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Abstract. The analysis and classification of seismic patterns, which are
typically registered as digital signals, can be used to monitor and un-
derstand the underlying geophysical phenomena beneath the volcanoes.
In recent years, there has been an increasing interest in the develop-
ment of automated systems for labeling those signals according to a
number of pre-defined volcanic, tectonic and environmental classes. The
first and crucial stage in the design of such systems is the definition or
adoption of an appropriate representation of the raw seismic signals, in
such a way that the subsequent stage —classification— is made easier
or more accurate. This paper describes and discusses the most common
representations that have been applied in the literature on classification
of seismic-volcanic signals; namely, time-frequency features and cepstral
coefficients. A comparative study of them is performed in terms of two
criteria: (i) the leave-one-out nearest neighbor error, which provides a
parameterless measure of the discriminative representational power and
(ii) a visual examination of the representational quality via a scatter plot
of the best three selected features.

Keywords: Feature-based representations, seismic-volcanic signals,
pattern classification.

1 Introduction

The design of automated classification systems is of great interest in volcano
monitoring in order to lighten the very time consuming task of distinguishing
among several classes of seismic-volcanic signals. This possibility has recently
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attracted the attention of researchers and practitioners from both pattern recog-
nition and volcano seismology fields. Several alternatives have been proposed and
tried for each of the stages in a conventional pattern classification system (see
Fig. 1): representation, adaptation and classification [1]. In spite of that and
particularly for representation, a comparative study of the different alternatives
has not been yet undertaken.

...

preprocessing

Acquisition and

Representation Adaptation Classification

Fig. 1. Block diagram of a system for classifying seismic-volcanic signals

The importance of the representation stage has been clearly explained by Duin
& P ↪ekalska in [2]: “The issue of representation is an essential aspect of pattern
recognition [...]. It largely influences the success of the stages to come”. The
goodness of a representation can be judged by applying both quantitative and
qualitative criteria. The first ones include —among others— interclass and intr-
aclass distances, probabilistic distance measures and performance classification
measures such as accuracies, confusion matrices and F-scores which are often
preferred to be estimated for the one nearest neighbor (1-NN ) rule. The second
ones encompass data visualizations such as scatter plots corresponding to data
projections in 2D or 3D by applying, for instance, feature selection techniques.

This paper, therefore, is aimed to briefly describe the different representations
for seismic-volcanic signals that are spread in the literature as well as to evaluate
them under the same conditions and in terms of some of the above-mentioned
criteria. A data set of labeled seismic signals from Nevado del Ruiz volcano
(NRV) - Colombia, containing hundreds of examples per five seismic-volcanic
classes, is used in the experiments.

2 Methods

2.1 Generation of Feature Representations

We compare four different representations in order to identify the one with the
highest discriminant power over seismic-volcanic signals.

The 1st set of features is the one presented by Curilem et al. in [3], where
the following eight features were proposed. Four features are computed from
the absolute value of the signal: 1) standard deviation, 2) mean, 3) median,
and 4) maximum value. Two features, 5) kurtosis and 6) skewness, describe
the sharpness and shape of the recording; they are obtained from the histogram
with 200 bins. The two remaining features are based on the spectral content. The
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seventh feature gives a representative value for the frequency content of the signal
and corresponds to 7) the mean frequency of the five highest peaks in its Fourier
transform. The last feature is 8) the energy in a frequency sub-band. This energy
is calculated from the coefficients obtained by a discrete wavelet decomposition
in 5 frequency levels, whose frequency bands are below 1.5625 Hz. The authors
proposed this frequency because, according to their experience, it allows a better
differentiation between long period seismic events and tremors (coming from
seismic-volcanic events). The chosen mother wavelet was the daubechies 7 due
to its similarity with the seismic-volcanic signal waveform. Finally, the feature
vector obtained is normalized to the interval [−1 1].

The 2nd set of features was originally proposed by Ibs-von Seht in [4]; they
describe waveform and spectrogram properties of seismic events by reading mag-
nitudes on the time domain and characterizing the signal in the frequency do-
main by means of visual-defined patterns from its corresponding spectrogram.
The features in this set are: 1) The event duration after raw signal segmenta-
tion. 2) The signal impulsiveness, which is a measure of how rapidly the signal
amplitude has risen at the beginning of the event, it is computed as follows: the
cumulative sum of signal absolute value σ (i) is calculated with i = 1, ..., n− 1,
where n is the sample index of the signal. Then, it is determined the index ic
where σ (i) begins to be greater than σ (i)∗2; thereby, impulsiveness is defined as
ic/n. 3) Dominant frequency of the seismic event, defined as the number of zero
crossings. The following features are calculated from the spectrogram: 4) The
difference between the greatest and lowest frequencies of the spectral contour. 5)
The frequency corresponding to the spectral contour centroid. 6) The frequency
of the energy maximum in the spectrogram. Feature vectors are standardized
(z-score) in order to guarantee a uniform influence of them during classification.

A 3rd representation for seismic recordings is based on the approach proposed
by Álvarez et al. in [5], in which they use speech recognition principles such
as the short-time spectral envelop representation of the signal by means of Mel-
Frequency Cepstral Coefficients (MFCC). That work contemplates the contribu-
tions made by the authors in previous publications, where different experimental
configurations of MFCC were tested. The procedure applied to calculate such
coefficients is not described here but can be found in [5] and references therein. In
summary, the 3rd feature set consists of a base vector of 13 coefficients (12 cep-
stral coefficients and the frame log-energy) plus their first order time derivatives,
calculated to take into account the frame information.

The 4th feature set has been recently applied in the seismic signal represen-
tation (e.g. in [6,7]). It consists in computing the spectrogram for each signal
by means of the FFT and windowing with a defined overlap; then, an average
of the spectrogram is calculated. For our experiments, the set of parameters
were: a 128-point FFT, a 64-point Hamming window and an overlap of 50%.
Thereby, the feature vector generated by this representation corresponds to the
mean value of each frequency band of the spectrogram across the time.
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2.2 Discriminant Feature Selection

Once the Representation stage is completed, a feature vector is obtained for each
example, which, depending on the employed representation type, could have a
large dimension; in consequence, many of its elements may be redundant or
even irrelevant for the classification process. For such cases, adapting (see Fig.
1 again) the representation by applying, for example, dimensionality reduction
techniques is suggested in order to find the most discriminant features as well as
to avoid the “curse of dimensionality”. Hence, feature selection algorithms can
be applied over the whole feature space to determine the best feature subset for
some criterion, by varying the number of selected features from 1 to n, where
n is the feature vector dimension. In this study, the well-known forward search
algorithm was employed, using leave-one-out cross-validation error as evaluation
criterion.

2.3 Classification and Evaluation

Most classifiers must be trained (parameter tunning) in order to maximize its
performance; however, since our aim is testing the goodness of different repre-
sentations, we restrict ourselves to a parameterless option: the 1-NN rule.

Considering that our study is about a multiclass problem, evaluation of clas-
sification performance was carried out with measures which allow evaluate the
performance per class, namely: confusion matrix , precision, recall and F1 scores;
furthermore, accuracy and its standard error is reported as a global measure.
Leave-one-out cross-validation was considered in order to make reproducible ex-
periments with consistent results.

3 Data Set Description: Seismic-Volcanic Classes, Signal
Acquisition and Preprocessing

The data set employed in this work consists of the four types of volcanic earth-
quakes typically defined by the volcanic seismology: volcano-tectonic (VT) events,
long period (LP) events, tremors (TR), and hybrid (HB) events, all of them
coming from Nevado del Ruiz volcano (NRV). Descriptions of their geophysical
nature can be easily found in the volcano seismology literature. In addition to
them, a fifth class —Tornillo (TO) events— is included in our study because
they are commonly registered in NRV.

The data were acquired by the station named Bis, which is provided with
a short period seismometer of three components that uses a 16-bit analog to
digital converter with a sampling rate of 100 Hz. In our study, only recordings
of the vertical component were employed.

Recordings are manually segmented by experts from Volcanological and Seis-
mological Observatory at Manizales (OVSM) who stamp the beginning of the
event (P wave) and duration (coda) through a primary processing software. Class
labels are also assigned by hand to each recording, choosing only one from the
above-mentioned seismic categories.
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For this study, examples of the most representative seismic signals that char-
acterize the activity of NRV were used as event classes, namely: VT (153), LP
(333), TR (242), TO (104), and HB (393).1 Employed data set contains 1225
segmented recordings with durations between 5.5 and 2442 s that correspond to
the volcanic activity from January 2010 to September 2013.

4 Experimental Results and Discussion

The four feature representations described in Sec. 2.1 were applied to the data
set; additionally, a 5th feature set generated by combination (concatenation) of
them was analyzed. Their discrimination power was tested by using the 1-NN
classifier.

Table 1 compiles the confusion matrices and other classification performance
measures per class defined for the feature sets. An analysis per class of the
achieved results indicates that for HB class, although 3rd and 4th representa-
tions show similar performances, the latter could be more appropriate because
it obtained more true positives; however, that representation is more susceptible
to confuse HB with LP events. Regarding LP class, it can also be well represented
by 3rd or 4th feature set but, as in the previous case, more LP examples are con-
fused as HB events with the 4th representation than with the 3rd one. This fact
can be explained by the combined nature of hybrid events, which implies both
rock fracture (typical VT mechanism) and fluid movements (LP mechanism) for
their generation.

Regarding the TO class, a better classification performance for it was shown
with the 3rd representation, whereas TR class obtained its best classification per-
formance with the 4th representation. It is remarkable that VT is the class with
less missclassifications, fact that is noticed with the overall highest precision, re-
call and F1 score figures achieved for this class when using the 4th representation
set, due to its well defined spectral components and characteristic waveform.

In general, according to the accuracy values and the standard errors obtained
for the four representations (namely: 0, 7061±0, 0130; 0, 7143±0, 0129; 0, 7829±
0, 0118 and 0, 8073 ± 0, 0113, in their respective order), it is noticed that the
averaged spectrogram-based representation leads to a better identification of
the seismic-volcanic events with respect to the other three representations.

The feature set comprised by the four concatenated representations obtained
a classification performance (see Table 2, part (a)) comparable with the one
achieved by the 4th representation, which was considered as the best in terms of
accuracy and standard error (0, 8073±0, 0113 vs 0, 8065±0, 0113). The goodness
of the 4th representation was slightly affected by the redundant information
contributed by the remaining features, leading to the requirement of a feature
selection in order to identify the most discriminant ones.

After applying a standard selection algorithm (forward search) over the con-
catenated featured set, the dimensionality was reduced from 105 to 57, which
represents a 46% less features to process in the subsequent stage; this is reflected

1 The number of examples per class is given between parentheses.



Representations for Seismic-Volcanic Signal Classification 445

Table 1. Confusion matrices and performance measures for the four representations
sets under comparison

Predicted class Performance measures

HB LP TO TR VT Precision Recall F1 Score

(a
)
1
s
t
re
p
.
se
t
[3
]

A
ct
u
a
l
cl
a
ss

HB 291 66 6 11 19 0,6736 0,7405 0,7055

LP 89 206 13 11 14 0,6561 0,6186 0,6368

TO 7 14 72 2 9 0,7200 0,6923 0,7059

TR 15 14 1 202 10 0,8670 0,8347 0,8505

VT 30 14 8 7 94 0,6438 0,6144 0,6288

(b
)
2
n
d
re
p
.
se
t
[4
]

A
ct
u
a
l
cl
a
ss

HB 310 57 0 4 22 0,6935 0,7888 0,7381

LP 91 190 20 14 18 0,6312 0,5706 0,5994

TO 8 24 64 4 4 0,7356 0,6154 0,6702

TR 7 7 2 218 8 0,8898 0,9008 0,8953

VT 31 23 1 5 93 0,6414 0,6078 0,6242

(c
)
3
r
d
re
p
.
se
t
[5
]

A
ct
u
a
l
cl
a
ss

HB 299 47 1 11 35 0,7438 0,7608 0,7522

LP 77 214 5 25 12 0,7782 0,6426 0,7039

TO 6 8 85 1 4 0,9239 0,8173 0,8673

TR 3 3 0 234 2 0,8478 0,9669 0,9035

VT 17 3 1 5 127 0,7056 0,8301 0,7628

(d
)
4
th

re
p
.
se
t
[6
]

A
ct
u
a
l
cl
a
ss

HB 317 64 2 6 4 0,7338 0,8066 0,7685

LP 91 220 7 15 0 0,7309 0,6607 0,6940

TO 5 13 82 4 0 0,9011 0,7885 0,8410

TR 10 4 0 227 1 0,8972 0,9380 0,9172

VT 9 0 0 1 143 0,9662 0,9346 0,9502

in a considerable computational cost reduction for classification. In addition, the
accuracy (0, 8637± 0.0098) was the highest one achieved among all representa-
tions; the same behavior is observed for the other performance measures for each
class, as shown in part (b) of Table 2.

In the resulting feature subset, 40% of the features belong to 4th represen-
tation and 35% to the 3rd one, which explains why those two feature sets give
a better representation for all classes. Accordingly, the three most discriminant
features identified by the selection algorithm are: the frequency corresponding to
the spectral contour centroid (from 2nd representation), the first order deriva-
tive of the first MFCC (from 3rd representation) and the standard deviation
of the seismic signal (from 1st representation). These three features were used
to generate a space in which the examples were placed in order to give a 3D
visualization and examine the compactness or dispersion of the classes; notice
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Table 2. Confusion matrices and performance measures for (a) combina-
tion/concatenation of the four representation sets and (b) best feature subset selected
by forward selection

Predicted class Performance measures

HB LP TO TR VT Precision Recall F1 Score

(a
)
C
o
m
b
in
ed

re
p
.

A
ct
u
a
l
cl
a
ss

HB 312 67 2 7 5 0,7446 0,7939 0,7685

LP 86 220 8 18 1 0,7261 0,6607 0,6918

TO 5 13 83 3 0 0,8830 0,7981 0,8384

TR 8 3 0 230 1 0,8880 0,9504 0,9182

VT 8 0 1 1 143 0,9533 0,9346 0,9439

(b
)
S
el
ec
te
d
se
t

A
ct
u
a
l
cl
a
ss

HB 336 49 0 7 1 0,8175 0,8550 0,8358

LP 58 259 3 11 2 0,8069 0,7778 0,7920

TO 7 9 84 4 0 0,9655 0,8077 0,8796

TR 6 4 0 231 1 0,9094 0,9545 0,9315

VT 4 0 0 1 148 0,9737 0,9673 0,9705
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Fig. 2. Scatter plot of the data set. Axes correspond to the best three features selected
from the concatenated feature sets.

in Fig. 2 that TO and TR classes are the more compact groups (although with
outliers); consequently, they are the classes with less false negatives.

5 Conclusion

A proper pattern representation is crucial to achieve an optimal performance
in an automatic recognition system. In the case of seismic-volcanic signals, a
considerable number of representations have been proposed, however, a direct
comparison of them had not been given. In this paper, a comparison of four
representations mainly based on spectral and morphological features has been
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presented. Performance measures for the 1-NN rule showed that the best signal
representation is the one based on averaged spectrograms (4th representation),
achieving an accuracy and standard error of 0, 8073± 0, 0113; furthermore, with
this feature set, VT class obtained the highest accuracy rate with respect to the
other classes. In addition, a selection of the most discriminant features indicated
that 1) the frequency corresponding to the spectral contour centroid, 2) the first
order derivative of the first MFCC and 3) the standard deviation of the seismic
signal, provide an acceptable representation. As future work, the evaluation of
features recently proposed in [8] is already under consideration.
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