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Abstract—In this paper we show that weighted K-Nearest
Neighbor, a variation of the classic K-Nearest Neighbor, can be
reinterpreted from a classifier combining perspective, specifically
as a fixed combiner rule, the sum rule. Subsequently, we
experimentally demonstrate that it can be rather beneficial to
consider other combining schemes as well. In particular, we focus
on trained combiners and illustrate the positive effect these can
have on classification performance.

I. I NTRODUCTION

The K-nearest neighbor (KNN) rule is a widely used and
easy to implement classification rule. It assigns a pointx to
the class most present among theK points in the training
set nearest tox [1], [2], [3], [4]. Deciding which points are
nearest is done according to some prespecified distance. In
this procedure, all points within the neighborhood contribute
equally to the final decision forx. It seems obvious, therefore,
to allow for weighted voting (of some sort) in order to improve
performance. Royall was probably the first to seriously con-
sider this option [5]: he demonstrated that improvements are
indeed possible in the regression setting under squared loss.

In the classification setting, Dudani [6] was the first to
introduce a specific distance-weighted KNN rule and provided
empirical evidence of its admissibility. He discussed some
alternatives to define the weights, all with weights dropping
in terms of the distance tox – with a weight of 1 for the first
nearest neighbor and a weight of 0 for theKth. Given the
weights, each neighbor ofx contributes to the final decision
with its own weight: in particular, the Weighted K-Nearest-
Neighbor (WKNN) rule assignsx to that class for which the
weights of the representatives among theK nearest neighbors
sum to the greatest value [6] (see. Fig. (1)).

The weighting scheme introduced by Dudani [6], even when
weights are cleverly chosen, is not necessarily helpful as,
for instance, demonstrated in [7]. The paper showed that,
asymptotically, unweighted KNN is to be preferred over any
weighted version in case we fix K. However, when dealing
with the realistic setting of finite samples, improvements are
possible (see [8] for instance). Clearly, whether weighting can
help also depends on what we consider as improvement [5],
[8], [9]. Though weighted KNN rules are used in various
applications, little conceptual, theoretical, or methodological
advances have been made in the past decades. Two recent
additions to this literature include [10] and [11]. In [10],a so-
called dual distance function is considered, which turns out
to be less sensitive to the choice ofK and supposedly avoids
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Fig. 1: Example of (a) K-Nearest Neighbor and (b) Weighted
K-Nearest Neighbor (K = 3). With KNN, every neighbor
counts in the same way for the final decision: in the case
shown in figure, the cross is assigned to the circle class, the
most frequent class in the neighborhood. On the contrary, with
Weighted KNN every neighbor has associated a weight; in the
final decision, each neighbor counts with its own weight: in
the example, since the sum of the weights of the neighbors
from the square class is larger than that of the neighbors of
the circle class, the cross is assigned to the square class.

degradation of the classification accuracy in the small sample
case and when dealing with outliers. In [11], the authors
derive an asymptotically optimal way of defining nonnegative
weights to be used within the WKNN scheme.

In this work, we reinterpret the Weighted KNN (and the
KNN) from a classifier combining perspective [12]: we show
that KNN can be seen as a plainmajority votingscheme and,
generally, the weighted KNN as afixed combiner rule(the sum
rule). This view opens the door to the use of other classifier
combiners and we show that it can indeed be quite beneficial to
consider alternative and more advanced schemes. In particular,
here we focus on trained combining schemes [13], [14], for
which with our experiments demonstrate potentially significant
improvements in classification performances over the original
KNN weighting scheme by Dudani [6].

A. Outline

Section II introduces the necessary background on KNN,
its weighted variant, and classifier combiners, while fixing
notation. Section III offers our interpretation of KNN as a
combining scheme and sketches how various combiners could
be integrated using the terminology of matching scores. The
next section, Section IV, describes the experiments that were
carried out with our revisited KNN using a trained combiner.It



also reports on the results and discusses them. Finally, Section
V concludes.

II. PRELIMINARIES AND ADDITIONAL BACKGROUND

In this section we introduce the necessary background on
KNN, the WKNN, and the theory of classifier combiners,
while fixing notation.

A. K-Nearest Neighbor

Let us start with some definitions:

• x: the pattern to be classified;
• {xi} (with 1 ≤ i ≤ N ): the set ofN points in the training

set; each training pattern is equipped with a label{yi}
(with 1 ≤ i ≤ N ). The labelyi can be one of the possible
values1 . . . C, whereC is the number of classes of the
problem at hand

• neK(x) = {n1, ..., nK}: theK points in the training set
which are nearest tox according to a certain distance
d(·, ·); yn1

, ...ynK
are the corresponding labels; please

note that we consider{n1, ..., nK} as ordered according
to the distance fromx — n1 is the nearest neighbor,nK

is the farthest of theK nearest neighbors.

Given these definitions, the standard KNN rule assignsx to
the clasŝc more frequent in the setneK(x), i.e.

x←− argmax
c
|{ni : yni

= c}| (1)

where|X| denotes the cardinality of the setX. Rule (1) can
be rewritten as

x←− argmax
c

[

K
∑

i=1

Ic(ni)

]

(2)

whereIc(z) is the indicator function for class c

Ic(z) =

{

1 if z belongs to classc
0 otherwise

(3)

The summation in (2), for a givenc, simply counts the number
of points in the neighborhoodneK(x) belonging to classc.

B. Weighted K-Nearest Neighbor

Within the Weighted K-Nearest Neighbor rule [6], each
neighborni ∈ neK(x) is equipped with a weightwni

, which
can be computed using for example the methods presented
in [6], [11]. Note that in the general setting, we may have a
different set of weights for every point to be classified: when
changing the pointx to be classified, also the neighborhood
neK(x) changes and therefore the corresponding weights, as
they typically depend directly on the relation between the
neighbors and the pointx. This is clear, for instance, when
considering the definition of weights introduced in Equation
(2) of [6]:

wni
=

1

d(x, ni)
(4)

With this definition, the weight of a given training example
is different when changing the pointx to be classified – it
depends on the distance from suchx: the more distant to the

neighbor, the lower its weight/importance in the classification
of x. This definition of weights takes inspiration from ideas
typical of the Parzen Windows estimator [15].

Given neighbors and weights, the Weighted K-nearest
neighbor rule assignsx to the clasŝc for which the weights
of its representatives in the neighborhoodne(x) sum to the
greatest value. Following the notation of Equation (2),

x←− argmax
c

[

K
∑

i=1

Ic(ni)wni

]

(5)

Clearly, the KNN and the Weighted KNN rules are equivalent
when K=1.

C. Classifier Combining

The main idea behind the Classifier Combining theory [16],
[12] is that it is possible to improve the classification accuracy
by exploiting the diversity present in different pattern recogni-
tion systems. Such diversity can derive from the employment
of different sensors, different features, different training sets,
different classifiers or others [12]. In particular, here wefocus
on the following scenario: we have a set ofM different
classifiers (experts)E1, ...EM . Given a classification problem
involving C classes, and a patternx to be classified, every
classifierEℓ returns a set of valuesEℓ(x):

Eℓ(x) = [eℓ1(x), eℓ2(x), · · · , eℓC(x)]

whereeℓc(x) can be a posterior of the classc —i.e eℓc(x) =
P (c|x)— or simply amatching score, i.e. a number indicating
how likely is that the class ofx is c (called confidencesin
[12]). A given classifier (expert)Eℓ takes a decision onx
with the following rule

x←− argmax
c

eℓc(x) (6)

Given a pool ofM classifiers, the goal is to combine the values
present in the following matrix

E(x) =











e11(x) e12(x) · · · e1C(x)
e21(x) e22(x) · · · e2C(x)

...
...

. ..
...

eM1(x) eM2(x) · · · eMC(x)











to reach a classification that is potentially better than those of
the single classifiers. Many methods have been proposed in
the past to address this problem ([16], [12], [17], [18], just to
cite a few), which are based on different ideas, intuitions,or
hypotheses. Here we summarize the following three classes of
approaches, which will become useful in the remainder of this
work.

1) Combination of decisions:In this case, each expertEℓ

takes its own decision; the final classification is then obtained
by combining such decisions. One relevant example is the
majority voting rule, where the final decision is taken by
looking at the class which received themajority of votes. More
formally,

x←− argmax
c

M
∑

ℓ=1

∆ℓc(x) (7)



where

∆ℓc(x) =

{

1 if eℓc(x) = max
j

eℓj(x)

0 otherwise
(8)

In other words∆ℓc(x) is 1 only if the classifierEℓ assignsx
to the classc.

2) Fixed combination of matching scores:In this case, for
a given classc, the matching scoreseℓc(x) of the different
classifiers (with1 ≤ ℓ ≤ M ) are combined together, in order
to return an unique matching score for the considered classc.
The combination of these scores followsfixed rules, such as
the sum or the product of them, the max or the min among
them, the linear combination of them, and similar [12]. The
final decision is finally taken by looking at these aggregated
matching scores. For example, with theSum Rule, a patternx
is classified with the following rule:

x←− argmax
c

[

M
∑

ℓ=1

eℓc(x)

]

(9)

whereas with theProd Rulewe have

x←− argmax
c

[

M
∏

ℓ=1

eℓc(x)

]

(10)

3) Trained Combiners:This represents a more advanced
scheme [13], [14], in which the idea is to directly use the
scores derived in the matrixE(x) as new featuresfor the
patternx: in this way a classifier is learned on the ouputs
of other classifiers, following what is sometimes referred to
as stacked combination [19]. In more detail, a patternx is
described withvec(E(x)), where the so-calledvec(·) operator
(vectorization) takes a matrix argument and returns a vector
with the matrix elements stacked column by column. In the
training phase, the vectorizedE(xi) matrix is computed for
all objectsxi of the training set, resulting in a novel training
set, which is used to train a classifierf . In the testing phase,
the testing objectx is firstly encoded withvec(E(x)) and then
classified using the classifierf .

III. T HE WEIGHTED KNN RULE REVISITED

In this section we propose an interpretation of the WKNN
rule (and the KNN rule) from a combining classifier perspec-
tive. The main idea behind our interpretation is the following:
in the (W)KNN the final decision onx is obtained by
combining information provided by theK nearest neighbors
neK(x) = n1, · · ·nK of x. Therefore it seems reasonable
to consider theseK points asK different experts/classifiers,
which provide information to be combined for reaching the
final decision. Let us clarify our vision by firstly considering
the KNN: we will show how to build theE(x) matrix, and
which combination rule should be used to get exactly the KNN
rule.

As said before, we haveK experts/classifiers, which we
indicate asEn1

, · · ·EnK
, each one related to one specific

neighbornℓ. In the KNN case, the elements of the matrix
EKNN (x) are defined,∀ℓ ∈ {1..K} andc ∈ {1..C}, as:

enℓc(x) =

{

a if ynℓ
= c

0 otherwise
(11)

with a a fixed positive number1 (it can also be 1). For example,
if K = 3, C = 4, andyn1

= 1, yn2
= 1, andyn3

= 2, the
matrix EKNN (x) is

EKNN (x) =





a 0 0 0
a 0 0 0
0 a 0 0





Given this formulation, if we apply themajority voting rule
defined in Equation (7) we have to perform two steps: i) to
take a decision for each classifier (each row), and this is done
by taking the maximum over the row; ii) then to assignx to
the class which received the majority of votes. Actually in this
way we obtain exactly the K-nearest neighbor classifier: given
the definition in Equation (11), every expert (neighbor) votes
for the class corresponding to its label, and the final class is
decided by looking at the most voted class, which is exactly
the most frequent class in the neighborhood2.

In the case of Weighted KNN, we define the elements of
the matrixEWKNN (x), ∀ℓ ∈ {1..K} andc ∈ {1..C}, as:

enℓc(x) =

{

wnℓ
if ynℓ

= c
0 otherwise

(12)

For example, for the problem introduced before (K = 3, C =
4, yn1

= 1, yn2
= 1, andyn3

= 2)

EWKNN (x) =





wn1
0 0 0

wn2
0 0 0

0 wn3
0 0





Given this definition, if we applySum Ruledescribed in
Equation (9) toEWKNN (x), we have to perform two steps:
i) aggregate the scores for every class, and this is done by
summing the values contained in each column; ii) assignx to
the class for which this aggregated score is maximum. It is
straightforward to note that this is exactly the decision rule
proposed by the Weighted KNN rule described in Equation
(5).

A. Normalization ofE(x)

In many combination rules, before applying a combination
scheme, the matching scores (confidences)Eℓ(x) should be
normalized, in order to get values which are comparable
among the different classifiers (see [12], chap. 5) – this is
especially true when using trained combiners [13], as those
described in the previous section. In the following we provide
some intuitions on what happens when using a common
and established normalization scheme, the so-calledSoft-Max

1Please note thatenℓc
(x) can be defined in a more compact way using the

Indicator FunctionIc(z) used in Equation (2). However, for clarity, here he
presented this more verbose formulation.

2Please note that in this case we also get the KNN rule by applying the
sum rule (sincea is a costant).



normalization [15]. After this normalization the matching
scores are in the range[0− 1]; moreover, for every classifier,
they sums to 1, so that they can be interpreted – with somehow
an abuse of interpretation – as posterior probabilities – this is
especially useful when trying to derive theoretical properties
as in [16]. When applied to our case, eacheℓc(x) of E(x) is
transformed in̂eℓc(x) via the following formula:

êℓc(x) =
eeℓc(x)

C
∑

j=1

eeℓj(x)

(13)

With this normalization, EKNN (x) is transformed in
ÊKNN (x), where

ênℓc(x) =

{

ea/R if ynℓ
= c

1/R otherwise
(14)

where
R = (C − 1) + ea (15)

is the normalization factor present in the denominator of
Equation (13). It is straightforward to observe that, given
this normalizedÊKNN (x), the KNN rule is still obtained
by applying the majority voting rule tôEKNN (x). On the
contrary, after this normalization, the Weighted KNN rule
becomes equivalent to another fixed rule, namely the prod rule.
Actually, ÊWKNN (x) is defined as

ênℓc(x) =

{

ewnℓ /Rℓ if ynℓ
= c

1/Rℓ otherwise
(16)

whereRℓ is again the normalization factor of Equation (13),
which in this case is different for different neighborsnℓ, and
is defined as

Rℓ = (C − 1) + ewnℓ (17)

If we consider the prod rule in Equation (10) applied to
ÊWKNN (x), we have

x←− argmax
c

[

M
∏

ℓ=1

êℓc(x)

]

(18)

Taking the log does not affect the argument of the max,
therefore an equivalent rule is:

x←− argmax
c

[

log

M
∏

ℓ=1

êℓc(x)

]

(19)

which becomes

x ←− argmax
c

[

M
∑

ℓ=1

log êℓc(x)

]

(20)

= argmax
c

[

M
∑

ℓ=1

[eℓc(x)− logRℓ]

]

(21)

= argmax
c

[

M
∑

ℓ=1

eℓc(x)−

M
∑

ℓ=1

logRℓ

]

(22)

= argmax
c

[

M
∑

ℓ=1

eℓc(x)

]

(23)

where we dropped the last term because is equal among all
classes. The resulting rule is equivalent to the Weighted KNN
rule of Equation (5).

Summarizing, here we provided a revisitation of the KNN
and the Weighted KNN rules from the Classifier Combining
perspective: this opens the door to the possibility of using
different (even complex) combination strategies. We will pro-
vide some evidence, in the experimental section, that usinga
trained combiner permits to improve the performances of both
the KNN and the WKNN rule.

IV. EXPERIMENTAL RESULTS

In this section, we provide some empirical evidence that
the perspective introduced in this paper permits to exploit
advanced combination techniques, such as those represented
by trained combiners [13], [14]. In particular, in our empirical
evaluation we compare three techniques:

1) KNN : this is the classic K-Nearest Neighbor rule. As
we have shown in Section III, this corresponds to the
majority vote ruleapplied to theEKNN matrix defined
in Equation (11) – as well as to thêEWKNN defined
in Equation (16).

2) WKNN (Dudani) : this is the Original Weighted K-
Nearest Neighbor rule described in [6] and presented in
Section II-B. This corresponds to thesum ruleapplied to
theEWKNN matrix defined in Equation (12) – or to the
prod rule applied to theÊWKNN defined in Equation
(16).

3) WKNN (TrainedComb) : in this case we applied a
trained combiner scheme: as explained in Section II-C,
with this scheme every pattern is described with the
vectorization of its corresponding matrix of scores,
which is used asfeature vectorto represent it. In other
words, all the objects of the problem are mapped in
a novel feature space, where another classifier is used.
Here we adopt thedecision template schemeproposed
in [12], which represents one of the first and most basic
trained combiner. More in details, for every patternxi

of the training set we compute the matrix̂EWKNN (xi),
as defined in Equation (16); we used the normalized
scores, as suggested in [13]. For every training pointxi,
the corresponding neighborhoodneK(xi) is determined
without consideringxi (this can partially prevent the
overtraining situation which may occur with trained
combiners – for a discussion on these aspects see [13]).
Given this novel feature space, the Nearest Mean Clas-
sifier [15] is used as classifier. In particular, for every
classc, we compute the mean of the vectorized scores
of the xi belonging to classc: this averaged vectorized
score then represents thetemplatetc of such class:

tc = mean
xis.t.yni

=c
vec(Ê(xi)) (24)

Finally, the testing objectx is classified by looking at
the similarity between itsvec(Ê(x)) and the different



classes templatestc, assigning it to the nearest template:

x←− argmin
c

d(vec(Ê(x)), tc) (25)

where d(·, ·) is a distance between vectors. For more
details interested readers can refer to Subsection 5.3.1
of [12].

The three techniques have been tested using 6 different
classic datasets (from the UCI-ML repository), which char-
acteristics are summarized in table I. All datasets have been
normalized so that every feature has zero mean and unit vari-
ance. As distance to compute neighbors we used the classical

Dataset Objects Classes Features
Sonar 208 2 60
Soybean2 136 4 35
Ionosphere 351 2 34
Wine 178 3 13
Breast 699 2 9
Bananas 100 2 2

TABLE I: Description of the datasets

Euclidean distance. Weighted KNN weights are computed
using Equation (1) of Dudani’s paper [6]:

wni
=















d(x, nK)− d(x, ni)

d(x, nK)− d(x, n1)
if d(x, nK) 6= d(x, n1)

1 otherwise

In this way weights are normalized between 0 and 1 (1 the
weight of the nearest neighbor, 0 the weight of the farthest
neighbor). We letK vary from 5 to 45 (step 2). Classification
errors have been computed using the Averaged Holdout Cross
validation protocol: the dataset is randomly split into two
parts, one used for training and the other used for testing;
the procedure has been repeated 30 times. Results are shown
in Figure 2.

From the plots it can be observed that the Trained Combiner
rule permits to improve the accuracy of both KNN and
WKNN. This is more evident when the problem lives in a
high dimensional space. For moderately dimensional space we
cannot observe such a drastic improvement. One interesting
observation derives by looking at the behavior for largeK.
Apparently, the Trained Combiner scheme does not suffer
too much from a bad choice ofK; this may be due to the
fact that adding neighbors to the analysis simply corresponds
to a different normalization of the feature space induced
by vec( ˆE(x)). More in details, adding neighbors changes
d(x, nK), which results in a shift (the numerator) and in a
rescaling (the denominator) of the weight defined in Equation
(26). Since we consider such weights as features in the novel
space, adding neighbors simply result in a different scaling,
which seems to not affect too much the final classification.

V. CONCLUSIONS

In this paper we revisited the Weighted K-Nearest Neighbor
(and the K-Nearest Neighbor) scheme under a classifier com-
bining perspective. Assuming this view, WKNN implements

a fixed combiner rule, whereas KNN a majority voting rule.
Then we provided some evidence that classification improve-
ments are possible when using other classifier combining
techniques, such as trained combiners.
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Fig. 2: Cross validation errors of the tested techniques fordifferent datasets: (a) Sonar; (b) Soybean2; (c) Ionosphere; (d) Wine;
(e) Breast; (f) Bananas.


