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Abstract. Multiple Structure Recovery (MSR) represents an important
and challenging problem in the field of Computer Vision and Pattern
Recognition. Recent approaches to MSR advocate the use of cluster-
ing techniques. In this paper we propose an alternative method which
investigates the usage of biclustering in MSR scenario. The main idea
behind the use of biclustering approaches to MSR is to isolate subsets of
points that behave “coherently” in a subset of models/structures. Specifi-
cally, we adopt a recent generative biclustering algorithm and we test the
approach on a widely accepted MSR benchmark. The results show that
biclustering techniques favorably compares with state-of-the-art cluster-
ing methods.

1 Introduction

The extraction of multiple models from noisy or outlier-contaminated data –
a.k.a. Multiple Structure Recovery (MSR) – is an important and challenging
problem that emerges in many Computer Vision applications [7,10,31]. With
respect to single-model estimation in presence of noise and outliers, MRS aims
at facing the so called pseudo-outliers (i.e. “outliers to the structure of interest
but inliers to a different structure” [27]), which push robust estimation to its
limit. If, in addition, the number of structures is not known in advance, MSR
turns into a thorny model-selection problem, as one have to pick, among all the
possible interpretations of the data, the most appropriate one.

In the literature, the problem of MSR has been successfully tackled by lever-
aging on clustering techniques [13,18,19,25]. Generally, the data matrix to ana-
lyze reports the points to cluster on one dimension and the features/descriptors
on the other dimension [1]. Clustering approaches group the rows (or the
columns) of a given data matrix on the basis of a similarity criterion. For exam-
ple in these recent approaches J-linkage[30], T-linkage [18] and RPA [19]. The
feature vector used to represent data is derived form the preferences expressed
by the data points for a pool of tentative structures obtained by random sam-
pling. Hence cluster analysis is performed via either agglomerative or partitional
methods where distances measure the (dis)agreement between preferences.

Although it has been shown that clustering provides good solution to the
MSR problem, there are situations where the performances of clustering can
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be highly compromised by data matrix structure (e.g. noisy data matrices; or
rows behaving similarly only in a small portion of the data matrix). Retrieving
information in scenarios where clustering struggles can be done through a recent
class of approaches called biclustering.
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Fig. 1. Example of overlapping biclusters on Multiple Structure Recovery. In this case
the possible biclusters are the: b1) the points lying on m1, b2) the points lying on m2

and b3) the points lying on the intersections.

With the term bi-clustering we refer to a specific category of algorithms
performing clustering on both rows and columns of a given data matrix [17].
The goal of biclustering is to isolate sub-matrices where the rows present a
“coherent behavior” in a restricted columns subset, and vice-versa. Compared
with clustering, biclustering exploits local information to retrieve structures that
cannot be found performing analysis on whole rows or columns. The problem
of biclustering (also known as co-clustering, and strongly related to subspace
clustering) is gaining increasing attention in the Pattern Recognition community,
with many papers being published in recent years (e.g. [4,8,11,22]). Even if it
was originally proposed in biological scenarios (i.e. analysis of gene expression
microarray datasets [2,17,20]), biclustering has been widely adopted in many
other contexts ranging from market segmentation to data mining [6,14,21].

This paper is positioned exactly in this context, investigating the performance
of biclustering on MSR. The main advantage of using biclustering on MSR is that
biclustering can isolate portions of the data matrix where a subset of points share
similar attitudes in a subset of models. Compared to clustering, biclustering
retrieves additional information on which models better describes a particular
subset of points. Moreover, biclustering provides better understanding of the
data since different biclusters can overlap (on rows, columns or both). This
means that a certain point can belong to different biclusters and hence it can
be characterized by distinct subsets of models (see Fig. 1 for an example). Thus
biclustering approaches can easily deal with intersections, which is a known
problematic situation when using clustering algorithms [28].

To the best of our knowledge there exists only a preliminar work applying
biclustering techniques to MSR [28]. In [28] authors show that the application
of biclustering techniques to MSR is promising and provides superior solution
when compared with clustering. While this provides a significant contribution
to the state of the art, there is large room for improvements since the method
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adopted by the authors has some limitations (i.e. it works with sparse binary
matrices and it needs some pre-processing/post-processing operations to retrieve
the final solutions).

In this paper we investigate the use of a recent probabilistic biclustering
approach, namely Factor Analysis for BIcluster Acquisition (FABIA) [12] for
MSR. We choose this algorithm because it has been shown to perform better
than the state of the art in the Microarray Gene Expression analysis, a widely
exploited scenario to test biclustering algorithms [12,17].

We evaluate the performances of probabilistic biclustering on a real bench-
mark dataset (Adelaide dataset) and we compare against the recent clustering
algorithms adopted for MSR. Results confirm that biclustering favorably com-
pares with the state-of-the-art.

The reminder of the paper is organized as follows: Sect. 2 provides a brief
review of MSR and the clustering methods we compare to. Section 3 formal-
izes the biclustering problem and the algorithm we adopt. Section 4 presents
and discusses the experimental evaluation. Finally, some concluding remarks are
presented in Sect. 5

2 Background and Related Work

This section provides background knowledge about the proposed framework. It
formalizes the MSR problem and the clustering approaches currently adopted.

2.1 Multiple Structure Recovery

MSR aims at retrieving parametric models from unstructured data in order to
organize and aggregate visual content in significant higher-level geometric struc-
tures. This task is commonly found in many Computer Vision applications, a typ-
ical example being 3D reconstruction, where MSR is employed either to estimate
multiple rigid moving objects (to initialize multibody Structure from Motion
[7,23]), or to produce intermediate geometric interpretations of reconstructed
3D point cloud [10,31]. Other instances include face clustering, body-pose esti-
mation and video motion segmentation. In all these scenarios the information
of interest can be extracted from the observed data and aggregated in suitable
structures by estimating some underlying geometric models, e.g. planar patches,
homographies, fundamental matrices or linear subspaces.

More formally, to set a general context, let µ be a model e.g. lines, sub-
space, homography, fundamental matrices or other geometric primitives and
X = {x1, . . . , xn} be a finite set of n points, possibly corrupted by noise and
outlier. The problem of MSR consists in extracting k instances of µ termed
structures from the data, defining, at the same time, subsets Ci ⊂ X, i = 1, . . .,
such that all points described by the i-th structures are aggregated in Ci. Often
the models considered are parametric, i.e. the structures can be represented as
vectors in a proper parameter space.
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2.2 Clustering

The extensive landscape of approaches aimed at MSR can be broadly catego-
rized along two mutually orthogonal strategies, namely consensus analysis and
preference analysis. Focusing on preference analysis, these methods reverse the
role of data and models: rather than considering models and examining which
points match them, the residuals of individual data points are taken into account
[3,29,32]. This information is exploited to shift the MSR problem from the ambi-
ent space where data lives to a conceptual [24] one where it is addressed via
cluster analysis techniques.

T-Linkage [18] and RPA [19] can be ascribed to these clustering-based meth-
ods as they share the same first-represent-then-clusterize approach. Both the
algorithms represent data points in a m-dimensional unitary cube as vectors
whose components collect the preferences granted to a set of m hypotheses
structures instantiated by drawing at random m minimal sample sets – the
minimum-sized set of data points necessary to estimate a structure. Preferences
are expressed with a soft vote in [0, 1] according to the continuum of residuals in
two different fashions. As regards T-linkage, a voting function characterized by
an hard cutoff is employed. RPA, instead, exploits the Cauchy weighting func-
tion (of the type employed in M-estimators) that has an infinite rejection point
mitigating the sensitivity of the inlier threshold.

The rationale beyond both these representations is that the agreement
between the preferences of two points in this conceptual space reveals the multi-
ple structures hidden in the data: points sharing the same preferences are likely
to belong to the same structures.

T-Linkage captures this notion through the Tanimoto distance, which in turn
is used to segment the data via a tailored version of average linkage that succeeds
in detecting automatically the number of models. If rogue points contaminate the
data, outlier structures need to be pruned via ad hoc-post processing techniques.

RPA, on the contrary, requires the number of desired structures as input
but inherently caters for gross contamination. At first a kernelized version of
the Tanimoto distances is feed to Robust Principal Analysis to remove outlying
preferences. Then Symmetric Non Negative Factorization [15] is performed on
the low rank part of the kernel to segment the data. Hence, the attained partition
is refined in a MSAC framework. More precisely, the consensus of the sampled
hypotheses are scrutinized and the structures that, within each segment, support
more points are retained as solutions.

While T-linkage can be considered as a pure preference method, RPA
attempts to combine also the consensus-side of the MSR problem. However
it does not fully reap the benefit of working with both the dimensions of the
problem, as biclustering does, for preference and consensus are considered only
sequentially.

All these methods can be regarded as processing the Preference Matrix, where
each entry (i, j) represents the vote granted by the i-th point to the j-th tentative
structures. Rows of that matrix provides the representation of points that are
used to derive the affinity matrices for clustering. Column of that matrix are the
consensus set of a model hypothesis.
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Problem
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Preference Matrix - P
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

x1 1 1 1 0 1 1 1 0 0 0 0 0 0
x2 1 1 1 0 0 0 0 1 1 1 0 0 0
x3 1 1 1 1 0 0 0 0 0 0 1 1 1
x4 0 0 0 1 0 0 0 0 0 0 0 0 0

d(x2, x3) = H amming(x2, x3) = 7

d(x3, x4) = H amming(x3, x4) = 6

Fig. 2. Shortfalls of clustering on MRS.

An example where clustering struggles is provided in Fig. 2, which describes a
simple MSR problem: to group similar points on the basis of their behavior with
respect to the proposed models we should perform clustering on the Preference
Matrix P which describes the relationship between the points {x1, x2, x3, x4} and
the models {m1, · · · ,m13}. Assume we perform clustering adopting the Ham-
ming distance (i.e. number of different bits): since the distance between the x3

and the x4 is smaller than the distance between x3 and x2, clustering would
assign the third and the fourth point to the same group. However looking at the
problem diagram it is clear that points x1, x2 and x3 should belong to the same
cluster. This information can be retrieved performing a simultaneous clustering
of both rows and columns of the Preference Matrix, isolating a subset of models
(m1,m2 and m3) where the points x1, x2, x3 share a similar behavior (shaded
area in Fig. 2). This is exactly what biclustering techniques do.

Next section provides a more formal definition of the biclustering prob-
lem, focusing on the approach adopted to analyze the Preference Matrix
(FABIA [12]).

3 Biclustering

As mentioned in Sects. 1 and 2.2 the goal of biclustering applied to MSR is the
simultaneous clustering of points and structures/models of a given Preference
Matrix, merging the well known concepts of consensus analysis and preference
analysis. Due to the similarity of RPA (where the kernelized matrix is factorized
in order to obtain point clusters) we present biclustering from a sparse low-
rank matrix factorization perspective, also the most suitable to understand the
insights behind the FABIA algorithm [12].

We denote as D ∈ R
n×m the given data matrix, and let R = {1, . . . , n} and

C = {1, . . . ,m} be the set of row and column indices. We adopt DTK , where
T ⊆ R and K ⊆ C, to represent the submatrix with the subset of rows in T and
the subset of columns in K. Given this notation, we can define a bicluster as a
submatrix DTK , such that the subset of rows of D with indices in T exhibits a
“coherent behavior” (in some sense) across the set of columns with indices in K,
and vice versa. The choice of coherence criterion defines the type of biclusters to
be retrieved (for a comprehensive survey of biclustering criteria, see [8,17,22]).

A possible coherence criterion for a bicluster (sub-matrix) is for the corre-
sponding entries to have a similar value, significantly different from the other
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entries of the matrix. For example, a data matrix containing one bicluster with
rows T = {1, 2, 3, 4} and columns K = {1, 2} may look like

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 10 0 0
10 10 0 0
10 10 0 0
10 10 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, v =

⎡
⎢⎢⎢⎢⎢⎢⎣

5
5
5
5
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, z =

⎡
⎢⎢⎣
2
2
0
0

⎤
⎥⎥⎦ .

From an algebraic point of view, this matrix can be represented by the outer
product D = vzT of the sparse vectors v and z. We call these vectors prototypes
(for v) and factors (for z). Generalizing to k biclusters, we can formulate the
biclustering problem as the decomposition of the given data matrix D as the
sum of k outer products,

D =
k∑

i=1

viz
T
i = V Z, (1)

where V = [v1, . . . , vk] ∈ R
n×k and Z = [z1, . . . , zk]T ∈ R

k×m.
The connection between biclustering and sparse low-rank matrix factoriza-

tion can be highlighted by observing that the factorization of the original data
matrix shows that it has rank no larger than the number of biclusters (usually
much lower than the number of rows or columns). Moreover, if the size of the
matrix D is much bigger than the bicluster size (as it is typically the case in
many applications), the resulting prototype and factor vectors should be com-
posed mostly by zeros (i.e., the prototypes and factors should be sparse).

3.1 FABIA

In the biclustering literature, there are several proposals of biclustering methods
through matrix factorization (e.g., [16,33]); however, to the best of our knowl-
edge, the only probabilistic approach is FABIA.

FABIA is a generative model for biclustering based on factor analysis [12].
The model proposes to decompose the data matrix by adding noise to the strict
low rank decomposition in (1),

D =
k∑

i=1

viz
T
i + Y = V Z + Y, (2)

where matrix Y ∈ R
n×m accounts for random noise or perturbations, assumed

to be zero-mean Gaussian with a diagonal covariance matrix. As explained above
(Sect. 3) the prototypes in V and factors in Z should be sparse. To induce spar-
sity, FABIA uses two types of priors: (i) an independent Laplacian prior, and
(ii) a prior distribution that is non-zero only in region where prototypes are
sparse (for further details, see [12]). The model parameters are estimated using
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a variational EM algorithm [9,12], for all the details about FABIA derivation
and implementation1, please refer to [12].

4 Experimental Evaluation

This section provides the performances comparison between some clustering
methods recently applied to MSR [18,19,25] and the probabilistic biclustering
approach presented in Sect. 3.1. The comparison with [28] was not possible since
the code is not available. The workflow of the overall procedure can be sketched
as follows: starting from an image (i) we generate the hypothesis and compute
the Preference Matrix following the guidelines in [19]; (ii) then the probabilistic
biclustering technique have been applied.

To assess the quality of the approaches we used the widely adopted Adelaide
real benchmark dataset2. Moreover we conduct a reproducibility analysis, since
it is known that RPA algorithm can produce very different solutions due to the
random initialization required by the Symmetric NNMF step.

4.1 Adelaide Dataset

We explored the performances of probabilistic biclustering on two type of exper-
iments, namely motion and plane estimation. In motion segmentation experi-
ments, we were provided with two different images of the same scene composed
by several objects moving independently; the aim was to recover fundamental
matrices to subsets of point matches that undergo the same motion. With respect
to the plane segmentation scenario, given two uncalibrated views of a scene, the
goal was to retrieve the multi-planar structures by fitting homographies to point
correspondences. The AdelaideRMF dataset is composed of 38 image pairs (19
for motion segmentation and 19 for plane segmentation) with matching points
contaminated by gross outliers. The ground-truth segmentations are also avail-
able. In order to assess the quality of the results, we adopted the misclassification
errors, that counts the number of wrong point assignment according to the map
between ground-truth labels and estimated ones that minimize the overall num-
ber of misclassified points (as in [26]). For fair comparison, the Preference Matrix
fed to FABIA was generated relying on the guided sampling scheme presented
in [19].

FABIA parameters which regulate the factors/prototypes sparsity and the
threshold to retrieve biclusters memberships have been varied in the range sug-
gested by the authors in [12]. The best results on the whole Adelaide dataset
(motion and plane estimation) are reported in Table 1. The performances of other
methods are taken from [19]; results show that FABIA provides higher quality
solutions on the motion segmentation dataset, and on average it performs better
on the planar segmentation. Focusing on the motion segmentation dataset, there
1 Code available from http://www.bioinf.jku.at/software/fabia/fabia.html.
2 The dataset can be downloaded from https://cs.adelaide.edu.au/∼hwong/doku.php?

id=data.

http://www.bioinf.jku.at/software/fabia/fabia.html
https://cs.adelaide.edu.au/~hwong/doku.php?id=data
https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Table 1. Misclassification error (ME %) for motion segmentation (left) and planar
segmentation (right). k is the number of models and % out is the percentage of outliers.

k %out T-lnkg RCMSA RPA FABIA

biscuitbookbox 3 37.21 3.10 16.92 3.88 3.86
breadcartoychips 4 35.20 14.29 25.69 7.50 4.22
breadcubechips 3 35.22 3.48 8.12 5.07 0.87
breadtoycar 3 34.15 9.15 18.29 7.52 0.60
carchipscube 3 36.59 4.27 18.90 6.50 1.52
cubebreadtoychips 4 28.03 9.24 13.27 4.99 1.07
dinobooks 3 44.54 20.94 23.50 15.14 9.72
toycubecar 3 36.36 15.66 13.81 9.43 9.50
biscuit 1 57.68 16.93 14.00 1.15 0
biscuitbook 2 47.51 3.23 8.41 3.23 1.32
boardgame 1 42.48 21.43 19.80 11.65 8.96
book 1 44.32 3.24 4.32 2.88 0
breadcube 2 32.19 19.31 9.87 4.58 19.42
breadtoy 2 37.41 5.40 3.96 2.76 19.62
cube 1 69.49 7.80 8.14 3.28 1.66
cubetoy 2 41.42 3.77 5.86 4.04 2.21
game 1 73.48 1.30 5.07 3.62 0
gamebiscuit 2 51.54 9.26 9.37 2.57 2.44
cubechips 2 51.62 6.14 7.70 4.57 0.53

mean 9.36 12.37 5.49 4.61
median 7.80 9.87 4.57 1.66

k %out T-lnkg RCMSA RPA FABIA

unionhouse 5 18.78 48.99 2.64 10.87 21.54
bonython 1 75.13 11.92 17.79 15.89 6.82
physics 1 46.60 29.13 48.87 0.00 0.00
elderhalla 2 60.75 10.75 29.28 0.93 3.04
ladysymon 2 33.48 24.67 39.50 24.67 11.81
library 2 56.13 24.53 40.72 31.29 20.47
nese 2 30.29 7.05 46.34 0.83 4.92
sene 2 44.49 7.63 20.20 0.42 2.20
napiera 2 64.73 28.08 31.16 9.25 21.85
hartley 2 62.22 21.90 37.78 17.78 23.59
oldclassicswing 2 32.23 20.66 21.30 25.25 7.92
barrsmith 2 69.79 49.79 20.14 36.31 29.88
neem 3 37.83 25.65 41.45 19.86 11.20
elderhallb 3 49.80 31.02 35.78 17.82 18.63
napierb 3 37.13 13.50 29.40 31.22 36.68
johnsona 4 21.25 34.28 36.73 10.76 17.96
johnsonb 7 12.02 24.04 16.46 26.76 24.50
unihouse 5 18.78 33.13 2.56 5.21 15.76
bonhall 6 6.43 21.84 19.69 41.67 24.02

mean 24.66 28.30 17.20 15.94
median 23.38 29.40 17.53 17.96

are only three situations where FABIA works worse than clustering approaches.
A possible explanation on why FABIA struggles could be because general biclus-
tering approaches are tested in scenarios where the number of biclusters is much
higher than in MSR (i.e. ∼100 in Gene Expression analysis versus 3–7 in this
dataset). To overcome this behavior we run FABIA increasing the number of
biclusters to retrieve and aggregating the results on the basis of column overlap
as done in [5], this leads to an improvement of the solution quality; results are
reported in Table 2.

Table 2. Increasing the number of biclusters improve the results obtained by FABIA
on the motion segmentation dataset.

biscuitbookbox k = 3 3.86

k = 4 1.35

breadcube k = 2 19.42

k = 4 11.36

breadtoy k = 2 19.62

k = 4 1.22

4.2 Reproducibility

In this section we assess the reproducibility of the two methods that better per-
form on the Adelaide dataset: RPA and FABIA. The goal is to demonstrate that
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probabilistic approaches can overcome the problem of reproducibility present in
RPA. For a fair comparison we adopted the 2R3RTCRT video sequence from
the Hopkins dataset3: a dataset where both the approaches retrieve good and
similar solutions.

Hopkins dataset is a motion segmentation benchmark where the input data
consists in a set of features trajectories across a video taken by a moving camera,
and the problem consist in recovering the different rigid-body motions contained
in the dynamic scene. Motion segmentation can be seen as a subspace cluster-
ing problem under the modeling assumption of affine cameras. In fact, under
the assumption of affine projection, it is simple to demonstrate that all feature
trajectories associated with a single moving object lie in a linear subspace of
dimension at most 4 in R

2F (where F is the number of video frames). Feature
trajectories of a dynamic scene containing k rigid motion lie in the union of k
low dimensional subspace of R2F and segmentation can be reduced to clustering
data points in a union of subspaces.

To test the reproducibility of RPA and FABIA we run the algorithms on the
same Preference Matrix hundred times, and for each trial we assess the misclas-
sification error; the results are reported in Fig. 3. The figure shows the result
obtained by the approaches in each iteration and its distance from the average
results. Results clearly show that while the two approaches are compatible on
average, FABIA retrieves the same solution in each iteration while RPA is much
less stable.

Fig. 3. Reproducibility. The methods have been run 100 times on the same Preference
Matrix. Plots show the misclassification error in of each trials along with the distance
from the mean (RPA mean = 1.93 %, FABIA mean = 1.95 %).

5 Conclusion and Discussion

In this paper we present an alternative to clustering for the problem of Multiple
Structure Recovery (MSR), namely biclustering. In general, biclustering tech-
niques allow to retrieve superior and more accurate information than clustering
3 The dataset can be downloaded at http://www.vision.jhu.edu/data/hopkins155/.

http://www.vision.jhu.edu/data/hopkins155/
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approaches, characterizing each cluster of points with the subset of features that
better describes them. The goal of biclustering approaches applied to MSR is
isolate submatrices inside the Preference Matrix where a subset of points behave
“coherently” in a subset of models/structures. We tested the recent probabilistic
biclustering approach FABIA on the Adelaide benchmark dataset, proving that
it favorably compares with the state of the art. Moreover we tested the repro-
ducibility of the analyzed methods showing that FABIA is much more stable
than the second competitor RPA.
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