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Abstract. The non-linear scaling of given dissimilarities, by raising
them to a power in the (0,1) interval, is often useful to improve the
classification performance in the corresponding dissimilarity space. The
optimal value for the power can be found by a grid search across a leave-
one-out cross validation of the classifier: a procedure that might become
costly for large dissimilarity matrices, and is based on labels, not per-
mitting to capture the global effect of such a scaling. Herein, we propose
an entirely unsupervised criterion that, when optimized, leads to a sub-
optimal but often good enough value of the scaling power. The criterion
is based on a trade-off between the dispersion of data in the dissimilar-
ity space and the corresponding intrinsic dimensionality, such that the
concentrating effects of the power transformation on both the space axes
and the spatial distribution of the objects are rationed.

Keywords: Dissimilarity space · Intrinsic dimensionality · Dispersion ·
Non linear scaling ·Nearest neighbor classification ·Power transformation

1 Introduction

In statistical pattern recognition, an object is conventionally represented as a
vector whose entries correspond to numerical values of its features. Therefore,
in such a representation, objects are points in a vector space: the well-known
feature space. However, this conventional representation is often inconvenient,
particularly when the extraction of features from symbolic data (such as graphs
and grammars) or from raw sensor measurements (such as signals and images)
is difficult or even when it is not clear how to do it in the first place. As an alter-
native, Pekalska and Duin proposed [13] the option of measuring dissimilarities
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between pairs of objects and organizing them as vectors such that each object is
represented as a point in the so-called dissimilarity space [7] where any classifier
can be trained and applied. The dissimilarity representation is within the field
of (dis)similarity pattern recognition that has been actively researched during
the last years [14,15].

In many pattern classification problems it is mandatory to normalize the
feature space, i.e. to make comparable the ranges of the different features that
can derive from different measures/sensors: the typical approach is to apply a
linear scaling to the axes of the vector space; this operation guarantees that
the classifier decision equally takes into account values in all directions, once
the unwanted influences of their original dynamic ranges have been removed.
In the dissimilarity space, in contrast, range differences among the directions
tend to be less notorious because all the features are of the same nature, i.e.
they are all distances to the objects of the reference group, formally called the
representation set. For this reason linear scaling is less crucial. However, other
more complex scaling operations, such as those involving non linear transforma-
tions, can be very useful and lead to improvements in the classification – this
has been suggested also for classical feature spaces [1,4,5,11,17]. For dissimi-
larity spaces, Duin et al. [6] found that the non-linear scaling of given dissim-
ilarities by their power transformation appears to be useful for improving the
nearest neighbor performance in the dissimilarity space. They studied its behav-
ior in terms of classification error and found that raising dissimilarities to powers
less than 1 often contributes to such an improvement. When trying to explain
the phenomenon, they suggested that the benefits derive from the following
three properties: when applying a power transformation with power less than 1,
(i) objects tend to be equally distant from the others, (ii) distances to outliers
are shrunk, and (iii) the neighborhood of each object is enlarged by emphasizing
distances between close objects.

In their study, as well as in the others related to classical feature spaces
cited above [4,5,11,17], the estimation of the proper power parameter repre-
sents a crucial open issue; typically such parameter is set by hand, or found by
an exhaustive search; in [6] it is estimated via the computationally prohibitive
cross validation. In this paper we propose a novel unsupervised criterion which
can guide the selection of the parameter of the power transformation: this crite-
rion tries to find a compromise – as the power parameter approaches to zero –
between the reduction in the dispersion in the data and the increase in the
intrinsic dimensionality of the resulting dissimilarity space (if a too small power
is applied all points are converging around 1). This criterion is unsupervised –
since it does not require labels – and computationally more feasible than cross
validation – since it does not require repeated training of classifiers. A thorough
experimental evaluation on several different datasets shows that by applying
the power transformation with the best parameter according to the proposed
criterion we obtain accuracies which are (i) almost always significantly better
than those obtained in the space without the preprocessing and (ii) many times
equivalent or better than those obtained by the computationally expensive cross
validation procedure.
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The rest of the paper is organized as follows: in Sect. 2 we briefly summarize
the dissimilarity space and the non linear scaling by power transformation; then,
in Sect. 3 we detail the proposed approach; the experimental evaluation is pre-
sented in Sect. 4; finally, in Sect. 5, conclusions are drawn and future perspectives
are envisaged.

2 Background

2.1 The Dissimilarity Space

The vector arrangement of the dissimilarities computed between a particular
object x and other objects from a set R allows representing x as a point in a
vector space. Such a space is called the dissimilarity space, having in principle as
many dimensions as the cardinality of R, which is known as the representation
set. For a set of training objects T , the set R builds a so-called dissimilarity
representation in the form of a dissimilarity matrix D(T ,R). The representation
set is often the same as the training set, so D(T ,R) = D(T , T ). For notation
simplicity, hereafter we simply use D to refer to the square dissimilarity matrix
D(T , T ).

Several studies [7,13] have shown the possibilities of training classifiers in the
dissimilarity space, such that a test object represented in terms of its dissimilari-
ties to R can be classified by a more sophisticated rule than the nearest neighbor
classifier on the given dissimilarities (i.e. template matching, denoted as 1-NN).
The classifier in the dissimilarity space can even be the same nearest neighbor
rule but now based on distances between points in the dissimilarity space; here
we denote that case as 1-NND in order to distinguish it from template matching.

2.2 Non Linear Scaling

Raising all dissimilarities to the same power is a simple and straightforward non
linear scaling. For a dissimilarity matrix D, such a transformation can be written
as follows:

D�ρ = (dρ
ij), ρ > 0 (1)

where each entry, dij = d(xi, xj), of the matrix denotes the dissimilarity between
two objects xi and xj and � denotes the entrywise (Hadamard) power function
[9]. There exists an optimal value for ρ that provides the best 1-NND classifica-
tion performance. Let’s denote it as ρ∗. In most cases, ρ∗ is lower than 1. This
is reasonable, since with ρ < 1 we have a concave function that raises low values
and shrinks high values: for dissimilarities, this may have a good impact on the
representation in the dissimilarity spaces, since it reduces the impact of outliers
(large distances are reduced) and increases the importance of the neighborhood
(small distances are increased).

Therefore, we only consider to search for an estimate ̂ρ∗ in the interval (0, 1].
Below we explain the existing method to estimate ρ∗ by cross validation, followed
in Sect. 3 by the explanation of our proposed estimation via the optimization of
an unsupervised criterion.
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Optimization via Cross Validation. A typical procedure to optimize the
value of a parameter is by searching over the parameter domain for the lowest
cross validation classification error. This strategy was the one used by Duin
et al. [6] for finding the best parameter, which we call in this case ̂ρ∗

cv, as follows:

̂ρ∗
cv = arg min

ρ∈(0,1]

ε1−NND(D�ρ) (2)

where ε1−NND denotes the leave-one-out cross validation error of 1-NND. Even
though experiments in [6] suggested that this optimization permits a good clas-
sification performance, it might become computationally prohibitive for large
datasets. Moreover, such criterion does not permit to understand what is hap-
pening with the non linear scaling, i.e. it does not provide an explanation of the
topological effect of the parameter value in the space.

3 The Proposed Criterion

As introduced before, when applying a power transformation with ρ < 1, we
obtain a two-fold effect on data in the dissimilarity space. First, the dispersion
of the values in each dimension of the space is shrunk (by raising small dis-
tances and reducing large distances); second, the neighborhood of each point is
highly emphasized (raising small distances). This behaviour is becoming more
and more extreme when ρ approaches zero. Clearly, up to some extent these
effects are desirable, in order to reduce the impact of outliers (distances to far
away points are reduced) and to better characterize the neighborhood of each
object (distances to nearby points are raised); however, after a certain point such
positive effects are lost, since all points tend to be equally spaced in the space,
thus loosing all the information contained in the original dissimilarity matrix.
This effect can be monitored by looking at the intrinsic dimensionality of the
data, which increases when points tend to be more equally spaced. Therefore,
using a criterion that optimizes a trade-off between those two effects (reduction
of dispersion and increase of the intrinsic dimensionality) seems a reasonable
way to find ̂ρ∗.

Among the available dispersion measures, the quartile coefficient of dispersion
(qcd) [10, p. 15] is a robust statistical estimator that gives a scale-free measure
of data spread. It is given as:

qcd =
Q3 − Q1

Q3 + Q1
, (3)

where Q3 and Q1 are the third and first quartiles, respectively. In our case, they
are computed as follows: for each column (dimension) of D�ρ, we find the median
of the upper half of the values (which is Q3, also called the 75th percentile) and
the median of the lower half of them (which is Q1, also called the 25th percentile).

Similarly, there are many methods to estimate the intrinsic dimensionality
(id) of a dataset, see for instance the reviews by Camastra [2,3]. We have a
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adopted the one described in [13, p. 313] which directly computes the estimation
from dissimilarity data:

̂id(D) =
⌈

2
(1�D�21)2

n(n − 1)1�D�41 − (1�D�21)2

⌉

(4)

where D�2 = (d2ij), D
�4 = (d4ij) and n is the number of columns (and rows) of

the square matrix D.
Given these definitions, our criterion tries to determine the best parameter

(which we call ̂ρ∗
nlm) by optimizing the compromise between (i) the average –

or, better, its robust estimate, the median – of the dispersion (3) per dimension
and (ii) the intrinsic dimension of (4) computed for the pairwise distances in the
dissimilarity space, that is, for a matrix of Euclidean distances DDS between
pairs of points in the dissimilarity space. The final criterion can be written as:

̂ρ∗
nlm = arg min

ρ∈(0,1]

[

median
1≤i≤n

(qcdi) × ̂id
(

D�ρ
DS

)

]

(5)

Notice that, even though there are several alternatives to define a compromise
between two variables, we have chosen to minimize the product between them.
A multiplicative criterion has also been adopted in other scenarios [8,12] where
the two variables of interest are related in a non-trivial way.

3.1 Inductive and Transductive Versions

The criterion introduced in the previous section is completely unsupervised:
exploiting this property, we investigate its usefulness in two different flavours,
which we called “Version 1” and “Version 2”, respectively:

1. Version 1 ( ̂ρ∗
nlm1): the best parameter is the one optimizing the proposed

criterion on the training set: this represents the classical learning, also known
as inductive inference [16, p. 577], where the criterion is determined by using
only the training objects.

2. Version 2 ( ̂ρ∗
nlm2): the best parameter is the one optimizing the proposed

criterion on the whole dataset, clearly by ignoring the labels. This represents
the so called transductive learning [18] where all the available objects are
used: the training objects, for which we can employ the labels, and the testing
objects, for which labels are unknown. Since the proposed criterion does not
take into account the labels, the transductive learning can be applied.

4 Experimental Results

The proposed approach has been tested using a set of public domain datasets1

(also employed in [6]) – see Table 1. Most of them are derived from real objects
(images, text, protein sequences). The Chickenpieces dataset consists out of 44
1 More information on datasets can be found at http://37steps.com/prdisdata.

http://37steps.com/prdisdata
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Table 1. Datasets employed for empirical evaluation.

Name Objects Classes

(1) Catcortex 65 4

(2) Coildelftdiff 288 4

(3) Coildelftsame 288 4

(4) Coilyork 288 4

(5) Delftgestures 1500 20

(6) Flowcytodis1 612 3

(7) Flowcytodis2 612 3

(8) Flowcytodis3 612 3

(9) Flowcytodis4 612 3

(10) Newsgroups 600 4

(11) Prodom 2604 4

(12) Protein 213 4

(13) Woodyplants50 791 14

(14) Zongker 2000 10

(15) Chickenpieces (44 sets) 446 5

(16) Polydish57 4000 2

(17) Polydism57 4000 2

dissimilarity matrices: in the tables, the average characteristics are shown. In
our empirical evaluation we compared the errors made by the Nearest Neighbor
rule2 (errors of 1-NND) in four different versions of the dissimilarity space:

1. Original: this is unprocessed case (no transformation is applied), i.e. the dis-
similarity space is built using the original dissimilarity matrix D.

2. NL-Cross Val: in this case the dissimilarity space is built starting from D�̂ρ∗
cv ,

i.e. after applying a non linear transformation where the optimal parameter
is chosen by optimizing the LOO error on the training set. As said before,
this represents the criterion proposed in [6].

3. NL-Disp (ver. 1): in this case the dissimilarity space is built starting from
D�̂ρ∗

nlm1 , i.e. after applying non linear transformation with parameter chosen
by optimizing the proposed criterion on the training set.

4. NL-Disp (ver. 2): in this case the dissimilarity space is built starting from
D�̂ρ∗

nlm2 , i.e. after applying a non linear transformation with parameter cho-
sen by optimizing the proposed criterion on the whole dataset (in a transduc-
tive way, see previous section).

2 We restrict ourselves to using a parameterless classifier – the nearest neighbor rule –
because we are interested in judging the potential improvement of the data representa-
tion after the power transformation, independently from the influence of any classifier
parameter.
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Table 2. 1NN-D errors for the different datasets. Between brackets we reported the
standard errors of the mean.

Dataset Original NL-Cross Val NL-Disp (v1) NL-Disp (v2)

Catcortex 0.1067(7e-03) 0.1057(7e-03) 0.1012(6e-03) 0.0981(7e-03)

Coildelftdiff 0.4611(2e-03) 0.4498(2e-03) 0.4575(2e-03) 0.4528(2e-03)

Coildelftsame 0.4181(2e-03) 0.4130(2e-03) 0.4158(2e-03) 0.4102(2e-03)

Coilyork 0.3948(2e-03) 0.3265(2e-03) 0.3532(2e-03) 0.3371(2e-03)

Delftgestures 0.0949(2e-04) 0.0526(2e-04) 0.0599(2e-04) 0.0563(2e-04)

Flowcytodis1 0.3857(9e-04) 0.3797(9e-04) 0.3781(9e-04) 0.3770(9e-04)

Flowcytodis2 0.3827(9e-04) 0.3749(1e-03) 0.3754(9e-04) 0.3730(1e-03)

Flowcytodis3 0.4077(9e-04) 0.3911(9e-04) 0.3890(9e-04) 0.3850(9e-04)

Flowcytodis4 0.4251(9e-04) 0.4127(9e-04) 0.4109(8e-04) 0.4083(9e-04)

Newsgroups 0.2960(9e-04) 0.2915(9e-04) 0.2887(9e-04) 0.2887(9e-04)

Prodom 0.0193(9e-05) 0.0072(6e-05) 0.0065(6e-05) 0.0065(6e-05)

Protein 0.0059(6e-04) 0.0063(7e-04) 0.0062(6e-04) 0.0055(6e-04)

Woodyplants50 0.1617(5e-04) 0.1188(5e-04) 0.1379(5e-04) 0.1292(5e-04)

Zongker 0.0529(1e-04) 0.0408(2e-04) 0.0377(2e-04) 0.0377(2e-04)

Chickenpieces 0.1543(1e-04) 0.1252(1e-04) 0.1307(1e-04) 0.1263(1e-04)

Polydish57 0.0306(5e-05) 0.0166(4e-05) 0.0233(4e-05) 0.0233(4e-05)

Polydism57 0.0153(4e-05) 0.0135(3e-05) 0.0226(5e-05) 0.0226(5e-05)

Errors have been computed using averaged hold out cross validation, i.e. by
using half of the dataset for training (and representation) and the remaining
half for testing. In order to ensure robust estimation of errors, this procedure
has been repeated 200 times, and results are averaged. For criteria 2–4, the best
value has been chosen in the range 1.25−15, 1.25−14.5, 1.25−14, ..., 1 for the expo-
nent. Averaged errors, together with standard errors of the mean, are reported
in Table 2. In order to get a more direct view on the results, we reported in
Table 3 an improvement/degradation table, as resulting from several different
pairwise statistical tests. In particular, we compared errors obtained with the
proposed criterion (NL-Disp in both versions v1 and v2) with those obtained
without transforming the space (Original) and with the parameter chosen via
Cross Validation (NL-Cross Val). As statistical test we employed the paired t-
test, comparing the 200 errors obtained with the 200 repetitions of the cross
validation. In the table, we used five different symbols:

– the symbols “↑” and “↑↑” indicate a statistically significant improvement
(results with our criterion are better): the former indicates that the test passed
with a p-value less than 0.05 but greater than 0.001, whereas in the latter case
the p-value was less than 0.001;
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Table 3. Pairwise statistical comparisons: “↑” indicates a statistically significant
improvement (results with our criterion are better), “↓” a statistically significant degra-
dation (results with our criterion are worst), whereas “≈” indicates that the two meth-
ods are equivalent (i.e. there is no statistically significant difference).

Dataset NL-Disp (v1)
vs
Original

NL-Disp (v2)
vs
Original

NL-Disp (v1)
vs
NL-Cross Val

NL-Disp (v2)
vs
NL-Cross Val

Catcortex ↑ ↑↑ ↑ ↑↑
Coildelftdiff ↑↑ ↑↑ ↓↓ ≈
Coildelftsame ↑ ↑↑ ↓ ↑
Coilyork ↑↑ ↑↑ ↓↓ ↓↓
Delftgestures ↑↑ ↑↑ ↓↓ ↓↓
Flowcytodis1 ↑↑ ↑↑ ≈ ↑
Flowcytodis2 ↑↑ ↑↑ ≈ ≈
Flowcytodis3 ↑↑ ↑↑ ≈ ↑↑
Flowcytodis4 ↑↑ ↑↑ ≈ ↑↑
Newsgroups ↑↑ ↑↑ ↑ ↑
Prodom ↑↑ ↑↑ ↑↑ ↑↑
Protein ≈ ≈ ≈ ≈
Woodyplants50 ↑↑ ↑↑ ↓↓ ↓↓
Zongker ↑↑ ↑↑ ↑↑ ↑↑
Chickenpieces ↑↑ ↑↑ ↓↓ ↓↓
Polydish57 ↑↑ ↑↑ ↓↓ ↓↓
Polydism57 ↓↓ ↓↓ ↓↓ ↓↓

– “↓” and “↓↓” indicate a statistically significant degradation (results with our
criterion are worst); also in this case the former indicates that the test passed
with a p-value less than 0.05 but greater than 0.001, whereas in the latter case
the p-value was less than 0.001;

– “≈” indicates that the two methods are equivalent (i.e. there is no statistically
significant difference).

From the table different observations can be derived. First, as expected, the
transductive version (version 2) of our criterion is almost always slightly bet-
ter than version 1; this interesting result is possible thanks to the unsupervised
nature of the proposed criterion. Reasonably, this does not hold if the dataset is
large enough (as for Zongker, Polydish57 and Polydism57). Second, non linearly
preprocessing the dissimilarity matrix by choosing the parameter with our crite-
rion almost always results in a statistically significant improvement in the clas-
sification performances with respect to the original space. The only exceptions
are for the protein and the Polydism57 datasets, for which, however, an almost
zero error was already achieved in the original space, leaving small room for
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improvements. This is coherently true for both version 1 and version 2. Finally,
the proposed criterion also compares reasonably well with the cross validation
approach: if we consider the version 2, in 11 cases out of 17 our results are
better or equivalent (in 8 cases they are significantly better), whereas only in 6
cases they are worst. In these latter cases, however, degradations are very small:
≈0.01 for CoilYork, WoodyPlants50, Polydism57 and Polydish57, ≈0.004 for
DelftGestures, and ≈0.001 for ChickenPieces. We are convinced that these rep-
resent really promising results, also considering that our criterion is completely
unsupervised.

5 Conclusions

In this paper a novel unsupervised criterion to tune the parameter of the power
transformation (non-linear scaling) of dissimilarities has been proposed. The new
tuning criterion is based on a trade-off between the median dispersion per dimen-
sion in the dissimilarity space (measured in terms of the quartile coefficient of
dispersion) and the intrinsic dimension of the resulting dissimilarity space. The
idea behind our approach is that a good performance of the nearest neighbor clas-
sifier in the dissimilarity space is associated to such a compromise between how
much we shrink the data at the cost of increasing the intrinsic dimensionality – the
shrinking is desirable because, by reducing the range, we can potentially reduce
the influence of the outliers since we are largely reducing high distances (i.e. the
distances to – possible – outliers) more than reducing short distances.

The proposed criterion is unsupervised and, therefore, can be even applied
in a transductive learning setting. Empirical results on many different datasets
partially support our intuitions. As a future work, we would like to study the
properties of the proposed criterion also in classical feature based problems [4,5,
11,17]. Moreover, we aim at providing a more formal – theoretical or numerical
– explanation: one possibility is to try to bridge our experimental evidence with
the theory on Hadamard powers [9].
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