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Abstract. Latent Dirichlet Allocation (LDA) represents perhaps the
most famous topic model, employed in many different contexts in Com-
puter Science. The wide success of LDA is due to the effectiveness of
this model in dealing with large datasets, the competitive performances
obtained on several tasks (e.g. classification, clustering), and the inter-
pretability of the solution provided. Learning the LDA from training data
usually requires to employ iterative optimization techniques such as the
Expectation-Maximization, for which the choice of a good initialization
is of crucial importance to reach an optimal solution. However, even if
some clever solutions have been proposed, in practical applications this
issue is typically disregarded, and the usual solution is to resort to ran-
dom initialization.

In this paper we address the problem of initializing the LDA model
with two novel strategies: the key idea is to perform a repeated learning
by employ a topic splitting/pruning strategy, such that each learning
phase is initialized with an informative situation derived from the previ-
ous phase.

The performances of the proposed splitting and pruning strategies
have been assessed from a twofold perspective: i) the log-likelihood of
the learned model (both on the training set and on a held-out set); ii)
the coherence of the learned topics. The evaluation has been carried out
on five different datasets, taken from and heterogeneous contexts in the
literature, showing promising results.

Keywords: Topic models · LDA · Split · Prune · Expectation-
Maximization

1 Introduction

Topic models represent an important and flexible class of probabilistic tools,
originally introduced in the Natural Language Processing community [5,6,20].
Their main goal is to describe text documents, based on word counts, abstracting
the topics the various documents are speaking about. Recently, the importance
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of topic models has drastically grown beyond text, and they have been exported
as a versatile tool to model and solve a huge variety of tasks in different contexts
[1,8,21,25,30,34,36]. Their wide usage is motivated by the competitive perfor-
mances obtained in very different fields, by their expressiveness and efficiency,
and by the interpretability of the solution provided [9]. Among others, Latent
Dirichlet Allocation (LDA) [6] is the most cited and famous topic model. The
key idea of LDA is that a document may be characterized by the presence of
a small number of topics (e.g. sports, finance, politics), each one inducing the
presence of some particular words that are likely to co-occur in the document;
the total number of topics expected to be found in the corpus of documents is a
fixed quantity decided beforehand. From a probabilistic point of view, a topic is
a probability distribution over a fixed dictionary of words: for example, a topic
about sports would involve words like “match” or “player” with high probability.

The parameters of the model are learned from a set of training objects:
however, the learning problem is intractable [6], and is therefore tackled
using approximate optimization techniques such as the variational Expectation-
Maximization (EM [11,17]). The EM is an iterative algorithm that, starting from
some initial values assigned to the afore-described probabilities, maximizes the
log likelihood of the model until convergence is reached. The choice of such initial
values is a critical issue because the EM converges to a local maximum of the
log likelihood function [35], and the final estimate depends on the initialization.

From a very general point of view, different robust variants of the EM algo-
rithm have been proposed in the past ([13,33], just to cite a few); nevertheless,
in most practical applications where the LDA model is employed, this initializa-
tion problem is overlooked, with most solutions starting the EM iterations from
a random solution; this is usually motivated by the already appropriate perfor-
mances of the method. Only few papers explicitly addressed the EM initialization
issue in the LDA case: the authors of [15] proposed to employ a clustering step
using the k-means as initial solution for the EM; in [14], a method based on
the SVD decomposition is proposed. These methods have been originally pro-
posed for a slightly different topic model called PLSA [20], but can be easily
adapted for LDA. More often, workarounds are employed at experimental level:
in some cases, the learning is repeated several times, and average performances
are reported [19]. In other cases, the learning is repeated several times, and the
model with the highest log likelihood is retained [3] (also employed in other
EM-based techniques, such as Gaussian mixtures clustering [26]).

In this paper we contribute to this context, by proposing two novel strategies
for the initialization of the LDA training that specifically exploit the intrinsic
characteristics of the LDA model and the information therein. Both approaches
share the same structure: start by learning a model with an extremely small
(or an extremely large) number of topics, proceeding with consecutive opera-
tions of splitting (pruning) of the topics, until the desired number of topics is
reached; each learning phase is initialized with an informative situation derived
from the previous phase. The pruning strategy takes inspiration from the obser-
vation that, when the number of topics is extremely large, the dependency from
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the initialization of the final estimate is much weaker than when the number of
topics is close to the optimum [4,16,28]. On the other hand, the splitting app-
roach exploits reasoning derived for divisive clustering algorithms, where it has
been shown that such a strategy is useful when the size of the dataset is par-
ticularly high [7,12,31]. In both cases, the approach initializes these “extreme”
models at random, and use the learned estimates to initialize a new model with
a number of topics closer to the desired one. To choose which are the best topics
to split/prune, we exploit a quantity which can be readily extracted from the
learned LDA: the prior Dirichlet probability, which can be thought of a number
indicating the “importance” of each individual topic. This quantity is intrinsic in
the LDA formulation, and is not exploited by the methods described in [14,15].

The proposed splitting and pruning strategies have been extensively tested
on 5 datasets, taken from heterogeneous applicative contexts where LDA has
already been successfully employed. Benefits and merits of both techniques are
discussed, as well as the situations where one seems better suited over the other.
Experimental results confirm the usefulness of initializing the LDA model with
the proposed approach (i) in terms of the model log likelihood (evaluated both
on the training set and on a held out, testing set) and (ii) in terms of the
coherence and the interpretability of the learned topics.

The remainder of the paper is organized as follows: Sect. 2 gives some back-
ground notions on the LDA model, whereas Sect. 3 details the proposed strate-
gies of robust initialization. Sect. 4 contains the experimental evaluation, and
the discussion of the obtained results. Finally, in Sect. 5 conclusions are drawn
and future perspectives envisaged.

2 Background: Latent Dirichlet Allocation

In the general LDA formulation, the input is a set of D objects (e.g. docu-
ments), represented as “bag of words” vectors cd [27]. The bag of words is a
representation particularly suited when the object is characterized (or assumed
to be characterized) by the repetition of basic, “constituting” elements w, called
words. By assuming that all possible words are stored in a dictionary of size N ,
the bag of words vector cd for one particular object (indexed by d) is obtained
by counting the number of times each element wn of the dictionary occurs in d.

In LDA, the presence of a word wn in the object d is mediated by a latent topic
variable, z ∈ Z = {z1,..., zK}. The joint probability of the model variables is:

p(wn, zk, θd) = p(θd|α)p(zk|θd)p(wn|zk, β) (1)

In other words, the topic zk is a probabilistic co-occurrence of words encoded
by the distribution p(wn|zk, β), w = {w1,..., wN}, where β represents, in tabular
form, the probability of word wn being “involved” in topic zk. The variable θd

k =
p(zk|θd) represents the proportion of topics in the object indexed by d; finally
p(θ|α) is a Dirichlet prior indicating the probability of selecting a particular
mixture of topics: αk can be seen as a measure of the prior “importance” of
each topic. From this, the process that generates an object is defined as follows.
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Table 1. Summary of the LDA distributions.

Name Distribution Parameter Dimensionality

p(θd|α) Dirichlet α 1 × K

p(zk|θd) Multinomial θ K × D

p(wn|zk, β) Multinomial β N × K

First, the proportion of topics θ that will compose the object is generated from
the Dirichlet p(θ|α); then, a topic zk is drawn from the distribution p(z|θ), and
from this topic a word is selected according to the probabilities in β. Finally,
the process is repeated, by selecting another topic and another word, until the
whole object is generated. A summary of the distributions involved in the LDA
formulation, as well as their parameter dimensionality, is summarized in Table 1.

Learning the LDA model requires to estimate the parameters α and β from
a set of training data, in order to maximize the likelihood L, defined as

L = p(D|α, β) =
D∏

d=1

∫

θd

p(θd|α)

(
K∑

k=1

N∏

n=1

(
p(zk|θd)p(wn|zk, β)

)cdn

)
(2)

Since this function is intractable [6], such parameters are learned using a varia-
tional Expectation-Maximization algorithm (EM) [17]. The EM iteratively learns
the model by minimizing a bound F (called the free energy [17]) on the negative
log likelihood, by alternating the E and M-step. A detailed derivation of the EM
algorithm for LDA is out of the scopes of this paper (interested readers can refer
to the original LDA paper [6]): intuitively, the derivation yields the following
iterative algorithm:

1. Initialize α and β
2. E-step: for each object in the training set, estimate the posterior probability

p(θ, z | cd, α, β) (obtained by using Bayes’ law from the likelihood formula in
Eq. 2). Unfortunately, obtaining such estimate proved to be intractable [6],
and so an approximate form of the posterior is estimated.

3. M-step: minimize the free energy bound with respect to the model para-
meters α and β. This corresponds to find a maximum likelihood estimate
for each object, under the approximate posterior which is computed in the
E-step.

4. Repeat the steps 2 and 3 until some convergence criterion (usually, a small
variation in the free energy between two consecutive iterations) is met.

Summarizing, the EM is an iterative algorithm that, starting from some initial
values assigned to the parameters α and β, refines their estimates by maximizing
the log likelihood of the model until convergence is reached. As outlined in the
introduction, the choice of such initial values is a critical issue because the EM
converges to a local maximum of the free energy function [35]: the final estimate
depends on the initialization.
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Fig. 1. The top-most row shows some query images we selected: 5 independent runs
of the LDA model (initialized at random) produce very different retrieved images,
presented under each query image.

Even if this problem is known, most practical systems initialize the EM iter-
ations at random. This may lead to very poor results: let us clarify this point
with a simple toy example, inspired by the framework of [8]. In that paper, the
goal was to classify a query image into a scene category (e.g. mountain, forest,
office): first, the LDA is learned on a training set, and each training image d
is projected in the topic space through the vector θd. Then, the query image
dtest is also projected in the topic space via an E-step, and its vector θdtest is
estimated. The retrieval step can be carried out by simply showing the nearest
neighbor, computed for example using the euclidean distance between θdtest and
the training θd. In our simple example, we devised the same retrieval strategy
on a recent dataset of images collected from Flickr1: in particular we learned 5
LDA models – in each case starting with a different random initialization – on a
1 More details on the dataset, called PsychoFlickr, can be found in [10].
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given set of roughly 10000 images. Then, given a query image, we retrieved the
most similar by using the five different models; the expectation, if the LDA is
well trained, is to extract in all the 5 cases the same image. In Fig. 1 we show
some results: it can be immediately noted that, in different cases, the retrieved
images are diverse, in some cases also visually rather unrelated to the query.

3 The Proposed Approach

As stated in the introduction, the goal of this paper is to derive two robust
initialization techniques for the parameters α and β of LDA, by exploiting the
intrinsic characteristics and the information derived from the model. In this
section the two strategies, that we term splitting and pruning, will be detailed.
Intuitively, the idea is to initialize at random the LDA model designed with
an extremely small (for the splitting strategy), or an extremely large (for the
pruning strategy) number of topics, performing a series of splitting or pruning
operations until the chosen number of topics is reached.

In the following, the proposed initialization techniques are detailed.

3.1 LDA Initialization by Pruning

Suppose that the goal is to learn the LDA model with K topics. First, we
propose to learn a model with an extremely large number of topics Klarge, ini-
tialized at random: the idea behind this approach is that this first run of the
EM, due to the excessive number of topics (at the extreme, equal to the number
of training documents D), is less sensitive to initialization [4,16,28]. After the
model is learned, we select a candidate topic to prune, update α and β, and
repeat the learning starting with this new configuration. Of course, the crucial
problem is to decide which topic to prune. To make this choice, we look at the
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Fig. 2. Effects on the α parameter on the sampled topic proportions θ. The triangular
region correspond to the simplex where the θ probability distributions live, with the
edges of the triangle corresponding to the θ distribution where only one topic is present
with probability 1. Note that high values of α for a particular topic k “move” the
proportions θ to be concentrated towards k.
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learned parameter α of the prior Dirichlet distribution. Intuitively, a high value
of αk indicates that a specific topic distribution θ – where k is highly present
– is more likely to appear in the corpus of training objects. On the contrary,
a low value of αk indicates that k is overall scarcely present – Fig. 2 depicts a
graphical illustration of this idea.

For the above mentioned reason, it seems reasonable to consider as the least
interesting topic, i.e. the topic to prune, the topic k̂ with the lowest corresponding
α, i.e.

k̂ = arg min
k

αk (3)

In practice, pruning a topic k̂ implies (i) to remove its αk̂ value, and (ii) to
remove the whole vector of probabilities from β, i.e. βn,k̂ = p(wn|zk̂) for each
n. This is graphically pictured in the left part of Fig. 3. After the pruning, the
remaining parameter vectors α and β can provide a good starting point for the
learning of a new LDA, where the number of topics is decreased by one. This is
reasonable because we are making simple modifications to a good solution (the
model has already converged). Finally, the learning is repeated until K topics
are obtained.

From a practical point of view, it is interesting to notice that it is not neces-
sary to prune one topic at a time: the learned prior α can be used to rank topics,
from the least to the most important, and an arbitrary number of unimportant
topics can be pruned before repeating the learning procedure. The main advan-
tage is that computational cost is reduced, because less LDA models have to be
learned; however, this can deteriorate the quality of the final solution.

Finally, we can draw a parallelism between our approach and an agglomera-
tive hierarchical-type clustering scheme: we start from a large number of topics
and evolve by decreasing such number until the desired one is reached.

3.2 LDA Initialization by Splitting

Contrarily to the pruning approach, the idea behind the splitting strategy is to
initialize at random an LDA model with an extremely small number of topics
Ksmall, and proceeding by splitting one topic at a time into two new topics.

From a clustering perspective, the splitting approach can be seen as a divi-
sive (or top-down) hierarchical-type scheme: starting from a small number of
clusters, the process evolves towards a greater number of clusters. Divisive clus-
tering algorithms proved to be particularly appropriate when the size of the
data is particularly high [7,12,31], and seem therefore a promising strategy to
investigate in this context. Once the first model with Ksmall topics is learned,
we employed – as for the pruning strategy – the α prior in order to decide the
topic to split. In particular, the idea is that a high value of α indicates an overall
highly present topic in the training set. From the divisive clustering perspective,
these topics are the “largest”, clustering together many words and summarizing
most of the objects. For this reason, we propose to split the topic k̂ such that

k̂ = arg max
k

αk (4)
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Fig. 3. (left) Summary of the pruning strategy. The top bar graph represents the
learned α parameter after EM convergence. The candidate topic to prune is the one
with the lowest value of α. On the bottom, the β probabilities are graphically depicted,
with a brighter, red color indicating a higher probability of a particular word belonging
to a particular topic (each column corresponds to a topic). This topic is pruned by
simply removing the corresponding column from the β probabilities. (right) Summary
of the splitting strategy. Given a learned LDA, the topic to split the one with the
highest value of α. A small amount of Gaussian noise is applied to each copy of the
splitted topic (Color figure online).

In practice, splitting a topic k̂ implies to substitute the topic k̂ with two topics
k̂1 and k̂2 such that: (i) the β probability of k̂1 and k̂2 are equal to the β of k̂
plus a small amount of Gaussian noise (a simple normalization is also applied
so that such probabilities add up to 1); (ii) the α of k̂1 and k̂2 are assigned the
same value of αk̂. A graphical summary of the splitting strategy is depicted on
the right side of Fig. 3. Finally, note that – as for the pruning strategy – more
than one topic can be splitted after a learning phase for speedup purposes.

4 Experimental Evaluation

In order to evaluate our robust initialization schemes, we performed several
experiments on 5 different datasets. A summary of the employed datasets is
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Table 2. Summary of the employed dataset. Columns W , D and Z correspond to the
number of words, documents, and topics respectively.

Dataset name References Type of words N D Z

1. HIV gag proteins [24] Protein sequence 1680 204 100

2. Lung genes [2] Genes 12600 203 100

3. FragBag [29] 3D protein fragments 400 2928 100

4. Flickr images [10] Heterogeneous image features 82 60000 50

5. Science magazine [23] Textual words 24000 36000 100

reported on Table 2, where for each dataset we indicated its name, the number
of words N (i.e. the dictionary size), the number of objects D, and the number of
topics Z we employed for learning (when available, this number corresponds to
the optimal choice found by the authors of the papers in the reported references).

We took these datasets from heterogeneous applicative contexts in the lit-
erature, which involve a wide variety of tasks, ranging from classification and
clustering, to feature selection and visualization. Due to this heterogeneity, quan-
tities such as the classification error can not be employed as a general measure of
performance. Therefore, we resorted to two other validation indices: the first one
is based on the log-likelihood of the learned model (on both the training set and
an held out testing set), the second one takes into account the coherence of the
learned topics. In both cases, we divided each dataset in a training and testing
set using 10-fold crossvalidation, repeating the random subdivisions 3 times. For
each fold and each repetition, we employed the proposed approaches to learn
the LDA on the training set2. For the splitting approach, we set Ksmall to 2,
and the Gaussian noise variance σ to 0.01. After a preliminary evaluation, we
found that this noise parameter does not influence much results, provided that
it is reasonably small (we found that performances deteriorate when σ ≥ 0.1).
For the pruning approach, we set Klarge equal to the number of documents for
the first three datasets, whereas we set it to 1000 for the Flickr images.

We compared our strategies with the random initialization (the currently
most employed method), as well as with the technique proposed in [14], where the
authors propose to initialize the β distribution by performing a Latent Seman-
tic Analysis (LSA) on the training bag of words matrix: we will refer to this
initialization technique as LSA. Please note that this method has been origi-
nally designed for initializing a slightly different topic model called PLSA. Its
generalization to LDA is easy, because in PLSA the Dirichlet distribution is not
employed, and θ is estimated point-wise (the equivalence between PLSA and
LDA has been demonstrated in [18]): however, it is not clear how to initialize α.
We decided to initialize αk = 1 ∀k, this corresponding to a uniform prior over θ.
2 We employed the public Matlab LDA implementation available at http://lear.

inrialpes.fr/∼verbeek/software.php.

http://lear.inrialpes.fr/~verbeek/software.php
http://lear.inrialpes.fr/~verbeek/software.php
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Fig. 4. Log-likelihood of the proposed methods for the different dataset. On the left,
the log-likelihood of the training set. On the right, the log-likelihood evaluated on the
held out testing set.
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4.1 Log-Likelihood Evaluation

We firstly assessed the log-likelihood of the trained LDA models, on both a
training and an held out testing set: while the log-likelihood of the training set
indicates the quality of the learned model, the log-likelihood of the testing set
gives insights into the generalization capability. Such log likelihoods, averaged
over folds and repetitions, are shown in Fig. 4, for the first 4 datasets: the column
on the left represents log-likelihoods obtained on the training set, whereas the
column on the right depicts the ones obtained on the testing (held out) set.
The dashed lines indicate the log-likelihood obtained with the Random and
LSA methods we compared against, whereas the dots correspond to the log-
likelihoods obtained with the proposed approaches. Finally, the bars correspond
to the 95 % confidence intervals computed after a t-test, performed to assess if the
results obtained with the proposed approaches led to a statistically significant
improvement over the best-performing method (among the random and LSA
initialization schemes – we highlighted statistically significant results in blue).
From the figure it can be noted that the splitting scheme is on average the best
one, being able to outperform other approaches in every case except one. The
pruning scheme, even if reaching satisfactory results on 5 cases out of 8, seems
to be slightly worse.

4.2 Coherence Evaluation

As a second measure of evaluation, we employed a measure of topic coherence
to evaluate the proposed approaches. The coherence is essentially a score that is
given to a single topic by measuring the degree of semantic similarity between
highly probable words in the topic. Several coherence measures have been pro-
posed in the past [22,32], and they are aimed at distinguish between topics that
are semantically interpretable and topics that are artifacts of statistical infer-
ence. In this paper we adopted the internal criterion of Umass coherence [22]. We
chose this in particular because it does not rely on an external corpus providing
the ground-truth, which can be available in the text domain, but is absent in the
other scenarios considered here. The Umass coherence defines a score based on a
set of “topic words” Vk, which is created by retaining the top probable words in
the topic (ranked by β probabilities). The Umass coherence of topic k is defined
as

coherence(Vk) =
∑

vi,vj∈Vk

score(vi, vj) (5)

where

score(vi, vj) = log
p(vi, vj) + 1/D

p(vi)p(vj)
(6)

In the equation, p(vi, vj) indicates the frequency of documents containing words
vi and vj , and p(vi) measures the frequency of documents containing vi. Note
that the Umass computes these frequencies over the original corpus used to train
the topic models: it attempts to confirm that highly probable words in the topic
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Fig. 5. Umass coherence for the different datasets and the different initialization
schemes. The boxplot can be useful to assess statistical significance.

indeed co-occur in the corpus. In the end, the average coherence over the whole
set of topics is reported as performance: a higher mean coherence indicates an
overall better capability of the model to correctly cluster words in topics.

In our evaluation, for each fold and each repetition of each dataset, we applied
the proposed approaches to learn the LDA on the training set. Then, as done
before [32], we retained for each topic the top 10 words and computed the Umass
coherence for all topics. Finally we averaged the coherences of all topics to get a
final single score for the model. Coherence results, averaged over different folds
and repetitions, are presented as boxplots in Fig. 5. Each box describes an eval-
uated method, and the red bar is the median coherence over the 30 repetitions
(10 folds, randomly extracted 3 times). The edges of the blue box are the 25th

and 75th percentiles, while the whiskers (black dashed lines) extend to the most
extreme data points not considered outliers. Outliers are plotted individually
with a red cross. Two medians are significantly different (at 95 % confidence) if
their notches do not overlap. The splitting strategy always significantly outper-
forms the state of the art, thus confirming the suitability of this initialization
strategy.
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Concerning the pruning approach, we noticed that on the HIV and Lung
datasets – while surpassing the random initialization – it is not competitive
with respect to the other initialization techniques. On the contrary, on the last
two datasets (FragBag and Flickr images), this strategy performs adequately
well, achieving very high topic coherence on the Flickr images dataset in par-
ticular. Interestingly, we can observe that the HIV and lung datasets, due to
the peculiar applicative scenario, present more words than objects, whereas the
FragBag and Flickr images have a larger number of documents than words.

As a final consideration, we compared the computation times of the different
initialization strategies. All the algorithms have been implemented in Matlab
and run on a quad-core Intel Xeon E5440 @ 2.83GHz, with 4GB of RAM. The
pruning strategy requires the largest running time, several order of magnitude
greater than the other strategies. For what concerns the other strategies, it
should be observed that in general results depend on the characteristics of the
dataset (number of documents and number of words). In fact, when the number
of documents D is fairly small (as for the HIV gag dataset), the running times
of the LSA and splitting strategies are comparable with the random one: even
if initializing the parameters α and β at random is almost istantaneous, more
iterations are required to achieve convergence in the learning phase. For exam-
ple, learning the LDA model starting from one random initialization required
158 iterations, starting from the LSA initialization required 140 iterations and
starting from the splitting initialization required 134. On the contrary, when the
number of documents is really high (as for the Psychoflickr dataset), then the
random initialization is approximately 5 times faster. However, it may still be
reasonable to raise the computational burden and adopt the splitting strategy,
motivated by the quality of the solution that can be achieved (in many cases,
the learning is done only once, off-line).
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Fig. 6. Science magazine results. The first two panels depict as a dot the train and
test log likelihood of the splitting strategy, which is always significantly higher than
the dashed lines, corresponding to the random and LSA initialization techniques. On
the right, comparison between the Umass coherence of the different approaches.
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4.3 Science Magazine Dataset

An important consideration that has to be made for the pruning strategy is
that, although it seems suited in several situations, it is not applicable when
the number of documents is very high. This is the case of the Science magazine
dataset, which we discuss separately because we evaluated only the splitting
strategy. Results on this dataset are reported on Fig. 6. Also in this case, it can
be noted that the splitting strategy reaches satisfactory log-likelihood values, as
well as coherence scores, when compared with the other alternatives.

5 Conclusions

In this paper we proposed two novel strategies to initialize the Latent Dirichlet
Allocation (LDA) topic model, that aim at fully exploiting the characteristics of
the model itself. The key idea is to employ a splitting or a pruning approach,
where each training session is initialized from an informative situation derived
from the previous training phase. Then, in order to choose the best topic to
split/prune, we leveraged the intrinsic information derived from the model: in
particular, we exploit the parameter α of the Dirichlet distribution, that can be
seen as a measure of the prior “importance” of each topic. The quality of the
LDA model learned using our approaches has been experimentally evaluated on
5 different datasets, taken from heterogeneous contexts in the literature. Results
suggested that the splitting and pruning strategies are well suited, and can boost
the model in terms of its train and test log likelihood, as well as in terms of the
coherence of the discovered topics.
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