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Abstract—The automated classification of seismic volcanic sig-
nals has been faced with several different pattern recognition
approaches. Among them, hidden Markov models (HMMs) have
been advocated as a cost-effective option having the advantages
of a straightforward Bayesian interpretation and the capacity of
dealing with seismic sequences of different lengths. In the volcano
seismology scenario, HMM-based classification schemes were only
based on a standard and purely generative scheme, i.e., the Bayes
rule: training an HMM per class and classifying an incoming
seismic signal according to the class whose model shows the
highest likelihood. In this paper, a novel HMM-based classification
approach for pretriggered seismic volcanic signals is proposed.
The main idea is to enrich the classical HMM scheme with a
discriminative step that is able to recover from situations when the
classical Bayes classification rule is not sufficient. More in detail, a
generative embedding scheme is used, which employs the models
to map the signals into a vector space, which is called generative
embedding space. In such a space, any discriminative vector-based
classifier can be applied. A thorough set of experiments, which is
carried out on pretriggered signals recorded at Galeras Volcano
in Colombia, shows that the proposed approach typically outper-
forms standard HMM-based classification schemes, also in some
cross-station cases.

Index Terms—Generative embeddings, hidden Markov models
(HMMs), pattern recognition, seismic volcanic signals, volcano
seismology.

I. INTRODUCTION

IN RECENT years, the importance of automatic analysis of
seismic volcanic signals has rapidly grown, permitting a

better understanding of the volcano activity and its interactions
with earthquakes and seismic processes [1], [2]. In this context,
a rather interesting and challenging problem is represented by
the classification task, which is aimed at differentiation among
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the different seismic events that can be caused by volcanic pro-
cesses. In the literature, many approaches have been proposed
to face this problem, with each one characterized by different
representation strategies, accuracy (ACC) levels, interpretabil-
ity features, efficiencies, and computational requirements (see
[3] for a comprehensive list of references).

Among all these techniques, a relevant class is composed by
methods based on hidden Markov models (HMMs) [4]–[13],
which are a probabilistic approach whose usefulness has been
assessed in many different pattern recognition scenarios. Such
models appear to be very useful for the analysis of seismic
signals, due to their capability to deal with highly variable
sequential data (possibly of different lengths), their clear and
elegant Bayesian interpretation, and their fast and effective
algorithms for training and testing [14]. Moreover, such models
can also be applied, either in their basic or extended form,
for simultaneous detection (signal versus noise) and classifi-
cation of continuous signals. Two appealing approaches, in
this sense, have been recently proposed [12], [13]. In [12],
Beyreuther and Wassermann demonstrated that the modified
versions of HMMs [e.g., the so-called hidden semi-Markov
models (HSMM)] can increase the performances, due to the
inclusion of more realistic time dependence in the model. In
[13], additionally, the HSMM-based approach is refined with
respect to the parameter fitting by introducing state clustering to
improve the time discretization without increasing the number
of states and, thereby, the computational complexity.

In this paper, a novel HMM-based approach for the clas-
sification of seismic signals is proposed, which is based on
recent advances in the machine learning and pattern recognition
fields. In particular, the proposed approach is based on a novel
classification paradigm that is alternative to the classical Bayes
rule, with this being the standard approach employed in all the
aforementioned papers [4]–[13]. The main idea is to follow a
hybrid generative–discriminative paradigm [15], [16], namely
to take advantage of the best of the generative and discrimina-
tive paradigms. The former paradigm is based on probabilistic
class models and a priori class probabilities, which are learnt
from training data and combined via the Bayes law to yield
posterior probabilities. This is the standard approach for HMM
classification schemes; the latter paradigm is aimed at directly
learning class boundaries or posterior class probabilities from
data, without relying on generative class models [17], [18]. A
clear example here is represented by support vector machines
(SVMs).
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Following this route, the typical HMM classification scheme,
which is purely generative, can be enriched with a discrimi-
native part; this hybrid scheme has shown to be beneficial in
different applications and scenarios dealing with HMMs [19]–
[23]. Encouraged by these results, in this paper, we explore the
use of such hybrid scheme in the seismic signal classification
scenario. In particular, here, we employ a generative embedding
scheme, where the basic idea is to exploit a generative model to
map the objects to be classified into a vector space, where dis-
criminative vector-based techniques (e.g., kernel-based SVMs)
can be used. These hybrid generative–discriminative schemes
seem to be very suitable for this context. It has been shown in
the literature (e.g., [23]) that they may be very advantageous
in situations when generative models cannot be properly esti-
mated, due to a bad choice of parameters, insufficient data, or
high complexity of the problem, with all these features char-
acterizing at different levels the seismic signal classification
problem. Moreover, their capability of being effective even with
somehow rough models may open the possibility of employing
such schemes for the classification of signals recorded from
different stations (e.g., applying a classifier trained on a station
to signals gathered from a newly established one, for which no
training signals are available). A study concerned to this issue
has also been provided in the final part of this paper.

More in detail, the approach that we propose works as fol-
lows. First, pretriggered seismic waveforms, i.e., detected by an
amplitude-ratio-based [short-term average/long-term average
(STA/LTA)] algorithm, are trasformed into the frequency do-
main (this being a common choice in many approaches since it
is widely accepted that differences in the spectral content allow
for discriminating different types of volcanic earthquakes [24]).
Then, class-related HMMs are learnt from training data, which
are subsequently used to project all the signals (both training
and testing) into a vector space (the generative embedding
space). Different embedding schemes have been tested, ranging
from the Fisher score, which is the first and most used one
[15], to more recent and HMM-specific methods [23]. Finally,
in the generative embedding space, a discriminative classifier
has been employed, namely a radial-basis-function (rbf) SVM.

In spite of having restricted ourselves to pretriggered data
(pretriggered data are often directly provided by most of the
seismic acquisition technologies1), our proposed approach can
be straightforwardly adapted to continuous seismic data by
considering the background noise as an additional class and by
using a sliding fixed-length window to define a portion of the
signal to be classified (clearly provided that the sampling rate is
the same during all the continuous acquisition). Alternatively,
HMM-based generative embeddings can also be used to cast
the triggering problem into a two-class classification task, i.e.,
distinguishing noise from seismicity. This alternative has been
adopted by authors working on continuous data [13].

1As an example, consider sensor technologies by Güralp Systems, whose
digitizers are able to simultaneously run a STA/LTA event-triggering algorithm
in parallel with the continuous acquisition. This way, the system can record
continuously at a relatively low sample rate and record at a much higher sample
rate during short periods of interest.

The proposed approach has been thoroughly tested with more
than 1250 pretriggered signals (divided into four classes) com-
ing from Galeras Volcano in Colombia. A comparison with the
classical generative scheme [4]–[11] is provided, showing the
superiority of the proposed approach with respect to standard
HMM-based classification schemes.2 An analysis of the impact
of the data set dimension on the performances is also provided
via learning curves. Finally, some insights on the applicability
of the proposed schemes to signals acquired in other stations
are given.

The remainder of this paper is organized as follows. In
Section II, we first review the theory of HMMs, mainly to fix the
notation; subsequently, the generative embedding procedure is
summarized. The proposed approach is described in Section III,
whereas experimental results and discussion are detailed in
Section IV. Finally, Section V concludes this paper. A list of
the abbreviations used throughout this paper is provided in the
Appendix.

II. BACKGROUND

A. HMMs

A discrete-time first-order HMM [14] is a probabilistic
model that describes a stochastic sequence3 O = (O1, O2, . . . ,
OT ) as being an indirect observation of a hidden Markovian
random sequence of states Q = (Q1, Q2, . . . , QT ), where,
for t = 1, . . . , T , Qt ∈ {1, 2, . . . , N} (the set of states). Each
state has an associated probability function that specifies the
probability of observing each possible symbol, given the state.
An HMM is thus fully specified by a set of parameters λ =
{A,B,π}, where A = (aij) is the transition matrix, i.e., aij =
P (Qt = j |Qt−1 = i); π = (πi) is the initial state probability
distribution, i.e., πi = P (Q1 = i), and B = (bi) is the set of
emission probability functions. If the observations are continu-
ous, each bi is a probability density function, e.g., a Gaussian
or a mixture of Gaussians. If the observations belong to a finite
set {v1, v2 . . . , vS}, each bi = (bi(v1), bi(v2), . . . , bi(vS)) is a
probability mass function with bi(vs) = P (Ot = vs |Qt = i)
being the probability of emitting symbol vs in state i.

The training of the model, given a set of sequences {o(i)}, is
usually performed using the standard Baum–Welch reestima-
tion technique [14], which determines parameters (A,B,π)
by maximizing probability P ({o(i)}|λ). The evaluation step,
i.e., the computation of the log probability logP (o|λ), given
model λ and sequence o to be evaluated, is performed using
the forward–backward procedure [14].

B. Standard HMM-Based Classification Scheme

Given a set of sequences {o(i)}, relative to a C-class prob-
lem, the standard classification scheme (i.e. the Bayes rule) is

2Other experiments—not shown here—show that the proposed scheme out-
performs also standard feature-based approaches, such as those based on neural
networks [25].

3We adopt the common convention of writing stochastic variables with
uppercase and realizations thereof in lowercase.
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realized in the following way.
1) Training: For every class c, HMM λc is trained, using

only the training sequences belonging to such class.
At the end of the training process, a set of HMMs
{λ1, . . . ,λC} is available.

2) Testing: An unknown sequence o = (o1, . . . , oT ) is as-
signed to the class whose model shows the highest like-
lihood (assuming that every class has the same prior
probability), i.e., label �(o) is determined as

�(o) = argmax
c

logP (o|λc). (1)

C. Generative Embedding Approach

Even if the Bayes rule represents the theoretical optimal
decision rule (i.e., leading to the minimum probability of error
[26]), in practice, generative HMMs may suffer from poor
discriminative capabilities. This is likely to occur in one of the
following scenarios:

• poorly estimated class models, e.g., due to insufficient
learning examples;

• improper models, e.g., due to bad model definition or
conditional dependence of the states;

• possible class overlap, as may occur, for instance, in
medical problems where patient diagnoses may not be
consistent between different medical doctors.

To face this issue, several efforts have been recently made to
enrich the generative paradigm with discriminative information.
Among others, the so-called generative embedding methods (or
generative score spaces) have gained remarkable importance.
In this class of schemes, the basic idea is to use the HMM
(or, in general, the generative model) to map the objects to be
classified into a vector space, where discriminative techniques,
possibly kernel based, can be used.

More formally, in our scenario, the generative embedding
is defined as function Φ that maps, through a set of HMMs
{λc}, an observed sequence o = (o1, . . . , oT ) into a vector.
Different approaches have been proposed to determine the set
of models used to build the embedding [27]. Here, we adopt
the following method: Given a C-ary classification problem,
we train one HMM per class, performing one embedding for
every model (resulting in C different embeddings) and, finally,
concatenating the vectors, i.e.,

Φ(o) = [φ(o,λ1), . . . , φ(o,λC)] . (2)

where φ(o,λc) is the embedding of the object o through
model λc.

In the following, we describe how φ(o,λc) is defined in the
four cases considered in this paper. All the quantities needed to
compute the different embeddings can be easily obtained using
the forward–backward procedure [14].

1) FSE: In the Fisher score embedding (FSE), each se-
quence is represented by a vector containing derivatives of the
log likelihood of the generative model with respect to each of
its parameters, evaluated in such sequence. Formally, we have

φFSE(o,λ)=

[
∂ logP (O=o|λ)

∂λ1
, . . . ,

∂ logP (O=o|λ)
∂λL

]�
∈R

L

(3)

where λi represents one of the L parameters of the model
λ (elements of the transition matrices, emission, and initial
probabilities). For more details see [28].

2) LLE: The log-likelihood embedding (LLE) is a very
simple generative embedding, which is first introduced in [22].
With this rule, every sequence is just mapped on its log-
likelihood, given the model. Formally, we have

φLLE(o,λ) = [logP (o|λ)] ∈ R. (4)

Even if very simple, this approach has shown to be very
effective in different cases, particularly when the HMM training
is adequately good [22], [23].

3) SE: The state embedding (SE) is a recently introduced
generative embedding [23], in which the ith component of
the generative embedding vector, for an observed sequence o,
measures the sum (over time) of the probabilities that the HMM
λ is in state i while observing o. Formally, we have

φSE(o,λ)=

[
T∑

t=1

P (Qt=1|o,λ), . . . ,
T∑

t=1

P (Qt=N |o,λ)
]�

∈RN .

(5)

Every component of the generative embedding vector can be
interpreted as the expected number of transitions from the
corresponding state, given the observed sequence [14].

4) TE: Transition embedding (TE) is similar to the SE, but
it considers probabilities of transitions rather than states [23].
Naturally, it is defined as

φTE(o,λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T−1∑
t=1

P (Qt = 1, Qt+1 = 1|o,λ)
T−1∑
t=1

P (Qt = 1, Qt+1 = 2|o,λ)
...
...

T−1∑
t=1

P (Qt = N,Qt+1 = 1|o,λ)
...

T−1∑
t=1

P (Qt = N,Qt+1 = N |o,λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
N2

.

(6)

Each of the N2 components of the vector can be interpreted as
the expected number of transitions from a given state to another
state, given the observed sequence [14].

III. PROPOSED APPROACH

The proposed approach is summarized in the following
steps.

1) Preprocessing. Seismic events in the continuous records
are detected by applying the so-called STA/LTA trigger
[3]. Afterward, spectrograms are computed by using a
128-point fast Fourier transform (FFT) and a Hanning
window of 128 points with an overlapping of 64 points.
The magnitude in decibels is computed as 20 log10 |X|,
where X is a matrix containing the short-time Fourier
transform of the input signal. Spectrograms were selected
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for representation because spectral analysis, either in
the frequency domain or the time–frequency domain, is
widely used for both visual [24] and computer-based
[1] inspections of seismic phenomena; other largely ap-
plied representations are based on descriptive spectral
parameters [25] and Mel-frequency cepstral coefficients
[29]. FFT length and window overlapping parameters
were chosen by taking into account a reasonable tradeoff
between resolution and computational load (size of X)
for the subsequent step.

2) HMM training. Given a C-class classification problem,
a set of HMMs λ1, . . . ,λC is trained, i.e., one per class.
Only training sequences (spectrograms) have been used
for learning the models. Gaussian HMMs have been
used, i.e., HMMs where the emission probability is a
Gaussian.4

3) Generative Embedding. Within this step, all the objects
involved in the problem (namely training and testing
sequences) are projected through the set of learnt models,
to the generative embedding vector space. The different
embeddings employed in this paper have been summa-
rized in the previous section.

4) Discriminative Classification. Now, the problem of clas-
sifying sequences has been cast to a more standard prob-
lem of classifying points, for which any vector-based
classifier can be used. As in many generative embedding
applications, in our approach, we employed SVMs with
an rbf kernel.

IV. EXPERIMENTAL EVALUATION

In this section, the experimental evaluation is proposed.
In particular, in Section IV-A, the seismic volcanic signals
employed in this paper are presented. Experimental details
are given in Section IV-B, whereas in the remaining sections,
three different experiments, with the corresponding results and
discussions, are presented.

A. Data: Acquisition, Types of Earthquakes and Preprocessing

The experiments were performed using signals coming from
Galeras Volcano in Colombia. This volcano is a stratovolcano
located at latitude 1◦13′43.8′′ N and longitude 77◦ 21′ 33′′ W in
the Colombian Andes mountains. The active crater is situated
about 7-km W from the city of Pasto, Colombia, and the summit
reaches an elevation of 4270 m above sea level (m.a.s.l.) After
more than four decades of dormancy, Galeras reawaked in 1988
and has had several major eruptions since then: in May 1989,
in July 1992, several ones during the first semester of 1993, the
second semester of 2004, the end of 2005, in January 2008,
during the whole 2009, and in January and August 2010.

—Recording system. Earthquakes at Galeras Volcano are
registered using a seismic network deployed by the

4We are aware that the standard choice in the seismic community is to use a
mixture of Gaussians; nonetheless, it has been formally proved in [30] that an
HMM with a mixture of Gaussians in every state is equivalent to an HMM with
more states having only one Gaussian per state. This removes one of the free
parameters to be set, namely the number of Gaussians for the mixture.

Volcanological and Seismological Observatory at Pasto
(OVSP). The network is composed by seven short-period
seismic stations; namely Anganoy (ANGV), Cráter-2
(CR2R), Urcunina (URC), Cobanegra, Cóndor, Nariño-2,
and Calabozo. In addition, there are two broadband stations
called Cufiño and Obonuco. The ANGV station is the
closest one to the active crater (0.8 km) and the highest
one (4227 m.a.s.l). Signals are telemetered by radio from
the station locations to the OVSP headquarters. The data
acquisition system includes a 12-bit analog-to-digital con-
verter with a sampling rate of 100.16 samples/s, an auto-
matic detection/segmentation stage based on the STA/LTA
algorithm, and a series of servers where segmented events
are recorded according to the Seismic Unified Data System
protocol.

—Types of volcanic earthquakes. Volcano-tectonic (VT)
earthquakes, long-period (LP) events, tremors (TR), and
hybrid (HB) events are the most important volcano-
induced earthquakes. An example of each one is shown in
Fig. 1, together with their corresponding spectrograms on
the bottom part of each waveform. A detailed description
of the mechanisms leading to these types of volcanic
earthquakes is out of the scope of this paper. The inter-
ested reader is referred to comprehensive reviews such as
[31]–[33].

B. Experimental Details

In our experimental evaluation, we performed three different
sets of experiments (largely detailed in the following), in two
different classification problems. The first classification prob-
lem involves three classes: VT earthquakes, LP earthquakes,
and TR events. This is a well established and interesting
classification task with many other examples in the literature.
The second classification problem is a more challenging one,
including four classes: the three considered above and the HB
class. Adding this class of events makes the problem more com-
plex since it is usually difficult to distinguish between LP and
HB earthquakes [7], [34]. However, from a practical point of
view, accurately identifying this class of earthquakes is one of
the most challenging tasks for staff members at the observatory.

In all the experiments, the earthquake signals were char-
acterized by the spectrograms, as described at the beginning
of Section III. HMM training has been performed using the
Baum–Welch procedure, stopping it after likelihood conver-
gence. Initialization has been carried out, as in many applica-
tions, with a clustering based on Gaussian mixture models. The
Gaussians in the emission probabilities were assumed to have
a diagonal covariance matrix (due to the high dimensionality
of the signal, full covariance matrices would have been poorly
estimated). In the generative embedding space, SVMs were
employed, using an rbf kernel. Parameters C and σ were es-
timated with a cross-validation (CV) procedure on the training
set, as implemented in the PRTools MATLAB toolbox.5 In all
cases, classification ACC values were computed using averaged
holdout CV, with results averaged over 20 repetitions.

5See http://www.prtools.org/.
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Fig. 1. Examples of volcanic earthquakes and their corresponding spectrograms. Signals were recorded at the ANGV station in Galeras Volcano. (a) VT event.
(b) LP event. (c) TR event. (d) HB event.

TABLE I
AVERAGED ACC VALUES FOR THE BAYES RULE AND FOR THE PROPOSED APPROACH WHILE VARYING THE NUMBER OF STATES N AND THE

EMBEDDINGS (SEE SECTION II FOR THE MEANING OF THE ACRONYMS): (a) THREE-CLASS PROBLEM. (b) FOUR-CLASS PROBLEM

In the remaining part of this section, the three experiments
are detailed. In particular, in the first one, a comprehensive
comparison between the proposed approach and the standard

Bayes rule is provided by varying the number of HMM states
and the different embeddings. An analysis of the confusion
matrices for the best cases is also provided. In the second
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experiment, we investigate the impact of the dimension of the
data set for the two different approaches, via learning curves.
Finally, in the third experiment, we compare the two approaches
with respect to their generalization capability when changing
the recording station.

C. Experiment 1: Comparison

In this first experiment, we compare the proposed approach
with the standard HMM-based Bayes rule on the two classifi-
cation problems. We randomly selected 100 events per class,
resulting in problems with 300 and 400 events, respectively.
Following the averaged hold-out CV protocol, these data sets
have been then randomly divided into two parts: one used
for training and one for testing (with the process repeated 20
times). We employed the four generative embeddings described
in Section II. In order to assure a fair comparison, the same
HMMs were used for the Bayes rule and for the embeddings.
Averaged classification ACC values (together with the standard
errors of the mean, i.e., between brackets) for the two classifi-
cation problems are shown in Table I, for different number of
HMM states N .

In order to get an idea of the statistical significance of
the differences in the table, we performed a standard t-test
comparing the CV results, with a significance level of 5%. In
the table, we put an asterisk (∗) in those entries where the
hypothesis “the averaged ACC of the corresponding generative
embedding and that of the Bayes rule are equal” cannot be
rejected with a confidence level of 5% (in other and simpler
words, an asterisk in a generative embedding column indicates
that there is no statistically significant difference within that
generative embedding and the Bayes result).

From the tables, some comments can be evinced:
• As a general comment, we can notice the beneficial impact

of the generative embedding scheme in the HMM classi-
fication. This is more evident in the three-class problem,
where almost all the classification ACC values obtained
with the generative embedding schemes are statistically
significantly better than those obtained with the Bayes
rule. In the four-class problem, this trend is maintained,
although in a less pronounced way.

• The behavior of the results when varying the number of
states confirms the robustness of the generative embedding
scheme with respect to poor models. The Bayes rule
suffers from a bad choice of the parameter N (for ten
states, the performances are around 56%; with 15 states,
the performances are even worse), whereas the generative
embedding scheme does not suffer too much. Even in case
of nonproper models, the discriminative part of the scheme
succeeds in finding reasonable boundaries, possibly due to
the still descriptive information distilled by the generative
part.

• By looking at the behavior of the different embeddings, we
can notice that the best results are obtained with LLE and
with FSE. In particular, FSE seems to be better with small
models, whereas LLE always maintains a reasonably good
behavior. In fact, the best overall results in both problems
were obtained with FSE and the smallest models. This is

TABLE II
AVERAGED CONFUSION MATRICES AND PERFORMANCE MEASURES

(TP, FP, AND ACC, GIVEN IN DETECTION RATE) OF THE PROPOSED

APPROACH AND OF THE BAYES RULE IN THE DIFFERENT

CLASSIFICATION PROBLEMS. (a) BAYES RULE (THREE-CLASS PROBLEM).
(b) FSE (THREE-CLASS PROBLEM). (c) BAYES RULE (FOUR-CLASS

PROBLEM). (d) FSE (FOUR-CLASS PROBLEM)

somehow expected since the FSE space has a dimension
linked to the numbed of parameters (whereas LLE has a
dimension linked to the number of classes in the problem).
Therefore, by increasing too much the number of states, it
is likely that the highly dimensional FSE space induces the
well-known curse of the dimensionality problem.

It is interesting, from an application point of view, to better
understand the behavior of the proposed approach with respect
to the different classes. In order to do that, we reported the con-
fusion matrices for both the generative and Bayes approaches.
For the sake of interpretation, we decided to show only the
confusion matrices relative to the best generative embedding
result (FSE with a two-state model, for both problems) and for
Bayes (five- and four-state models, for the first and the second
problems, respectively). The obtained confusion matrices, av-
eraged over the 20 runs of the CV experiment, are displayed in
Table II.

In the three-class problem, the most remarkable result is
the 13% difference, i.e., in true positive rate (TP) and ACC,
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Fig. 2. Learning curves for the proposed approach and the Bayes rule, in two different situations and for the different problems. (a) Three-class problem: Best
parameters for the Bayes rule. (b) Three-class problem: Best parameters for the generative embedding approach. (c) Four-class problem: Best parameters for the
Bayes rule. (d) Four-class problem: Best parameters for the generative embedding approach.

between the FSE and the Bayes rule for the LP class. Such a
result reveals a great effect of the proposed approach on the
ability to distinguish LP signals, as confirmed by the reduction
of the number of LP events wrongly identified as VT or TR
ones. In detail, confusions of LP events as VT events were
reduced from 7.6% to 0%, and similarly, confusions of LP
events as TR events decreased from 10.4% to 2.7%. As a result
of this improvement, the false positive (FP) detections of VT
and TR events decreased in 4% and 3%, respectively.

Recognition ACC of LP signals also significantly increased
with the FSE embedding in the four-class problem (from 83%
to 97%), which is consistent with an equal percentage increase
in TP for that class. In both approaches, HB signals are fre-
quently confused with VT ones. That confusion is slightly
lower in the opposite relation, i.e., VT events wrongly recog-
nized as HB ones. In contrast with the increase in ACC for the
LP class, a 4% performance deterioration for the VT class is ob-
served when applying the FSE. In spite of that, an improvement
of the overall ACC is achieved by the proposed approach.

D. Experiment 2: Learning Curves

In this experiment, we tested the proposed approach with
respect to different sizes of the data set. In order to do that,

we repeated the aforementioned experiments while changing
the number of events per class from 50 to 150. In this set
of experiments, we select the best generative embedding from
the previous analysis (FSE). In order to be fair, we considered
two situations. We set the number of states as the best for
the Bayes rule (five- and four-state models, for the first and
second problems, respectively) and as the best for the proposed
approach (two-state model). Learning curves are shown in
Fig. 2. In order to get an idea of the statistical significance,
we performed again the t-test explained in the previous section
(with a confidence level of 5%). In the plot, a diamond indicates
that the corresponding values are not statistically significantly
different; they are present only in the third plot.

From the plot, it is evident that the proposed approach
outperforms the Bayes rule, except for two particular cases
of the four-class problem with the approaches tuned with the
best parameters for the Bayes rule [see Fig. 2(c)]: 1) at the
beginning; and 2) in about the middle of the studied range for
the training set size.

E. Experiment 3: Cross-Station Experiment

In this experiment, the generalization capability of the pro-
posed approach is tested in a very challenging scenario, namely
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TABLE III
AVERAGED ACC VALUES OF THE BAYES RULE AND OF THE PROPOSED APPROACH IN THE DIFFERENT PROBLEMS OF THE CROSS-STATION

EXPERIMENT. (a) THREE-CLASS PROBLEM, TWO STATES. (b) THREE-CLASS PROBLEM, FIVE STATES. (c) FOUR-CLASS

PROBLEM, TWO STATES. (d) FOUR-CLASS PROBLEM, FOUR STATES

using data coming from different stations. It is reasonable
that several stations are positioned on a volcano, observing
and registering the same seismic events. Clearly, registered
signals are different due to the so-called source, path, and
local site effects that introduce time delays (distance from the
source) and amplifications or attenuations of signal compo-
nents at certain frequencies (local geology acting as a filter)
[3]. They may also differ due to differences between sensor
and preprocessing–transmission technologies. The usefulness
of multiple stations in the volcano signal classification task
has been recently studied [35], particularly from the multiple-
classifier-system perspective.

The idea here is to train the classifier system using signals
coming from one station and testing it with signals from a
different one (hereafter cross-station operating condition). Such
condition may be of great practical impact, e.g., in cases when
a new station is set (and no training data are available) or when
a station is out of service, e.g., due to preventive maintenance,
power outage caused by ash/snow accumulation on the solar
panels, damage caused by lightning or vandalism, and either a
nearby or a portable recording station is used as a temporary
replacement.

In our experiment, we used signals recorded at three different
stations, i.e., ANGV, URC, and CR2R. The results, for the
three-class problem and the four-class problem are reported in
Table III (again, setting the number of states as the best for
the Bayes rule and as the best for the proposed approach).
A summary is presented in Table IV, where all off-diagonal
elements were averaged to give an immediate idea.

TABLE IV
SUMMARY OF AVERAGED ACC VALUES OF THE BAYES RULE AND OF

THE PROPOSED APPROACH IN THE DIFFERENT PROBLEMS OF

THE CROSS-STATION EXPERIMENT: ALL OFF-DIAGONAL

ELEMENTS HAVE BEEN AVERAGED

It is evident from Table IV that the proposed approach is
more robust to the change of the station than the Bayes rule,
thus confirming the suggestions given in the literature (see, e.g.,
[23]) that hybrid generative–discriminative schemes are more
robust with respect to poor models (as those estimated in a
different station can be).

By carefully looking in Table III, we can observe that even
if the ANGV station is the one used by seismologists at
OVSP as the main reference to classify the events, the best
results for systems trained and tested in the same station are
generally obtained for signals from CR2R. Another point is
that the best cross-station operating condition result (training
with URC signals and testing with ANGV signals) is 0.7953,
obtained with the proposed approach. This is remarkably high,
considering the challenging nature of the performed experiment
and opening the possibility of the realization of a classification
system that can be independent from the actual station from
which the signals were gathered; in this sense, HMMs are seen
as feature extractors more than being simple classifiers. When
used as classifiers, HMMs do not go over 0.6847 of ACC.
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V. CONCLUSION

In this paper, a novel HMM-based system to classify seismic
volcanic signals has been presented, based on a generative
embedding scheme. We have shown, through an extensive set of
experiments, that the proposed approach significantly improves
the performances of the standard HMM-based schemes that
rely on the Bayes decision rule. Among the four different
generative embeddings that were applied, FSE with the smallest
models (two states) always yielded the best results. Most of the
performance improvement can be attributed to the ability of the
proposed approach to distinguish LP seismic signals. We also
proved that the HMM-based generative embedding approach
is a preferable alternative to the standard HMM-based Bayes
rule when training the models with signals recorded in one
station but testing it, if needed due to technical contingencies,
on signals from a different one.

APPENDIX

ABBREVIATIONS

ACC accuracy.
ANGV Anganoy station.
CR2R Cráter-2 station.
CV cross-validation.
FFT fast Fourier transform.
FP false positive rate.
FSE Fisher score embedding.
HB hybrid.
HMM hidden Markov model.
LLE log-likelihood embedding.
LP long period.
LTA long-term average.
OVSP acronym in Spanish for Volcanological and Seismo-

logical Observatory at Pasto.
rbf radial basis function.
SE state embedding.
STA short-term average.
SVM support vector machine.
TE transition embedding.
TP true positive rate.
TR tremor.
URC Urcunina station.
VT volcano–tectonic.
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