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Abstract. Several problem in Artificial Intelligence and Pattern Recog-
nition are computationally intractable due to their inherent complexity
and the exponential size of the solution space. One example of such
problems is biclustering, a specific clustering problem where rows and
columns of a data-matrix must be clustered simultaneously. Quantum
information processing could provide a viable alternative to combat such
a complexity. A notable work in this direction is the recent development
of the D-WaveTM computer, whose processor is able to exploit quantum
mechanical effects in order to perform quantum annealing. The question
motivating this work is whether the use of this special hardware is a
viable approach to efficiently solve the biclustering problem. As a first
step towards the solution of this problem, we show a feasible encoding
of biclustering into the D-WaveTM quantum annealing hardware, and
provide a theoretical analysis of its correctness.

1 Introduction

Biclustering, also known in other scenarios as co-clustering, is a term used to
encompass a large set of data mining techniques generally aimed at “performing
simultaneous row-column clustering” of a data matrix [19]. It is used in several
different scenarios, such as document analysis [11], market segmentation [12],
recommender systems [20] and, most importantly, expression microarray data
analysis [2,15,19,22,24]. In this last scenario, the starting point is a matrix whose
rows and columns represent genes and experiments, respectively. Each entry of
the matrix measures the expression level of a gene in a specific experiment.
Biclustering aims to find clusters of genes which show a coherent behavior in
subsets of experiments. This permits the discovery of co-regulation mechanisms.
Addressing this issue can provide invaluable information to biologists, given the
ever increasing amount of data that they have to analyse.

Different biclustering techniques have been proposed in the past [1,5,7,10,
27], each one characterized by different features, such as computational complex-
ity, effectiveness, interpretability and optimization criterion – cf [15,19,24]) for
a general review. A significant part of these approaches aim at adapting a given
clustering technique to the biclustering problem, for example by repeatedly per-
forming rows and columns clustering. However, an interesting recent chunk of
works aim at proposing novel models for biclustering, where rows and columns
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are analysed simultaneously (as opposed to clustering rows and columns sepa-
rately) [27]. This has several advantages for what concerns the performance of
the biclustering process that is significantly more accurate. However, such accu-
racy comes at a price as such models typically involve a large amount of variables
and relationships. Specifically, the typical biclustering instance is represented by
a matrix with thousands of column/rows [19]. Moreover, the underlying opti-
mization task required by the model is inherently intractable leading to severe
restrictions on the practical applicability of those approaches. In order to combat
such complexity, recent works typically relax the model or use heuristic, greedy
approaches, hence giving up optimality of the solution.

In this paper we investigate the applicability of a metaheuristic, called Quan-
tum Annealing (QA) [14,16,26], to the global optimization problems underlying
biclustering, by following some recent developments in the construction of quan-
tum devices that physically realise quantum annealing. Similarly to the classical
Simulated Annealing, QA is an optimization metaheuristic that seeks the global
optimum of an objective function by following a process inspired by the thermo-
dynamic process of annealing. In this search, QA is more effective than the clas-
sical method as it employs quantum fluctuations in order to escape local minima,
i.e. it uses some quantum effects that allows the tunneling through narrow bar-
riers separating local minima, rather than climbing over them as done classically
by using thermal fluctuations. Apart from the recent theoretical demonstrations,
this has also been demonstrated experimentally [9]. A fundamental contribution
in this direction is due to D-Wave Systems Inc., which has commercialized some
analog quantum devices designed to use quantum annealing to solve quadratic
optimization problems.

Various works investigated the possibility of addressing typical Artificial
Intelligence (AI) and Pattern Recognition (PR) problems by using QA. Exam-
ples include image recognition [21], Bayesian network structure learning [23]
and hard operational planning problems [25]. As done in [25] or in [21] for image
recognition, we show here an encoding of biclustering as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem [17], i.e. as a problem where the
aim is to find an assignment for binary variables so as to minimize a quadratic
objective function. The QUBO format corresponds to the input format required
for the D-WaveTM superconducting adiabatic quantum computing processors.
To the best of our knowledge this is the first study in this direction. A sam-
pling algorithm for clustering was proposed in [18] which is inspired by quantum
annealing. However, this algorithm is designed for classical computers, while
here we investigate the possible exploitation of a radically different computing
machine, i.e. the D-WaveTM quantum computer, for biclustering.

The contributions of this paper can be summarized as follows: (1) We intro-
duce the first QUBO model for the biclustering problem; more specifically, we
formulate the biclustering problem as a repeated search for the largest biclusters
following well known approaches such as [4,7], where biclusters are extracted
one at a time from the data-matrix. (2) We analyse the model proving that it is
correct, i.e. that the optimal solution of the QUBO model is the optimal solution



A Quantum Annealing Approach to Biclustering 177

for the one-bicluster problem. (3) We discuss the practical applicability of our
model considering the current architecture of the D-WaveTM machine.

2 Background and Related Work

In this section we first detail the biclustering problem, then provide some neces-
sary notions on quantum annealing and on the D-waveTM architecture. Finally,
we present the QUBO formalization for generic optimization problems.

2.1 Biclustering

As already mentioned, biclustering has been used in various application domains
with different techniques. However, in its most general form, biclustering can be
defined as the simultaneous clustering of rows and columns of a given data-
matrix [19]. The goal is then retrieving the subsets of rows and columns that
have a coherent behavior, where “coherence”is defined according to the specific
application domain (e.g. Euclidean distance, Pearson correlation, etc.).

In this paper we follow a standard technique [4,7], where biclusters are
extracted one by one from the data-matrix. In particular, we focus on the prob-
lem of finding the largest bicluster in a data matrix, which in the rest of the
paper we will refer to as the one-bicluster problem. The other biclusters can
then be retrieved by masking the bicluster(s) already found (i.e. setting to a
predefined value the relevant entries of the data-matrix) and by iterating the
process.

Hence our problem takes as input a real-valued data matrix A with N rows
and M columns, and returns a subset of rows and columns that identifies the
largest, most coherent bicluster. Each real value of the data-matrix ai,j encodes
an “activation” level for a specific configuration. For example, for expression
microarray data rows typically represent genes and columns experimental con-
ditions, hence each entry ai,j represents the activation level of gene i under the
experimental condition j. Our goal is to return the set of genes that exhibits a
coherent behavior under the same subset of experimental conditions.

2.2 Quantum Annealing and D-WaveTM

Among the various approaches to quantum information processing, a particu-
larly interesting one is adiabatic quantum optimization and the closely related
phenomenon of quantum annealing (QA), which allows us to replace exhaustive
searches in global optimization problems with heuristic algorithms approximat-
ing the global optimum to the aim of finding a satisfactory solution. QA is a
meta-heuristic based on the quantum adiabatic theorem1, whose basic strat-
egy can be described as follows: first, the system is initialized to a simple state
1 According to the quantum adiabatic theorem, a quantum system that begins in the

non-degenerate ground state of a time-dependent Hamiltonian will remain in the
instantaneous ground state provided the Hamiltonian changes sufficiently slowly.



178 L. Bottarelli et al.

and then the conditions are slowly (adiabatically) changed to reach a complex
final state that describes the solution to a computational problem of interest.
It is in some way similar to the classical simulated annealing (SA) [13], which
instead borrows a metaphor from the physical process used in metallurgy to
create a defect-free crystalline solid. Rather then thermal fluctuations used in
SA to control the search, in the quantum case the computation is driven by
quantum fluctuations and the tunneling field strength replaces temperature to
control acceptance probabilities [14]. The QA optimization scheme has been
implemented directly on quantum hardware by the Canadian company D-Wave
Systems Inc. The D-WaveTM devices are able to minimize an objective function
expressed in accordance to the Ising Model of statistical mechanics. The Ising
energy minimization problem is NP-hard [3] and it is equivalent to the QUBO
model presented in the next section.

Fig. 1. D-WaveTM unit cell as shown in [8]

In order to solve an instance of a QUBO problem with a D-WaveTM machine
we will need to adapt the logical formulation of a given problem to the physical
fixed architecture of the quantum processor. This architecture is composed by
a matrix of unit cells (Fig. 1) that is a set of 8 qubits disposed in a bipartite
graph. These unit cells are connected in a structure called chimera graph.

The current version of the machine (D-Wave 2XTM) has 12×12 unit cells for
a total of 1152 qubits (cf [9] for more details on its hardware and performance).

2.3 Quadratic Unconstrained Binary Optimization Problems

The goal of a Quadratic Unconstrained Binary Optimization problem (QUBO)
is to find the assignment to a set of binary variables x1...xn so as to minimize
an objective function that has the following form:

O(x1, ..., xn) =
n∑

i=1

aixi +
∑

1≤i<j≤n

bi,jxixj (1)

We can also represent an instance of a QUBO problem with a weighted graph
where each node represents a binary variable xi, a linear coefficient ai encodes
the value associated to the node xi and a quadratic coefficient bi,j represents the
value associated to the edge between nodes xi and xj . With this representation,
setting xi = 1 corresponds to selecting the node xi, while xi = 0 corresponds
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to eliminating the node xi from the graph. Hence, the objective function corre-
sponds to the sum of all values in the graph and its minimization is equivalent
to decide which nodes to remove (where removing a node implies the removal of
all edges that are incident to that node), in such a way that the summation of
the values remaining in the graph is the lowest possible.

3 The QUBO Model for Biclustering

In this section, we detail our QUBO model for the one-bicluster problem. We
first describe a binary model for the one-bicluster problem, then we show how
such a model can be encoded as a QUBO.

3.1 A Binary Model for One-Bicluster

We now present the objective function for the binary one-bicluster problem and
in what follows we explain how it is derived. Given a real-valued data matrix A
with N rows and M columns the objective function for the binary one-bicluster
problem is the following:

arg max
(c1,1,··· ,cN,M )

(∑

i,j

ai,jci,j −
∑

i,j,t,k

Oi,j,t,kci,jct,k +
∑

i<t

Bi,t

)
(2)

where 1 ≤ i, t ≤ N ; 1 ≤ j, k ≤ M .
In the first two terms we have N × M binary variables ci,j that encode

whether a given entry ai,j of the data matrix A belongs to the bicluster or not
(where ci,j = 1 indicates that the entry ai,j does belong to the bicluster).

Also, in this function we can identify two forces: one that encourages points
to group together, namely the first term in (2), and one that avoids points that
are not coherent to be in the same group (i.e., the second term in (2)). Such term
is based on a value Oi,j,t,k which measures the coherence between two points ai,j
and at,k. The function Oi,j,t,k depends on which kind of biclusters we wish to
analyse. In particular, following the relevant literature (e.g., [27]) we consider
two types of coherence:

Constant: which aims at penalizing points that have a different activation level
and hence identifies biclusters that have a single coherent value.

Oi,j,t,k = w|ai,j − at,k| (3)

Additive: which identifies biclusters that encode an evolution of the activation
values over columns.

Oi,j,t,k = w(ai,j − at,j + at,k − ai,k)2 (4)
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C =

⎛
⎜⎜⎝

1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
1 0 1 1 0

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0

⎞
⎟⎟⎠

(a)

C =

⎛
⎜⎜⎝

1 0 1 1 0
0 0 0 0 0
1 0 0 1 0
0 1 1 1 0

⎞
⎟⎟⎠

(b)

Fig. 2. Example of: a valid assignment and its permutation that results in a full rec-
tangle of ones (2a); an invalid assignment, no permutation can result in a full rectangle
of ones (2b)

In both (3) and (4) the weight w can be adjusted to balance such two forces:
setting w to high values favours the coherence of the points inside the biclusters
while setting w to low values favours the creation of large biclusters. Such weight
must be determined experimentally and it is domain dependent.

In order to solve our problem, we need to restrict the feasible variable assign-
ments so that only valid assignments correspond to a bicluster. In other words,
we need to rule out assignments that do not correspond to a subset of rows and
columns that have all entries selected (see Fig. 2b for an example of a non-valid
assignment). To do so we add one constraint stating that, given two rows of the
output matrix C, they have to share the same configurations or one of them
must be zero. The constraint between rows i and t is expressed in Eq. (2) by the
term:

Bi,t =

{
0, if (

∑
k ci,k = 0) ∨ (

∑
k ct,k = 0) ∨ (

∑
k(ci,k − ct,k) = 0)

−∞, otherwise
(5)

Such constraint ensures that there is a permutation of rows and columns that
forms a submatrix with all entries selected (i.e., visually a full rectangle of ones).

Another interesting way to look at an admissible configuration is that it
can be described by fixing the same value for all the elements of a column
with an exception for the elements that belong to a disabled row. For example,
considering Fig. 2a (before permutations) the configuration can be expressed
as: Columns {1, 3, 4} take value 1, columns {2, 5} take value 0 and row 2 is
disabled (all the element are 0). Hence any admissible configuration can be
uniquely identified by this type of description. This description is useful to better
understand the QUBO model we describe next.

3.2 The QUBO Model for the One-Bicluster Problem

We now provide a QUBO formulation for the binary model described above.
For ease of explanation let us start with a QUBO representation that does not
consider the bicluster constraint (i.e., the Bi,t elements in Eq. (2)). To build
such model by using the graph-based representation of QUBOs, we create a
node xi,j for each variable ci,j . Considering that the QUBO formulation has to
be minimized, we then assign a value −ai,j to each node. For each pair of nodes
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(xi,j , xt,k) we assign to the edge between them a positive value Oi,j,t,k calculated
according to the Eqs. (3) or (4). Note that the latter has value 0 for points on
the same row or the same column, hence for such measure the horizontal and
vertical edges are absent from the graph. The corresponding objective function
for the QUBO problem will then be:

arg min
(x1,1,··· ,xN,M )

( ∑

i,j

−ai,jxi,j +
∑

i,j,t,k

Oi,j,t,kxi,jxt,k

)
(6)

where 1 ≤ i, t ≤ N ; 1 ≤ j, k ≤ M . It is easy to see that the assignment that max-
imizes function (2) without the bicluster constraint is the same that minimizes
the QUBO objective function (6). Figure 3 shows a graphical representation of
such a simplified QUBO model for a 2 × 2 input data matrix.

−a1,1x1,1 −a1,2 x1,2

−a2,1x2,1 −a2,2 x2,2

O1,1,1,2

O
1,
1,
2,
1

O
1,1,2,2

O 1,2
,2,
1

O
1,
2,
2,
2

O2,1,2,2

Fig. 3. A graphical representation of our QUBO model for a 2 × 2 data-matrix, the
(red) dotted edges are absent in case of additive coherence measure (4).(Color figure
online)

Now, in order to consider the bicluster constraint we must add some extra
nodes to the QUBO model so as to ensure that the assignments generated
are valid (i.e., they represent a subset of rows and columns). As mentioned
in Sect. 3.1 an admissible configuration should set all variables in the same col-
umn to the same value except for the variables that belong to disabled rows.
To express this, we create two types of constraints: column constraints and row
constraints. A column constraint ensures that all variables in a column have the
same value. To do so we add to each node a positive value V and we add a new
node to the graph with a value equal to N(B − V ) where B > V . We call this
new node the column switch and we indicate with sj the variable that corre-
sponds to the node switch for column j. Finally, we set the value of the edges
between the column switch and the N nodes to −B (see Fig. 4a for a graphical
representation). Intuitively, if k of the N nodes are selected and the switch is not
active (i.e., si = 0), we add to the objective function a value kV . If we select the
switch and the k nodes we add k(V −B) +N(B − V ). Since we are minimising
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V x1,j

V x2,j

..
.

V xN,j

N(B − V ) sj

−B

−B

−B

(a)

xi,1 xi,2

...

xi,M
ri

G

G

G

(b)

Fig. 4. Graphical representation of: a column constraint (4a); a row constraint (4b)

the objective function the best configuration will be either selecting all nodes
(with a contribution of N(V − B) + N(B − V ) = 0) or not selecting any node
(again with a contribution of zero). All other configurations will add a positive
value to the objective function.

A row constraint should force all variables in a row to be zero when a specific
condition holds (i.e., we decide to not consider that row). To enforce this we add
a new node to the graph with a value 0 and we call this new node the row switch.
We indicate with ri the variable that corresponds to the node switch for row i
(see Fig. 4a for a graphical representation). Then, we set the edges between the
row switch and the M nodes to a positive value G. Intuitively, when the ri = 0
any configuration for the M nodes contributes with a null value to the objective
function, hence they are equally desirable. However, if rj = 1 then selecting any
of the M nodes will increase the objective function of a value G. Hence, in this
case the best configuration is the one that does not select any of the M nodes.

Finally we combine the first graph (Fig. 3) without the bicluster constraint
(from now on called the inner graph) with the row and column constraints and
by adding from each row switch to every column switch an edge with value
V − B. The objective function has now the following form:

arg min
(x1,1,··· ,xN,M )

∑

i,j

(
V xi,j − Bxi,jsj + Gxi,jri + (V − B)risj

+ (B − V )sj − ai,jxi,j +
∑

t,k

Oi,j,t,kxi,jxt,k

) (7)

In order to ensure that our QUBO formulation is a proper model for the one-
bicluster problem we must show that for all valid solutions the extra constraints
(i.e., row and column constraints) contribute with a zero value, while for all
non-valid solutions they contribute with a strictly positive value. In particular,
we prove the following theorem:

Theorem 1 (Model validity). Given a model of a data-matrix with N rows
and M columns and values B > V > 0 and G > B − V, for all assignments
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V − a1,1

x1,1

V − a1,2

x1,2

r1

G

G

V − a2,1

x2,1

V − a2,2

x2,2

r2

G

G

2(B − V )

s1

−B

−B

2(B − V )s2

−B
−B

V − B

V − B

V − B

V
−B

O 1,1
,2,
2
+
O 1,2

,2,
1

Fig. 5. Graph of the complete model for N = 2 and M = 2 with the additive coherence
similarity metric (4) and the simplification proposed at the end of this section.

that do not violate a row or a column constraint such extra constraints provide
a null contribution to the objective function. For all other configurations the
contribution is greater than 0.

Proof (Proof sketch). From Eq. (7) we can observe that in each addend of the
summation, the terms that depend on the constraint structure are V xi,j −
Bxi,jsj + Gxi,jri + (V − B)risj + (B − V )sj . Hence, each addend depends
exclusively on three binary variables, namely a node from the inner graph xi,j

and the two switches ri and sj . By analyzing exhaustively the eight cases we
can reach the desired conclusion.

In order to complete the model we have to identify the appropriate values
for V , B and G. To do so, we observe that a configuration that does not comply
with all the switches constraints should increase more than the decrease in value
that can derive from taking such a configuration in the inner graph, namely
the values assigned to the structure should be high enough to ensure that the
objective function does not minimize for the non-valid configurations. Although
intuitively we can simply choose high values, to maintain the range of possible
values as small as possible, we investigate what the lowest admissible ones are.
Let us indicate with R a configuration for the row switches, S a configuration for
the column switches, X a configuration for the inner graph nodes in compliance
with the switches and X a configuration where any subset of X does not comply
with the corresponding switches. We can then show the following theorem:

Theorem 2 (Determining V,B,G). Given the specific switches configura-
tions R and S and the valid solution (X,R, S), we have that:

O(X,R, S) − O(X,R, S) > 0 ⇐⇒ (
V > Vm ∧ B > Bm ∧ G > Gm

)
(8)
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for all invalid solutions (X,R, S), where

Vm = max
i,j

{ai,j} Bm = V + max
i,j

{−ai,j +
∑

t,k

Oi,j,t,k}

Gm = B − V + max
i,j

{ai,j}
(9)

Proof (Proof sketch). In a similar way to what we explained in Theorem 1,
we can analyze the cases of Eq. (7) considering the configurations of the three
binary variables xi,j , ri and sj . We can then calculate the values Vm,Bm,Gm by
imposing O(X,R, S) − O(X,R, S) > 0 between the eight cases.

Theorems 1 and 2 ensure that by building the model as described above,
for any valid configuration (i.e. a configuration that describes a bicluster) the
contribution of the column and row constraints to the objective function is null.
For all valid assignments the objective function reported in Eq. (7) reduces to
Eq. (6), hence the configuration that minimizes Eq. (7) is the same that maxi-
mizes Eq. (2) (i.e., the most coherent, largest bicluster). Moreover, for any non
valid assignment (i.e. an assignment that does not encode a bicluster) the con-
tribution of the row and column constraints will be strictly positive hence such
configuration will always be discarded in favor of a valid assignment.

The proposed model can be further simplified. In particular, we can reduce
the number of edges (quadratic terms) by observing that if a couple of nodes
(in the inner graph) on different rows and columns are active (i.e., two nodes
on the opposite corners of a rectangle) also the other two nodes on the other
diagonal of the rectangle must be active to comply with the switches. The terms
Oi,j,t,kxi,jxt,k and Ot,j,i,kxt,jxi,k either contribute both or none to the objective
function. Hence, we can add both values Oi,j,t,k + Ot,j,i,k to a single edge and
remove the other one. Hence, regardless of the coherence measure used, we can
remove half of the diagonal edges. An example of the complete simplified model
is shown in Fig. 5.

3.3 Minor Embedding the QUBO Model on the D-WaveTM

Architecture

In order to solve a QUBO model on a D-WaveTM machine, an arbitrary logical
graph has to be embedded into the physical structure of the processor. This
requires a mapping of the physical qubits into the problem’s variables, i.e. to
determine which physical qubits should represent which variable of the QUBO
problem. In order to perform this operation we adopt the approach developed
in [6] for finding graph minors. More specifically, we use a minor embedding
technique. Note that, even if the number of nodes of the model is smaller than
the number of qubits of the processor, it is not always possible to find a valid
embedding. In particular, the embedding into the hardware architecture usually
requires more variables, since some nodes are represented by several physical
qubits due to the sparse connectivity of the hardware graph.
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We applied this minor embedding technique to our model using the code pro-
vided by authors of [6] with the aim to determine the dimension of the matrices
and the sparsification required to always find a valid embedding. Results show
that the dimensions of the matrices that can be analysed on D-WaveTM are sig-
nificantly smaller than typical data for biclustering. Specifically, we can embed
matrices up to 7 × 7 on the processor of the current version of the D-WaveTM

machine (1152 qubits). Nonetheless, it is possible to decompose large matrices
into smaller ones, achieving good results in terms of accuracy for the retrieved
biclusters.

4 Conclusions

In this paper we have introduced a QUBO model for the one-bicluster problem.
The results suggest that nowadays the use of such an approach would be possible
only for small matrices on the current processor of the D-WaveTM machine
as explained in Sect. 3.3. Nonetheless, this paper takes a first important step
towards an effective use of quantum annealing for biclustering.

Several challenges will need to be addressed for the development of future
improved quantum annealers. Critical issues such as longer coherence times,
calibration accuracy, etc. are objects of intense study by researchers in both
academy and industry as well as by the quantum enhanced optimization (QEO)
group of the Intelligence Advanced Research Projects Agency (IARPA) of the
US government. Solving these issues will hopefully lead in a near future to the
implementation of quantum annealing that will be more flexible both in terms
of connectivity and choice of cost function, thus adding value to studies like the
one proposed in this paper.

References

1. Ayadi, W., Elloumi, M., Hao, J.: Bimine+: An efficient algorithm for discovering
relevant biclusters of DNA microarray data. Knowl. Based Syst. 35, 224–234 (2012)

2. Badea, L.: Generalized clustergrams for overlapping biclusters. In: IJCAI, pp.
1383–1388 (2009)

3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys.
A: Math. Gen. 15(10), 3241–3253 (1982)

4. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene
expression data: The order-preserving submatrix problem. J. Comput. Biol. 10(3–
4), 373–384 (2003)

5. Bicego, M., Lovato, P., Ferrarini, A., Delledonne, M.: Biclustering of expression
microarray data with topic models. In: International Conference on Pattern Recog-
nition (ICPR2010), pp. 2728–2731 (2010)

6. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors.
ArXiv e-prints, June 2014

7. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology
(ISMB00), pp. 93–103 (2000)



186 L. Bottarelli et al.

8. Dahl, E.D.: Programming with D-Wave: Map Coloring Problem (2013). http://
www.dwavesys.com/sites/default/files/Map%20Coloring%20WP2.pdf

9. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V.,
Martinis, J., Neven, H.: What is the computational value of finite-range tunneling?
Phys. Rev. X 6(3), 031015 (2016)

10. Denitto, M., Farinelli, A., Franco, G., Bicego, M.: A binary factor graph model for
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