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Abstract—In this paper we show that weighted K-Nearest O O

Neighbor, a variation of the classic K-Nearest Neighbor, can be O O 0 O
reinterpreted from a classifier combining perspective, specifically )
as a fixed combiner rule, the sum rule. Subsequently, we 0.3
experimentally demonstrate that it can be rather beneficial to m X O 0.9 X O
consider other combining schemes as well. In particular, we focus Y o ) o
on trained combiners and illustrate the positive effect these can a O a 0.5 O
have on classification performance. ass(0) =0 Lass() -]

I. INTRODUCTION @ (b)

The K_-nearest ”eighb(."f (K.NN) rule is a \_/videly usgd anﬁig. 1: Example of (a) K-Nearest Neighbor and (b) Weighted
easy to implement classification rule. It assigns a peid  \earest Neighbor X = 3). With KNN, every neighbor
the class most present among tP(e- p.omts n the .tra|n|ng counts in the same way for the final decision: in the case
set nearest t [1], [2], [3], [4]. Deciding which points are gy, in figure, the cross is assigned to the circle class, the
nearest is done according to some prespecified distance, |as fraquent class in the neighborhood. On the contrati, wi

this procedure, all points within the neighborhood comfigb \yiqnted KNN every neighbor has associated a weight; in the
equally to the final decision far. It seems obvious, therefore,ﬁnal decision, each neighbor counts with its own weight: in

to allow for weighted voting (of some sort) in order to IMPeoV yhe eyample, since the sum of the weights of the neighbors
performance. Royall was probably the first to seriously CORg, ) the square class is larger than that of the neighbors of

sider this option [5]: he demonstrated that improvements ¢ ¢ircle class, the cross is assigned to the square class.
indeed possible in the regression setting under squared los

In the classification setting, Dudani [6] was the first to

introduce a specific distance-weighted KNN rule and pravidejegradation of the classification accuracy in the small $amp
empirical evidence of its admissibility. He discussed somgse and when dealing with outliers. In [11], the authors
alternatives to define the weights, all with weights drogpinderive an asymptotically optimal way of defining nonnegativ
in terms Of the distance o — W|th a WEIght Of 1 f0r the fiI’St We|ghts to be used W|th|n the WKNN Scheme_
nearest neighbor and a weight of O for thé&h. Given the | this work, we reinterpret the Weighted KNN (and the
WeightS, each neighbor of contributes to the final decision KNN) from a classifier Combining perspective [12] we show
with its own Welght in partiCUlar, the Welghted K'Nearestthat KNN can be seen as a p|a:major|ty Votingscheme and,
Neighbor (WKNN) rule assigns to that class for which the generally, the weighted KNN asfixed combiner rulgthe sum
weights of the representatives among fieearest neighbors ryle). This view opens the door to the use of other classifier
sum to the greatest value [6] (see. Fig. (1)). combiners and we show that it can indeed be quite beneficial to
The weighting scheme introduced by Dudani [6], even whefdnsider alternative and more advanced schemes. In garticu
weights are cleverly chosen, is not necessarily helpful afere we focus on trained combining schemes [13], [14], for
for instance, demonstrated in [7]. The paper showed th@fhich with our experiments demonstrate potentially sigaifit
asymptotically, unweighted KNN is to be preferred over anynprovements in classification performances over the waigi
weighted version in case we fix K. However, when dealingNN weighting scheme by Dudani [6].
with the realistic setting of finite samples, improvements a )
possible (see [8] for instance). Clearly, whether weightan A- Outline
help also depends on what we consider as improvement [5]Section Il introduces the necessary background on KNN,
[8], [9]. Though weighted KNN rules are used in variousts weighted variant, and classifier combiners, while fixing
applications, little conceptual, theoretical, or method@al notation. Section Il offers our interpretation of KNN as a
advances have been made in the past decades. Two recentbining scheme and sketches how various combiners could
additions to this literature include [10] and [11]. In [1@]s0- be integrated using the terminology of matching scores. The
called dual distance function is considered, which turns omext section, Section IV, describes the experiments that we
to be less sensitive to the choice Bfand supposedly avoids carried out with our revisited KNN using a trained combirier.



also reports on the results and discusses them. Finallyio8ecneighbor, the lower its weight/importance in the classiiora
V concludes. of z. This definition of weights takes inspiration from ideas
typical of the Parzen Windows estimator [15].
Given neighbors and weights, the Weighted K-nearest
In this section we introduce the necessary background msighbor rule assigns to the class: for which the weights
KNN, the WKNN, and the theory of classifier combinersof its representatives in the neighborhood(z) sum to the

Il. PRELIMINARIES AND ADDITIONAL BACKGROUND

while fixing notation. greatest value. Following the notation of Equation (2),
A. K-Nearest Neighbor K , 5
Let us start with some definitions: * arg max ; (ni)wn, ©)

e 2. the pattern tp be classified; o o Clearly, the KNN and the Weighted KNN rules are equivalent
e {z;} (with 1 <14 < N): the set ofN points in the training when K=1

set; each training pattern is equipped with a label}
(with 1 < i < N). The labely; can be one of the possibleC. Classifier Combining
valuesl...C, whereC' is the number of classes of the The main idea behind the Classifier Combining theory [16],
problem at hand [12] is that it is possible to improve the classification aecy

o neg(z) = {n1,...,nx}: the K points in the training set by exploiting the diversity present in different pattercagni-
which are nearest ta according to a certain distancetion systems. Such diversity can derive from the employment
d(*,*); Yn,,---Yn, are the corresponding labels; pleasef different sensors, different features, different tiagnsets,
note that we considefn,, ...,nx } as ordered according different classifiers or others [12]. In particular, here fweus
to the distance from: — n; is the nearest neighbat,x  on the following scenario: we have a set 8f different

is the farthest of thek” nearest neighbors. classifiers (expertsk:, ...Fy;. Given a classification problem
Given these definitions, the standard KNN rule assigrt® involving C' classes, and a pattemn to be classified, every
the classt more frequent in the setex (z), i.e. classifierE, returns a set of valueB(z):
x +— argmax [{n; ! yn, = c}| Q) Ey(x) = [en(z), en(z), - ewc ()]

whereey.(x) can be a posterior of the clags—i.e ey .(z) =
P(c|x)— or simply amatching scorgi.e. a number indicating
K how likely is that the class of is ¢ (called confidencesn
7 —— argmax lz Ic(ni)] @ [12]). A given classifier (expertl, takes a decision om

where|X | denotes the cardinality of the s&t. Rule (1) can
be rewritten as

— with the following rule
i

wherel,(z) is the indicator function for class c 2 — argmax () (6)
I(s) — 1 if z belongs to class 3 Given a pool ofM classifiers, the goal is to combine the values
o(2) = 0 otherwise ®) present in the following matrix
The summation in (2), for a given) simply counts the number en(r) en(xr) -+ ec(x)
of points in the neighborhoodex () belonging to class. () ea1(xz) exn(x) - exc(w)

B. Weighted K-Nearest Neighbor

Within the Weighted K-Nearest Neighbor rule [6], each em(?) em(w) oo emc(@)

neighborn; € nek () is equipped with a weight,,,, which to reach a classification that is potentially better tharséhof

can be computed using for example the methods presentee single classifiers. Many methods have been proposed in

in [6], [11]. Note that in the general setting, we may have the past to address this problem ([16], [12], [17], [18] tjtes

different set of weights for every point to be classified: whecite a few), which are based on different ideas, intuitiars,

changing the point: to be classified, also the neighborhoodhypotheses. Here we summarize the following three cladses o

nek (z) changes and therefore the corresponding weights, agproaches, which will become useful in the remainder &f thi

they typically depend directly on the relation between thaork.

neighbors and the point. This is clear, for instance, when 1) Combination of decisionstn this case, each expeH,

considering the definition of weights introduced in Equatiotakes its own decision; the final classification is then otadi

(2) of [6]: by combining such decisions. One relevant example is the
w. — 1 4) majority voting rule where the final decision is taken by

" d(x,ng) looking at the class which received thejority of votesMore

With this definition, the weight of a given training exampldormally,

is different when changing the point to be classified — it

depends on the distance from suchthe more distant to the

M

T 4 argmax Z Aye(x) @)
=1



where neighborn,. In the KNN case, the elements of the matrix
EKNN (1) are definedy/ € {1..K} andc € {1..C}, as:

1 if epe() = maxey;(x)
Age(z) = Co ®) a if yn, =c
0 otherwise Enye() = e

0 otherwise (11)

In other wordsA,.(z) is 1 only if the classifiets, assigns with « a fixed positive numbér(it can also be 1). For example,

to the class:. .
2) Fixed combination of matching scorem this case, for gqal(tri;;kﬁ%gﬂsnd Yo = 1 Yy = 1, @NAyn, = 2, the
a given class, the matching scores,.(z) of the different
classifiers (withl < ¢ < M) are combined together, in order a 0 0 O
to return an unique matching score for the considered elass EENNGYy=14a 0 0 0
The combination of these scores follofised rules such as 0 a 00

the sum or the p“’d“‘?t Of, them, the max or'th.e MIN aMORg e this formulation, if we apply thenajority voting rule
t_hem, th? _Ime_ar (_:omblnatlon of the”_” and similar [12]. Th8 fined in Equation (7) we have to perform two steps: i) to
final d_eC|5|on is finally taken by I_ookmg at these aggregategy o 4 decision for each classifier (each row), and this i®don
matching scores. For example, with tBam Rulea patternz by taking the maximum over the row; ii) then to assigro

is classified with the following rule: the class which received the majority of votes. Actuallyhiist

r M 7 way we obtain exactly the K-nearest neighbor classifiereigiv
T <— argmax eoe(x) (9) the definition in Equation (11), every expert (neighbor)esot
R i for the class corresponding to its label, and the final class i

decided by looking at the most voted class, which is exactly

whereas with thérod Rulewe have the most frequent class in the neighborhod

[ M | In the case of Weighted KNN, we define the elements of
z +— argmax | [ ] ecc(2) (10)  the matrix EWENN (), v¢ € {1..K} andc € {1..C}, as:
L{=1 .
. . . Wy, I yp, =c
3) Trained Combiners:This represents a more advanced enge(T) = 0  otherwise (12)

scheme [13], [14], in which the idea is to directly use the .
scores derived in the matri€(z) as new featuresfor the For example, for the problem introduced befofe £ 3, C' =
patternx: in this way a classifier is learned on the ouputév Yni =1, Yn, = 1, andyy, = 2)

of other classifiers, following what is sometimes referred t

Wy, 0 0 O
as stacked combination [19]. In more detail, a patteris EWKNN 3y = wnl 0 0 0
described withvec(E(x)), where the so-calledec(-) operator 0'2 Wpy 0 0

(vectorization) takes a matrix argument and returns a vecto
with the matrix elements stacked column by column. In tHfgiven this definition, if we applySum Ruledescribed in
training phase, the vectorizell(z;) matrix is computed for Equation (9) toE"™ N ¥ (z), we have to perform two steps:
all objectsz; of the training set, resulting in a novel training) @9gregate the scores for every class, and this is done by
set, which is used to train a classifigr In the testing phase, SUmming the values contained in each column; ii) assiga
the testing object: is firstly encoded withvec(E(z)) and then the class for which this aggregated score is maximum. It is

classified using the classifigf. straightforward to note that this is exactly the decisiote ru
proposed by the Weighted KNN rule described in Equation
I1l. THE WEIGHTED KNN RULE REVISITED (5).

In this section we propose an interpretation of the WKNM. Normalization ofE(x)

rule (and the KNN rule) from a combining classifier perspec- |n many combination rules, before applying a combination
in the (W)KNN the final decision onc is obtained by normalized, in order to get values which are comparable
combining information provided by th& nearest neighbors among the different classifiers (see [12], chap. 5) — this is
neg(x) = ni,---ng of x. Therefore it seems reasonabl@specially true when using trained combiners [13], as those
to consider thesé( points asK’ different experts/classifiers, gescribed in the previous section. In the following we pdevi

final decision. Let us clarify our vision by firstly considegi anq established normalization scheme, the so-c&8kt-Max
the KNN: we will show how to build theF'(z) matrix, and

which combination rule should be used to get exactly the KNN*Please note that,,(z) can be defined in a more compact way using the
rule. Indicator Function/.(z) used in Equation (2). However, for clarity, here he

id bef h el ifi hich presented this more verbose formulation.
As sai efore, we haveéx' experts/classifiers, which we 2Please note that in this case we also get the KNN rule by amplifie

indicate askE,,, - E,,, each one related to one specifigum rule (since: is a costant).



normalization [15]. After this normalization the matchingwhere we dropped the last term because is equal among all
scores are in the randgé — 1]; moreover, for every classifier, classes. The resulting rule is equivalent to the Weighted\KN
they sums to 1, so that they can be interpreted — with somehavle of Equation (5).

an abuse of interpretation — as posterior probabilitiesis-ith ~ Summarizing, here we provided a revisitation of the KNN
especially useful when trying to derive theoretical projesr and the Weighted KNN rules from the Classifier Combining
as in [16]. When applied to our case, eagh(z) of E(x) is perspective: this opens the door to the possibility of using
transformed ing,.(x) via the following formula: different (even complex) combination strategies. We wib-p
vide some evidence, in the experimental section, that using

eegc(w)
trained combiner permits to improve the performances dfi bot

éoc(x) = (13)

C
Z e (%)
j=1

With this normalization, EXV"(z) is transformed in
EXNN(z), where

R _f e*/R ify,, =c
Enpe(®) = { 1/R  otherwise (14)
where
R=(C—1)+e¢" (15)

is the normalization factor present in the denominator of
Equation (13). It is straightforward to observe that, given
this normalized EXNN(z), the KNN rule is still obtained
by applying the majority voting rule t& NV (z). On the
contrary, after this normalization, the Weighted KNN rule
becomes equivalent to another fixed rule, namely the pred rul
Actually, EWVENN () is defined as

R e e /R

where R, is again the normalization factor of Equation (13),
which in this case is different for different neighbotg, and
is defined as

if yn, =c¢

otherwise (16)

Ry = (C — 1)+ e"ne (17)

If we consider the prod rule in Equation (10) applied to
EWENN (), we have

M
 — argmax lH égc(a:)]

{=1

(18)

Taking thelog does not affect the argument of the max,
therefore an equivalent rule is:

M
T <— arg max llog H égc(l‘)‘| (29)
=1
which becomes
T M
T <4+— argmax Z log égc(x)] (20)
Le=1
T M
= argmax Z[ezc(x) — log Ry (21)
Le=1
MM M
= argmax Z epe(x) — Z log Ry (22)
R st =1
T M
= argmax Z e (w)] (23)
Le=1

the KNN and the WKNN rule.

IV. EXPERIMENTAL RESULTS

In this section, we provide some empirical evidence that

the perspective introduced in this paper permits to exploit
advanced combination technigues, such as those reprdsente
by trained combiners [13], [14]. In particular, in our emnigé
evaluation we compare three techniques:

1) KNN: this is the classic K-Nearest Neighbor rule. As
we have shown in Section Ill, this corresponds to the
majority vote ruleapplied to theEXNY matrix defined

in Equation (11) — as well as to thBWENN defined

in Equation (16).

WKNN (Dudani): this is the Original Weighted K-
Nearest Neighbor rule described in [6] and presented in
Section 1I-B. This corresponds to tkem ruleapplied to

the EWENN matrix defined in Equation (12) — or to the
prod rule applied to theEWENN defined in Equation
(16).

WKNN (TrainedComb): in this case we applied a
trained combiner scheme: as explained in Section II-C,
with this scheme every pattern is described with the
vectorization of its corresponding matrix of scores,
which is used ageature vectorto represent it. In other
words, all the objects of the problem are mapped in
a novel feature space, where another classifier is used.
Here we adopt thelecision template schemmoposed

in [12], which represents one of the first and most basic
trained combiner. More in details, for every pattern

of the training set we compute the matii®V XN (z,),

as defined in Equation (16); we used the normalized
scores, as suggested in [13]. For every training pejnt
the corresponding neighborhoed k (z;) is determined
without consideringz; (this can partially prevent the
overtraining situation which may occur with trained
combiners — for a discussion on these aspects see [13]).
Given this novel feature space, the Nearest Mean Clas-
sifier [15] is used as classifier. In particular, for every
classc, we compute the mean of the vectorized scores
of the z; belonging to clasg: this averaged vectorized
score then represents themplatet. of such class:

2)

3)

mean vec(E(z;))

xis.t.yni:c

te (24)

Finally, the testing object is classified by looking at

the similarity between iteec(E(x)) and the different



classes templatds, assigning it to the nearest templatea fixed combiner rule, whereas KNN a majority voting rule.
- Then we provided some evidence that classification improve-

T — arg Incin d(vec(E(x)),te) (25)

ments are possible when using other classifier combining

whered(-,-) is a distance between vectors. For morichniques, such as trained combiners.

details interested readers can refer to Subsection 5.3.1

classic datasets (from the UCI-ML repository), which cha
acteristics are summarized in table I. All datasets have bet
normalized so that every feature has zero mean and unit vari-

ance. As distance to compute neighbors we used the classical

Dataset Objects Classes Features (1]
Sonar 208 2 60
Soybean2 136 4 35
lonosphere 351 2 34
Wine 178 3 13
Breast 699 2 9
Bananas 100 2 2
[4]
TABLE I: Description of the datasets [5]

Euclidean distance. Weighted KNN weights are computeﬂ;l
using Equation (1) of Dudani’'s paper [6]:

d(z,ng) — d(z,n;)
d(z,ng) —d(z,n7)

(7]

if d(z,ng) # d(z,nq)

. (8]
1 otherwise

In this way weights are normalized between 0 and 1 (1 the
weight of the nearest neighbor, 0 the weight of the fartheg®]
neighbor). We letK’ vary from 5 to 45 (step 2). Classification 10
errors have been computed using the Averaged Holdout Crgsé
validation protocol: the dataset is randomly split into two
parts, one used for training and the other used for testidgt!

2 —
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Fig. 2: Cross validation errors of the tested techniquegliiferent datasets: (a) Sonar; (b) Soybean2; (c) lonosplidy Wine;
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