa et al.
(2015), the characteristic function for ride-sharing is not an m+a
function, since it depends on PC, and specifically on the actual position
of the start and destination points of the riders. In particular, this
characteristic function exhibits a monotonic behaviour for some
configurations, for example, when a rider's start and end positions
are aligned with the path of a driver. However, it is antimonotonic for
other configuration for example, when a rider's start and end positions
are both off the path of a driver (see Bistaffa et al., 2015 for a more
detailed discussion on this topic). As a consequence, we can not provide
tractable bounds for this characteristic function.

6. Conclusions

In this paper we focus on providing good-enough solutions to the
CSG problem. Specifically, we draw a parallelism between the CSG
problem and data clustering proposing a novel scalable heuristic called
C-Link. Our analysis shows that C-link has minimal requirements,
when compared to previous approaches for CSG, in terms of memory
(O N( )2 ) and computation (O N( )3 ). We show that the C-link is guaran-
teed to converge in N iterations at most, and that the Gain-Link variant
of the C-Link approach is anytime. Moreover, we provide a refinement
for C-link that can solve the CSG problem when interaction graphs
constrain the formation of coalitions, maintaining all the appealing
properties of C-link. Furthermore, we show that by bounding the gain
that can be achieved when merging two coalitions, we can provide an
upper bound on the value of the optimal coalition structure. We were
also able to provide a computationally tractable version of such bound
for specific characteristic functions (m+a functions).

Our empirical analysis compares C-Link against an optimal CSG
algorithm in 4 different datasets, showing that our approach can
provide high quality solutions; in particular, our approach provides
high quality solutions and quality guarantees in specific settings (i.e.
for m+a functions), such as the collective energy purchasing domain.
More importantly, it is able to solve problems involving thousands of
agents (more than 2000) in few minutes (less than 4) for any
characteristic function, with and without a network that constrains
the possible coalitions. When taken together, the analysis of several
variants of the approach and our empirical results provide the first
benchmarks for large-scale approximate coalition structure generation
and open up several promising future directions. Specifically, as
mentioned in the introduction a key design concept for C-link is the
simplicity of the proposed clustering scheme which fosters an analysis
of the approach; even if we believe that a basic clustering technique is
very appropriate for a first attempt to use clustering for coalition
formation, an interesting future direction is to investigate other
clustering schemes to improve on the performance of C-Link. In this
spirit, we believe that employing partitional clustering methods for
coalition formation might be a promising research direction and it is
definitely part of our future work in this space.

Overall, the analysis we provide here suggests that in most realistic
application domains achieving optimal solutions for the CSG problem
is not practical. In fact, the inherent complexity of the CSG problem
forces exact approaches to have computational costs and memory
requirements that do not allow to scale beyond few tens of agents
(which is far below the number of agents of realistic CSG problems).
Nonetheless, it possible to devise algorithms that can provide good
quality solutions and bounds by considering specific families of
characteristic functions (such as the m+a function). In this sense the
concept of gain is a key element to consider, and having a good
estimation of how beneficial it is to merge coalitions is a powerful
indicators that can help the system designer to devise high quality

heuristic approaches. Nonetheless, we also highlight that the current
bounds should be refined to be useful in practical scenarios. In
particular, we believe this to be a very important and promising
research direction for applications where a large number of agents
may be involved, such as for example the formation of collectives in
virtual power plants for intelligent energy management (Chalkiadakis
et al., 2011) or coalition formation for first responders involved in
search and rescue operations (Ramchurn et al., 2010).

As a final remark, we believe clustering techniques could also
benefit from coalition formation approaches, as there are challenges for
clustering/data mining to look into more complex high order clustering
problems where the relationship between entities are combinatorial in
nature. We believe in this setting clustering techniques should be
augmented with approaches used in coalition formation research (such
as dynamic programming or branch-and-bound), to move away from
standard greedy approaches and provide solutions of higher quality
and/or quality guarantees.
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