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a b s t r a c t

Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-
intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias
by using automatic classification techniques. In this context, a core but often overlooked issue is the
choice of an appropriate representation of the data to be classified. Recently, it has been suggested that
using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an
absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the re-
lational information contained in the dissimilarities to derive highly discriminant vector spaces, where
any classifier can be used. According to that motivation, this paper investigates the suitability of a dy-
namic time warping (DTW) dissimilarity-based vector representation for the classification of seismic
patterns. Results show the usefulness of such a representation in the seismic pattern classification sce-
nario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm
such as the proper selection of representation sets and the combination of different dissimilarity re-
presentations that might be available for the same data.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Analyzing the type and intensity of seismic activity is one of the
most important tasks in volcano monitoring. Even though so-
phisticated monitoring techniques — mainly based on remote
sensing equipment such as satellites and radars — are currently
widely used, seismicity is still considered as the key vital sign that
reveals changes in geophysical processes beneath the volcanic
edifice. The analysis of such seismicity requires the exhausting and
repetitive classification of seismic patterns into several pre-de-
fined classes: a task that can be dramatically improved by applying
novel statistical learning approaches for automated pattern clas-
sification. Personnel relieved of that duty may concentrate on in-
terpretation, characterization and understanding of the volcanic
phenomena; moreover, the classification task itself turns faster
and, potentially, more accurate without the subjective judgments
of experts or, in many cases, of temporary staff members.

Automatic pattern recognition systems are composed by two
main parts: representation and classification. The first part is aimed
co-Alzate),
.bicego@univr.it (M. Bicego),
at characterizing the objects (also known as patterns) with a col-
lection of descriptors, possibly resulting in a so-called feature
space where classification can be easily and accurately carried out;
the second one consists in learning, typically from a labelled
training set, a classifier which is able to assign to new unlabeled
patterns the corresponding class labels.

In the past, the statistical/machine learning community has
been particularly focused on the design and application of classi-
fiers, typically paying less attention to the step of representation —

reasonably assuming that descriptors are already provided by
some experts, being application or domain dependent (Duin et al.,
2007). However, studying the representation issue is of paramount
importance, mainly because any deficiencies in this step cannot be
recovered later in the process of learning. Two types of re-
presentations are basically distinguished in the literature (Pe-
kalska and Duin, 2005): absolute representations and relative re-
presentations. In the former case, which represents the classical
option, patterns are represented as points in a feature vector
space; in the latter case, only a set of (dis)similarity values derived
from pairwise comparisons between objects is available — being
also known as (dis)similarity representations. This second re-
presentation naturally arises in many different applications, par-
ticularly in those fields which involve human judgments — i.e.
situations where it is easier to derive a relational measure rather
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than extracting descriptors, like when comparing medical images.
More specifically, within the EU-FP7 SIMBAD1 project, a number of
advantages of the dissimilarity representation as alternative to the
classical feature-based approach have been shown; results are
reported in the recent book by Pelillo (2013).

Given the dissimilarity representations, the most natural choice
for the classification step is to resort to the nearest neighbor rule: a
simple yet effective classifier that labels an unseen pattern with
the class label of its most similar (closest) pattern within a col-
lection of representative examples; see (Theodoridis and Kou-
troumbas, 2009, Section 2.6) for further details on this classical
rule. Actually, it is only in recent years that dissimilarity-based
classification techniques which go beyond the nearest neighbor
rule have been investigated; among them, for instance, the so-
called dissimilarity space (Duin and Pekalska, 2012), which is
straightforward in its formulation and of high interest for practical
applications. Such approach proposes to exploit the dissimilarity
representations to derive a novel vector space, where dimensions
are associated to a set of representative patterns. The coordinate
value in a given dimension, for points in that space, is given by the
dissimilarity between the corresponding representative patterns
and individual patterns from another set. Given this novel vector
space, built directly from the dissimilarity representations, any
advanced classifier can be used, thus going well beyond the simple
nearest neighbor rule. This paradigm, which has shown to be very
effective in many different practical applications (Duin and Pe-
kalska, 2012), has been hardly applied in the seismic scenario, with
an early example appeared in Orozco-Alzate et al. (2006). How-
ever, such preliminary study was not conclusive enough for dif-
ferent reasons. First, only two metrics — the Euclidean distance
and the L1 distance — were applied for comparing pairs of equal-
length one-dimensional power spectral densities of seismic sig-
nals. Therefore, with that choice, one of the most attractive, re-
cently studied and promising advantages of the dissimilarity re-
presentation was not exploited: the potential informativeness of
non-Euclidean (Duin et al., 2013) or, even, non-metric dissimilarity
measures (Pekalska et al., 2006b; Plasencia-Calaña et al., 2013).
Second, other recent developments were not considered in such
study, such as those derived from the combination of different sets
of differently measured dissimilarities (Ibba et al., 2010; Porro-
Muñoz et al., 2011), or from the proper selection of representative
objects employed to build the dissimilarity space (Pekalska et al.,
2006a). From the seismic point of view, in addition, more ad-
vanced signal characterizations can be used, which are richer than
one-dimensional spectra. One example is given by spectrograms,
typically using the short-time Fourier transform, which map wa-
veforms to the time–frequency domain and serve to analyze sta-
tistically nonstationary signals (Theodoridis and Koutroumbas,
2009, Section 7.5.1) such the seismic ones; another example
corresponds to a two-dimensional characterization using the so-
called Fisher–Shannon method: an information-theory based
feature representation that has been successfully applied by Tel-
esca et al. (2013) for discriminating between tsunamigenic and
non-tsunamigenic earthquakes as well as — among other analysis-
oriented applications — to distinguish quarry blasts from earth-
quakes (Telesca et al., 2011). Finally, in Orozco-Alzate et al. (2006)
only two not very challenging classification problems were tried: a
two-class one and a three-class one. A much more realistic and
challenging case study must include more class labels that are
routinely assigned in volcano monitoring.

This paper makes one step further along this direction, ex-
ploiting recent advances of the dissimilarity-based representation
1 Similarity-based Pattern Analysis and Recognition (SIMBAD) project: http://
simbad-fp7.eu.
paradigm to derive a seismic signal classification procedure, which
is tested on a challenging multi-class classification problem ex-
hibiting realistic conditions. The proposed approach stems from
the dynamic time warping (DTW) distance (Lemire, 2009; Lin
et al., 2012), a widely used non-metric (dis)similarity measure able
to take into account the intrinsic temporal and sequential nature
of the seismic signals — thus being more accurate than lock-step
measures. Moreover, the DTW measure does not require that both
input signals are of the same length and is able to deal with dis-
tortions, e.g. shifting along the time axis (Lin et al., 2012) which, in
practice, makes it robust to inaccuracies in the segmentation of
individual isolated signals. It is important to note also that, despite
the fact that using the DTW measure for classifying signals is a
well-known and established practice, this distance has been al-
most always applied in a template matching framework, i.e. by
applying the nearest neighbor rule for classification. The applic-
ability of this measure in order to build dissimilarity spaces has
hardly been investigated, for instance in a case of sign language
recognition (Duin et al., 2013). In the proposed approach, the DTW
dissimilarities have been computed starting both from signals, also
known as waveforms, and spectrograms derived from the seismic
events (see Fig. 1). Different classifiers have been tested in the
resulting vector space, and compared with the traditional nearest
neighbor rule (i.e. template matching). Moreover, some recent
advanced versions of the dissimilarity based representation para-
digm have also been tested, in particular the ones derived by
combining dissimilarities or by properly selecting the re-
presentative sets. Experimental results, including learning curves,
confirm that this approach represents a valid alternative to classic
seismic classification techniques.

The remaining part of the paper is organized as follows. Basic
concepts behind the dissimilarity representations and the dis-
similarity space are briefly summarized in Section 2, together with
some recent advances that we exploit in our proposed approach,
which is described in detail in Section 3. Experimental results and
their corresponding discussions are presented in Section 4. Finally,
a number of concluding remarks are given in Section 5.
2. Background and framework

2.1. Dissimilarity representations and the dissimilarity space

Let be a set of labeled training patterns
x i; 1, ,i{ }= = … | |( ) , where | | is the cardinality of , and let x

be an arbitrary pattern inside or outside . A dissimilarity re-
presentation (Pekalska and Duin, 2005) of x consists in a row vector

⎡⎣ ⎤⎦x d x x id , ; 1, ,i( )( ) = = … | |( ) where d is an appropriate dis-

similarity measure for the nature of x, for instance the DTW dis-
similarity measure in the case of our proposed approach. The DTW
dissimilarity measure does not have a definition in the form of a
mathematical formula but is computed via an algorithm with two
nested loops (see Algorithm 1); a more detailed description of it is
provided in Section 3.2.

In order to reduce the dimensionality of xd( ) and, thereby, the
amount of dissimilarity computations, a subset of is usually used
as the so-called representation set : a collection of representative
patterns also known as prototypes; in such a way, the dissimilarity
representation for a single pattern x corresponds to

⎡⎣ ⎤⎦x d x x id , ; 1, ,i( )( ) = = … | |( ) . New incoming patterns to be

classified compose the so-called test set .
According to the above-indicated notation, training and test

sets in the dissimilarity representation approach are contained in
the following two matrices of pairwise dissimilarities:

http://simbad-fp7.eu
http://simbad-fp7.eu
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Fig. 1. An example of different classes of seismic-volcanic patterns (left) together with their corresponding spectrograms (right). (a) Volcano-tectonic (VT) event. (b) Long
period (LP) event. (c) Tremor (TR). (d) Hybrid (HB) event. (e) screw-like (TO) event.
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where semicolon denotes vertical concatenation. Notice that,
consequently, sizes of matrices D and D are | | × | | and | | × | |,
respectively.
A straightforward way to classify objects from is to use the
template matching approach (denoted hereafter as 1-NND), that is,
directly applying the nearest neighbor rule to the given dissim-
ilarities which, in practice, consists in finding the minima per row
in D and, afterwards, assigning to each test object the class label
associated to the column (representation object) where the
minimum dissimilarity was found. Clearly, this classification
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strategy does not use all the information contained in D , and
completely disregards the information contained in D . The al-
ternative, proposed by Pekalska and Duin (2005), is to consider
that entries of xd( ) span a vector space equipped with the con-
ventional inner product and Euclidean metric; such a space is
called the dissimilarity space (Duin and Pekalska, 2012), has | |
dimensions and is populated with row vectors from D and D . In
this way, all the information contained in the dissimilarity re-
presentations are used and maintained, but a vector space is now
available: any traditional classifier can be built in the dissimilarity
space, thus going far beyond the classical nearest neighbor ap-
proach. Please note that the dissimilarity space is now a proper
vector space, equipped with the Euclidean distance, which can be
computed between pairs of vectors. In this sense we will employ
in our experiments also the standard nearest neighbor rule (de-
noted hereafter as 1-NN), which will permit to show the im-
provement in the discriminative capabilities gained by exploiting
the dissimilarity space approach.

2.2. Advanced issues

The dissimilarity space has been largely investigated in recent
years, from both a theoretical and a practical perspective, leading
to many interesting variants and declinations (Duin and Pekalska,
2012). Among others, here we investigated two issues; the first
one — known as prototype selection — involves techniques usable
to prune the representation set (Pekalska et al., 2006a); the
second one — known as combining dissimilarity representations —

exploits the possibility of combining sets of differently measured
dissimilarities (Ibba et al., 2010; Porro-Muñoz et al., 2011).

The first issue starts from the following observation: dissim-
ilarity representations based on a large training set can be com-
putationally demanding (Duin and Pekalska, 2012). Therefore, it is
important to prune the representation set to a size significantly
smaller than that of the training set. More formally, the prototype
selection issue can be formulated as the task of finding a reduced
representation set ⊂⁎ such that the classification performance
does not deteriorate or, even, improves. The cardinality reduction
of is achieved by applying prototype selection procedures that
are analogous to the well-known ones that are used for feature
selection in the traditional pattern recognition framework (Theo-
doridis and Koutroumbas, 2009, Chapter 5). An exhaustive study
presented by Pekalska et al. (2006a) showed that prototype se-
lection is a crucial aspect in dissimilarity-based classification. In
our study we examine three different selection procedures: ran-
dom selection (as a baseline approach), forward selection using
the leave-one-out 1NN error estimation as criterion (a traditional
feature selection procedure) and k-centres (an strategy from
cluster analysis). Pekalska et al. (2006a) showed that the latter, in
general, works well.

The second issue exploits the intuition that κ multiple dis-
similarity matrices D D1 … κ( ) ( ), often available for the same data,
may be combined in such a way that the resulting performance is
hopefully increased. Several options can be applied to perform the
combination such as taking the entry-wise average, product,
minimum and maximum operations (Pekalska and Duin, 2005, p.
457) as well as computing an optimized weighted average (Ibba
et al., 2010) or, even, concatenating (extending) the available dif-
ferent representations (Plasencia-Calaña et al., 2013). In spite of
the diversity of options, averaging the κ available matrices seems
to be the simplest and cost-effective scheme, as shown in Duin
and Pekalska (2012) and Ibba et al. (2010). Since different dis-
similarity matrices may differ in their scales, it is important to
normalize them according to a given criterion in order to prevent
that one of them dominates in the combination. A global rescaling
is the typical option for normalization by, for example, setting
either the maximum or the average dissimilarity to 1 and scaling
all the entries of the matrix accordingly.
3. The proposed classification system

In this section the proposed system for classification of seismic
events is described: the representation of the signals and the es-
sential definitions and concepts of the DTW dissimilarity measure
are presented, followed by the postulation of the DTW-based re-
presentation space for seismic pattern classification.

3.1. Representation

The input signals correspond to raw sequential data as pro-
vided by the acquisition system. They are typically digital; that is,
both discrete in time at a given sampling rate (fs) and quantized at
a finite precision. Here we assume, as in many other studies, that
automatic segmentation of isolated seismic events has been car-
ried out, for example using the so-called STA/LTA algorithm or,
otherwise, by manually stamping the start of the primary wave
and the end of the so-called coda. Since seismic events naturally
vary in duration, signals are sequences of different lengths. We call
this basic representation raw time signals (i.e. waveforms).

Another widely used representation is based on the frequency
content of the waveforms. The easiest way is to consider the
spectrum of the signal: since this method was used in Orozco-Al-
zate et al. (2006), let us briefly summarize it here — it will also be
considered in the experimental evaluation as a baseline compar-
ison; see Section 4.5. The spectrum of a signal consists in the
average power of it across the interval of frequencies f f/2, /2s s[ − ]
(Schilling and Harris, 2012). The spectral information of the first
half of the spectrum is a mirrored version of that contained in the
second half; in consequence, only the latter, corresponding to the
interval f0, /2s[ ], is needed. The spectrum is typically computed by
using the well-known Fast Fourier Transform (FFT), which is
computationally efficient and able to produce outputs of a fixed
length for inputs having arbitrary durations.

A richer representation is obtained by building a spectrogram
(Fig. 1), which consists in computing the FFT for successive short
overlapping frames. Such a computation produces, thereby, a se-
quence of spectra that reveals how the spectral content of the
signal changes with the time. By fixing the length of the FFT out-
put, spectrograms for signals with arbitrary different lengths co-
incide at least in one dimension: the axis corresponding to the
frequency interval. Since the FFT gives complex numbers, only the
magnitude (in dB) of the spectrograms was taken into account.

3.2. The dynamic time warping (DTW) dissimilarity measure

Dissimilarity measures are more general than metrics, in the
sense that they are just required to obey conditions of being po-
sitive d x x, 0i j( ( ) ≥ ), reflexive d x x, 0i i( ( ) = ) and definite or constant
(d x x, 0i j( ) = if and only if xi and xj are identical). In contrast,
metrics must also be symmetric d x x d x x, ,i j j i( ( ) = ( )) and satisfy
the triangle inequality d x x d x x d x x, , ,i j i k j k( ( ) ≤ ( ) + ( )). Advantages
of the DTW dissimilarity measure over lock-step measures — e.g.
the Euclidean distance and other classical metrics — were already
mentioned in Section 1. Algorithm 1 shows the procedure to
compute the DTW dissimilarity measure between two arbitrary
sequences x and y having lengths m and n, respectively. The al-
gorithm, DTW x y,w ( ), is based on the code by Wang (2013) and
corresponds to an implementation using dynamic programming
with a warping window of size w. The purpose of the warping
window is to fix a global constraint in order to narrow the search
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space of the best alignment between the two sequences and,
therefore, speed up the computation (Lin et al., 2012).

Algorithm 1. DTW algorithm. Brackets denote positions of the
arrays where sequences are stored.
Re

En

2:
3:
4:
5:
6:

8:
9:
10:
11:
12:
13:
quire: x, y: the two signals, of length m and n, respectively; w:
the warping window size; d x i y j,( [ ] [ ]): a distance between
single elements of the signals
sure: DTW x y,w ( ): the DTW distance between x and y, given the
warping window w.

// Adapt w

w w m nmax ,= ( | − |)
1:

// Initialize the array D, of size m n1 1( + ) × ( + )

for i¼1 to nþ1 do

for j¼1 to mþ1 do
D i j,[ ]=+∞

end for
end for

D 1, 1 0[ ] =
7:

// compute entries of D by dynamic programming

for i¼1 to m do

for j i wmax , 1= { − } to i w nmin ,{ + } do
dist d x i y j,= ( [ ] [ ])

D i j dist D i j D i j D i j1, 1 min , 1 , 1, , ,[ + + ] = + { [ + ] [ + ] [ ]}
end for

end for

return D m n1, 1[ + + ]
14:

Notice that there are two nested loops in Algorithm 1; there-
fore, even with the global constraint w, the DTW is computa-
tionally expensive: O(wm) (Lemire, 2009). A popular rule-of-
thumb to initialize w, before calling the algorithm, is setting it to
the 10% of the longest sequence. When comparing one-dimen-
sional signals, such as the considered input waveforms, the typical
choice for the dissimilarity measure between single elements of
the signals d x i y j,( [ ] [ ]) is to use the Euclidean distance (see line 10
in Algorithm 1):

d x i y j x i y j,( [ ] [ ]) = | [ ] − [ ]|

The algorithm can easily be generalized to a multi-dimensional
case, provided that sizes of the multi-dimensional sequences x and
y coincide in one of the dimensions; that is, if sizes of their as-
sociated arrays are m� p and n� p, respectively. In such a case,
d x i y j,( [ ] [ ]) can be any norm between two vectors, i.e.

d x i y j x i y j, , : , :( [ ] [ ]) = ∥ [ ] − [ ]∥

where colon denotes all entries in the second dimension of the
array, i.e. slices of length p from x and y are compared. This multi-
dimensional version of the DTW dissimilarity measure allows us
to compare pairs of spectrograms.

3.3. The DTW-based dissimilarity space

Given a training set x i; 1, ,i{ }= = … | |( ) , a representation

set x i; 1, ,i{ }= = … | |( ) (which can be inside or outside ),

and a testing set x i; 1, ,i{ }= = … | |( ) , the problem is mapped
to the dissimilarity space via the DTW dissimilarity by following
the scheme proposed in Section 2.1. In particular, every seismic
event x ,∈ , in its original time-domain form or considering the
corresponding spectrogram, is described with the row vector

⎡⎣ ⎤⎦x DTW x x DTW x x DTW x x, , , , , ,w w w1 2⟶ ( ) ( ) … ( )( ) ( )
| |
( )
It is important to note that can be, in the basic case, the whole
training set; better choices can also be performed by using the
selection procedures described in Section 2.2.

3.4. Classifiers in the dissimilarity space

A plethora of classification rules can be applied in the dissim-
ilarity space. However, a number of them are commonly preferred
to be used; for example, the linear support vector machine (SVM)
classifier, because of its ability in dealing with high dimensional
spaces without suffering from the curse of the dimensionality
problem; more than this, it has been shown that such linear
classifier becomes non-linear when applied to the dissimilarity
space (see Duin et al., 2013, Section 2.4 for more details). In our
approach we considered three classic classifiers: the linear SVM,
the 1-NN rule (as described in the previous section) and the
Fisher's least square linear discriminant (Fisher).
4. Experimental evaluation

In this section all the details related to the experimental eva-
luation are given: data set, representations and classification ex-
periments. The latter are discussed as figures and tables are
presented.

4.1. Data set and preprocessing

The Volcanological and Seismological Observatory of Manizales
(OVSM by its acronym in Spanish) from Servicio Geológico Co-
lombiano (SGC) has deployed a seismic network to monitor vol-
canoes from the northern volcanic segment of Colombia, particu-
larly the activity from Nevado del Ruiz volcano which is the most
active one in that segment and have erupted a number of times
during the last three decades. Experiments in this paper are based
on seismic data from such volcano, which has been collected be-
tween January 2010 and September 2013. Signals, gathered at the
BIS station, are relative to five classes, corresponding to the most
common volcano-related events: volcano tectonic (VT) events,
long period (LP) events, tremors (TR), hybrid (HB) events, and
screw-like (TO) earthquakes; see Fig. 1 again. For every class, the
following number of events is available: 153 (VT), 333 (LP), 242
(TR), 393 (HB) and 104 (TO). Even though seismic sensors deliver
three components, only registers from the vertical one are con-
sidered. Signals are sampled at f 100 Hzs = , quantized with a 16-
bit analog-to-digital converter and segmented into isolated events.

Concerning the representations, spectrograms were built — as
done in Castro-Cabrera et al. (2014) — with a 128-point FFT, a 64-
point Hamming window to smooth each frame and an overlap of
50% between frames. As a baseline representation, a one dimen-
sional spectrum was used, computed using the FFT with 512
bands; therefore, due to the mirrored property, the length of the
one-dimensional spectra was 257. In the experiments we used the
classifiers mentioned in Section 3.4 — 1-NN, Fisher and SVM.
When needed, a priori class probabilities are estimated by class
frequencies.

We designed three experiments, detailed in the following
section, trying to highlight different aspects of the proposed ap-
proach. In all cases, averaged classification errors were presented
(either 25 or 50 repetitions).

4.2. Experiment 1

In the first experiment we evaluated the behavior of the dis-
similarity spaces based on two representations (waveforms and
spectrograms) with learning curves for growing training sets,
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randomly drawn from the data set; fifty patterns per class were
chosen as the maximum size for the training set in order to
guarantee that at least half of the patterns from the minority class
(TO) remain in that case for testing. Classifiers are subsequently
tested on the left-over patterns.

The main goal of this experiment is to illustrate how classifiers
in the dissimilarity space are able to profit from the information in

while keeping the computational cost, in the evaluation stage,
fixed. Dissimilarities from training patterns to representation ones
must, of course, also be computed; however, these computations
are performed off-line; that is, in the training stage. As new in-
coming and unlabeled patterns arrive to the deployed classifica-
tion system, only dissimilarities from them to the representation
patterns remain to be calculated.

In these experiments, representation sets of various sizes are
considered, particularly sets containing 1, 4, 7 and 10 patterns per
class (randomly selected); therefore, the dimensions of the cor-
responding dissimilarity spaces are 5, 20, 35 and 50. Small re-
presentation set sizes are of special interest because the number of
dissimilarity computations to classify a new incoming pattern, in a
deployed automated system, is equal to | |. However, the extreme
case when = is also examined.

Results are reported in Figs. 2 and 3, for waveforms and spec-
trograms representations, respectively. 1-NN, Fisher and SVM re-
present the classifiers in the dissimilarity space built from the
DTW (i.e. the proposed approach), while 1-NND is the reference
approach (i.e. the Nearest Neighbor rule with the corresponding
original dissimilarity matrix).

From a general point of view, these plots clearly show the ad-
vantage of learning from a training set. Notice, in particular, that
template matching (1-NND) only yields better results when very
small training sets are used. Such a behavior is most notorious for
waveforms (Fig. 2).

Two general observations from Figs. 2 and 3 can be highlighted:
(i) in most cases, Fisher is the best performing classifier; (ii)
overall, the best dissimilarity-based representation is the one de-
rived from the spectrograms. The first observation is — at first
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Fig. 2. Learning curves for the DTW-based dissimilarity matrix computed for the
glance — surprising, because Fisher is a linear and simple classifier.
However, this simplicity and linearity is apparent, since it has been
already shown by Duin et al. (2010) that linear classifiers in the
dissimilarity space correspond to nonlinear ones in the original
space. The second observation confirms that the spectrogram re-
presentation is richer than the other one; in addition, it is cheaper
than the waveforms representation, because the width of the
frames in the spectrograms allows to shorten the length of the
sequences to be compared and, therefore, lighten the cost asso-
ciated to DTW computations. Another general aspect to be noticed
is that all learning curves are not saturated and, therefore, further
improvements might be achieved by enlarging the training sets.

Additional particular observations are:
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Among the three dissimilarity-based classifiers, 1-NN is the
worse one. In spite of that, it is also able to outperform 1-NND
provided that a large enough training set is given.
�
 In spite that representation patterns were selected at random,
it seems that a representation set with 7 or more patterns per
class is enough to reach a good performance for large training
sets. This is consistent with the known fact that random se-
lection may work well (Pekalska et al., 2006a), unless a very
small number of representation patterns is required. In such a
case, systematic selection procedures must be applied.

Regarding the case = , it is interesting that 1-NND is better
than the dissimilarity-based classifiers when applied on the wa-
veform representation. In contrast, as shown in Fig. 4b, SVM is the
best classifier when using spectrograms. These observations can
be rephrased as follows: template matching is the best option to
compare signals in the time domain but using the dissimilarity-
based information contained in the training set really pays off
when using spectrograms. These two claims, of course, are only
valid for the case when = . Notice that, for all curves in Fig. 4,
the dimensionality of the associated dissimilarity spaces grows
from 5 (left part of the curve) to 250 (right part); consequently,
dissimilarity spaces on the right part of the curve are very high-
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nals in the time-domain. (a) 5| | = . (b) 20| | = . (c) 35| | = . (d) 50| | = .
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Fig. 3. Learning curves for the DTW-based dissimilarity matrix computed for the signal spectrograms (time/frequency-domain). (a) 5| | = . (b) 20| | = . (c) 35| | = . (d)
50| | = .
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dimensional and demand, to a deployed system, as many dissim-
ilarity computations as dimensions.

4.3. Experiment 2

As explained in the previous sections, dissimilarity re-
presentations based on a large training set can be computationally
demanding (Duin and Pekalska, 2012). Therefore, it is important to
prune the representation set to a size significantly smaller than
that of the training set. This second experiment consists in ex-
amining curves for growing representation sets drawn from the
training set that, in turn, corresponds to half of the data set; in
other words, 50% of the data is used for training and the remaining
50% for testing. Two systematic selection procedures — (i) forward
selection using the leave-one-out (LOO) 1-NN error as criterion
and (ii) k-centres— as well as random selection are used; details of
their implementations are not given here but can be found in
Pekalska et al. (2006a). Experiments, in this case, were repeated
more times (50) in order to better capture the average behavior
when two random procedures are involved: partition into train-
ing-test sets and the random selection itself. Results are displayed
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Fig. 4. Learning curves for = . (a
in Fig. 5, for both the waveform and the spectrogram
representations.

The first evident observation is that dissimilarity-based classi-
fiers are much better than template matching when using random
selection and k-centres; see Fig. 5a and b and Fig. 5e and f, re-
spectively. Forward selection finds good representation sets for 1-
NND that are difficult to be enhanced by providing the additional
information contained in the training sets; in fact, the only case —

for forward selection — in which a dissimilarity-based classifier is
slightly better than 1-NND is the one in Fig. 5d. This confirms that
1-NND is highly dependent on a carefully selected set of proto-
types while classifiers in the dissimilarity space are not.

In spite of the superiority of forward selection, one must also
consider that its computational cost is larger due to its supervised
selection criterion: the minimization of the LOO 1-NN classifica-
tion error. The other two procedures, in contrast, are unsupervised
but still carried out in a class-wise way. The cheapest option is, of
course, random selection since just implies the generation of a
random permutation of indexes. Notice also that curves in Fig. 5
turn flat after having included a certain number of prototypes in ;
so, the computational demands associated to large representation
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) Waveforms. (b) Spectrograms.
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Fig. 5. Curves for growing representation set sizes. The entire training set, corresponding to half of the data set, is used for training the classifiers. (a) Random selection:
waveforms. (b) Random selection: spectrograms. (c) Forward selection: waveforms. (d) Forward selection: spectrograms. (e) Selection by k-centres: waveforms. (f) Selection
by k-centres: spectrograms.
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Fig. 6. Learning curves for the combined dissimilarity matrices. (a) Average combination of “waveformsþspectrograms” dissimilarities and (b) ”waveformsþspectro-
gramsþspectra” dissimilarities.
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set sizes are not compensated by a significant increase in classi-
fication performance.

4.4. Experiment 3

This experiment is aimed at showing the effect on the
classification accuracies of the combination of different dissim-
ilarity matrices, see Fig. 6. In particular, we considered the two
dissimilarity matrices derived from the two representations (wa-
veforms and spectrograms). Furthermore, we also considered an-
other dissimilarity matrix, employing Euclidean distances between
one-dimensional spectra, computed as described above. In both



Table 2
Best (lowest) classification errors obtained in the second experiment.

Selection method

Random
selection

Forward
selection

k-centres

Classifier Representation: WaveformþDTW

Best result for 1-NND 45.08 28.41 40.64
Best Diss.-based

classifier
33.46 (Fisher) 31.89 (Fisher) 32.98 (Fisher)

Representation: FFTþEuclidean
Best result for 1-NND 41.63 26.36 57.36
Best Diss.-based

classifier
30.94 (Fisher) 28.14 (Fisher) 32.26 (1-NN)

Representation: SpectrogramsþDTW
Best result for 1-NND 43.43 21.89 42.11
Best Diss.-based

classifier
20.01 (Fisher) 20.41 (Fisher) 24.63 (Fisher)
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cases (“waveformsþspectrograms” dissimilarities and “wave-
formsþspectrogramsþspectra” dissimilarities), the combined
dissimilarity matrix is obtained by simply averaging them after a
normalization step such that the mean dissimilarity is 1.

A significant improvement due to the combination is not ob-
served; in fact, performances are worse than the performance
obtained for spectrograms alone (the best representation); cf.
Fig. 3d. We are currently investigating this behavior, trying to
understand whether this depends on the specific seismic scenario,
or on more general factors, like the kind and the number of dis-
similarities, the combination scheme, the normalization and so on.

4.5. Discussion

The three experiments in the previous sections were aimed at
examining three different aspects of the proposed framework: the
impact of the size of for different sizes of (Experiment 1), the
impact of the different prototype selection methods (Experiment
2), and the impact of the dissimilarity combination schemes (Ex-
periment 3): in all cases, learning curves are displayed, in order to
understand at a fine-grain level the behavior of the proposed
framework. To conclude the experimental evaluation, in this sec-
tion we provide further discussions starting from some summar-
ized results, which permit to have a better numerical and concise
insight into the different aspects. In particular, for the three ex-
periments, we extracted the best possible situation for every
configuration: in other words, for a given analyzed configuration,
we selected the best result over the different classifiers/training
set sizes. Moreover, as previously announced in Section 3.1, results
for representations built from pairwise Euclidean comparisons of
signal spectra are also included as baseline comparisons.

The results are summarized in Tables 1–3 — since the reported
values are classification errors, the lower the better. Different ob-
servations can be derived from these summarized results. In
general, we can observe that the classification error in the DTW
space is almost always better than the nearest neighbor error
using the corresponding dissimilarity: only in 4 cases over 26, 1-
NND does a better job. Such cases, however, are confined to two
precise situations: (i) = (for the first experiment), and (ii) the
use of the forward selection method for selecting the prototypes
(for the second experiment): interestingly, these two configura-
tions represent two very computationally demanding versions of
the proposed framework, not to be used in practical scenarios.
Another general comment can be obtained by looking at the best
Table 1
Best (lowest) classification errors obtained in the first experiment.

Representation set sizes

5| | = 20| | = 35| | = 50| | = | | = | |

Classifier Representation: WaveformþDTW

Best result for 1-
NND

55.18 48.92 45.27 44.11 35.43

Best Diss.-based
classifier

39.48
(Fisher)

36.00
(Fisher)

35.93
(Fisher)

35.61
(Fisher)

41.20 (1-
NN)

Representation: FFTþEuclidean
Best result for 1-

NND
55.60 46.73 40.88 40.51 31.33

Best Diss.-based
classifier

42.61
(Fisher)

36.26
(Fisher)

33.72
(Fisher)

33.09
(Fisher)

29.58
(SVM)

Representation: SpectrogramsþDTW
Best result for 1-

NND
53.87 44.50 40.11 37.52 28.53

Best Diss.-based
classifier

36.22
(Fisher)

23.71
(SVM)

22.96
(SVM)

21.70
(Fisher)

29.13
(SVM)
performance — obtained with the SpectrogramsþDTW space with
random selection of prototypes — which is an error of 20.01%. This
error is rather high, this confirming the challenging nature of the
seismic event classification problem when tested with realistically
large data sets (as the one used in our study, involving 5 classes
and more than 1200 events). Finally, it is interesting to observe
that the best classifier in the dissimilarity space is in most cases a
linear classifier (either Fisher or SVM), this confirming the good-
ness of the proposed representation space, in which classes are
more linearly separable.

More specifically related to Experiment 1, we can observe from
Table 1 the different behaviors of the three representation spaces:
FFTþEuclidean (the baseline), WaveformþDTW and Spectro-
gramsþDTW; in the results, the baseline (FFTþEuclidean) re-
presentation most of the times outperforms the WaveformþDTW
one; however, the SpectrogramþDTW representation is con-
sistently better than the other two. It makes a lot of sense since the
spectrogram encodes information from both time- and frequency-
domain. For what concerns Experiment 2 (Table 2), we can ob-
serve that the summarized results confirm that random selection
is always a very good choice for selecting the prototypes, this
being very interesting also from a practical point of view. Finally,
looking at Table 3, an interesting fact emerges, related to the
combination of different dissimilarities: the best performance for
template matching (1-NND) is obtained when combining the three
different representations while, in contrast, the best performance
in the dissimilarity space was obtained with information from
spectrograms and waveforms. As we pointed out at the end of
Section 4.4, the behavior of combined dissimilarity representa-
tions requires further studies; nonetheless, results from Table 3
seem to indicate that dissimilarities from spectra add useful local
information, which is beneficial for 1-NND while, in contrast, its
inclusion slightly deteriorates the performance of dissimilarity-
based classifiers which rely on more global information.
5. Conclusion

A dissimilarity space, based on the DTW distance measure, has
been proposed to classify seismic volcanic patterns — either wa-
veforms or spectrograms — as alternative to both the nearest
neighbor rule directly applied to the dissimilarities and classifi-
cation in a dissimilarity space based on the Euclidean distance
between pairs of seismic spectra.

The proposal has been thoroughly studied by a set of experi-
ments including learning curves to observe the behavior of the



Table 3
Best (lowest) classification errors obtained in the third experiment.

Combined dissimilarity-based representations

Classifier “Waveformsþspectrograms” “Waveformsþspectrogramsþspectra”

Best result for 1-NND 41.17 37.24
Best Diss.-based classifier 24.53 (Fisher) 25.27 (Fisher)
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classification system over different training set sizes, curves to
study the behavior for different dimensionalities of the DTW-
based dissimilarity space and analyses on the possibilities of en-
hancing the classification performance by combining dissimilarity
representations computed for different modalities of the seismic
data (waveforms, spectra, spectrograms) or dissimilarity measures
(DTW, Euclidean).

Results clearly showed the advantage of learning from a
training set by building the DTW-based representation space,
particularly when starting its construction from spectrograms.
Low-dimensional versions of the proposed representation space
allow to reduce the computational demands of a deployed system
while preserving good enough classification performances;
moreover, linear classifiers in the DTW-based dissimilarity space
yield satisfactory classification accuracies as expected. Even
though attempts to profit from the averaged combination of dif-
ferent dissimilarity representations were made, enhancements in
the performances by applying this strategy were not observed.
Further studies on this topic may be worthwhile.
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