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Abstract

In this paper a novel 2D shape recognition approach

is proposed. The main idea is to exploit in this context

the huge amount of work carried out by bioinformati-

cians in the biological sequence analysis research field.

In the proposed approach, we encode shapes as biologi-

cal sequences, employing standard and well established

sequence alignment tools to devise a similarity score, fi-

nally used in a nearest neighbour scenario. Despite its

simplicity, obtained results on standard datasets are re-

ally encouraging.

1. Introduction

Recognition of 2D shapes is without doubts an im-

portant and still open research area in computer vision

and pattern recognition, very often representing the ba-

sis for 3D object classification. Many approaches have

been proposed in the past [10, 16, 12], many of them

based only on features extracted from the boundary: ac-

tually, object contours have shown to be very expressive

in many contexts.

In this paper, a novel method for contour-based 2D

shape recognition is proposed, which exploits tech-

niques and solutions coming from the biological se-

quence alignment field [6]. From a very general point

of view, the proposed approach starts from the observa-

tion that, in the past, the huge and profitable interaction

between pattern recognition and biology/bioinformatics

was mainly unidirectional, namely devoted to study

how to apply PR tools and ideas to analyse biological

data1. Here we would like to investigate a somehow

unexplored alternative way of interaction, which con-

sists in employing advanced bioinformatics solutions

to solve pattern recognition problems. Actually, there

1In some other cases, biological/bioinformatics problems have led

to the definition of novel methodological pattern recognition issues – a

clear example is the biclustering problem (simultaneous clustering of

features and patterns), which was initially introduced for the analysis

of expression microarray data [11].

are application scenarios in the bioinformatics field –

like sequence modelling, phylogeny, database searches

– which have been deeply and successfully investigated

for many years. We are convinced that such fields can

offer interesting solutions to pattern recognition prob-

lems, if we are able to encode our problem in biological

terms. A very recent and interesting example of such

an alternative way of thinking is the Video Genome

Project2, where internet videos were encoded as “video

DNA sequences” and analysed with phylogenetic re-

lated tools [3].

In this paper we pursue this idea by exploiting the

huge amount of work carried out in the field of biolog-

ical sequence analysis [6] to face the 2D shape classifi-

cation problem. In particular, we propose to transform a

sequence contour into an aminoacid sequence, employ-

ing standard sequence alignment tools (like the Smith-

Waterman [14] and the Needleman-Wunch [13] algo-

rithms) to devise a sequence similarity measure. Such

similarity is finally used in a standard nearest neigh-

bour classification scenario. Even if there have been

some recent attempts in using in the 2D shapes context

algorithms originally proposed for aligning biological

sequences (see e.g. [4, 7]), our point of view is com-

pletely different, trying to define the 2D shape classi-

fication problem in “biological” terms. We tested our

approach with two standard datasets; even if we applied

a very simple “shape to biological sequence” mapping

as well as the basic standard bioinformatics solutions to

this problem, we obtained very promising results, also

in comparison with the state of the art.

2. Background: sequence alignment

Understanding and modelling living cell behaviour

is strongly based on the analysis of sequences, both

nucleotide sequences – i.e. strings made with the 4

symbols of DNA, namely ATCG – and aminoacid se-

quences – i.e. strings with symbols coming from a 22

letters alphabet. Sequence alignment represents for sure

2See http://v-nome.org/about.html
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Sequence 2

Aligned Sequence 1

Aligned Sequence 2

Sequence 1 TACTAGGCATGAC

ACAGGTCAGTC

TACTAGG−CATGAC

−AC−AGGTCA−GTC

Match Mismatch

Gap

Figure 1. Alignment of two sequences.

an important basic operation, crucial in many computa-

tional biology and bioinformatics analyses. As can be

intuitively understood, the alignment of two sequences

is aimed at finding the best registration between them

(namely the best way of superimposing one sequence

on the other). From a practical point of view, alignment

is obtained by inserting spaces inside the sequences (the

so called gaps) in order to maximize the point to point

similarity between them – see Fig. 1. A huge amount

of approaches have been proposed in the past to face

this problem (see [9, 8] for recent reviews and perspec-

tives on the topic), with already effective methods aged

in the seventies or early eighties [13, 14]. A thorough

treatment of this topic is of course out of the scope

of this paper. Here, since we are interested in inves-

tigating the basic potentialities of our ideas, we chose

two very basic pairwise alignment tools (namely the

Needleman-Wunsch [13] and the Smith-Waterman [14]

algorithms), representing the reference in this field –

being extensively employed since their proposal in the

seventies/eighties.

In particular, the NeedlemanWunsch algorithm [13]

is a dynamic programming method for finding the best

global alignment between two sequences – it represents

the first application of dynamic programming to biolog-

ical sequence comparison. The basic idea is to maxi-

mize the similarity between two sequences by i) mak-

ing use of a similarity matrix (also called Scoring Ma-

trix) which defines the similarity between every pair of

symbols in the alphabet and ii) by taking into account

penalty values for gap opening and extension. There

are many possible scoring matrices, which are typically

built on the basis of biological knowledge 3.

On the other side, the Smith-Waterman algorithm

[14] is a dynamic programming method for local

alignment, which identifies homologous regions (i.e.,

(roughly speaking, similar regions) between sequences

by searching for optimal local alignments. To find the

3For example, in the nucleotide case, it is known from the chemi-

cal composition of DNA basis that it is more difficult to have a change

from an Adedine to a Thymine rather than to a Guanine.

optimal local alignment, again a scoring system is used,

which includes a set of specified gap penalties.

3. The proposed approach

In order to apply the biological sequence align-

ment tools to the 2D shape recognition problem we

have to transform 2D shapes into biological sequences.

Many different transformations can be adopted, involv-

ing complicate shape descriptors as well complicated

mappings from them to aminoacids4. Here, in order

to really investigate the basic potentialities of our ap-

proach, we adopt a definitely simple scheme, describ-

ing the shape with one of the simplest descriptors (the

8 directional chain code). Subsequently we mapped

each chaincode value into one of the following eight

aminoacids, in a one to one fashion: A, R, N, D, C, Q,

E, and G – namely the first 8 as given in Matlab ordering

– in this way no information loss is present.

Given the encoding, the similarity between two

shapes is computed via the alignment similarity score of

the corresponding biological sequences: such quantity,

which is a by-product of the alignment process, mea-

sures how “well aligned” the two shapes are. A nearest

neighbour classifier can be finally used for the classifi-

cation. An example of shapes (and the relative align-

ment obtained with Needleman Wunsch algorithm) is

shown in Fig. 2. It can be noticed that the alignment

between the first two shapes – Fig. 2(b) –, which be-

long to the same class, is definitely better (the number

of matches is higher) than the alignment between the

first and the third shape.

As a final comment, we have to say that this scheme

is very simple, and in some cases approximated: for ex-

ample the closeness of the boundary in 2D shapes does

not have a clear biological counterpart in biological se-

quences; moreover, it can be enhanced in many differ-

ent ways – as learning the mapping from a dataset, using

quantized continuous shape descriptors to cover all the

22 aminoacids, defining a proper shape specific scoring

matrix and so on. In any case, the results we obtained

were very promising.

4. Results

The proposed idea has been tested on two different

datasets, namely the Chicken Pieces dataset5 [1] and

the Vehicle Shape dataset6 [15]. The first dataset con-

4Reasonably, we decided to encode shapes into aminoacid se-

quences, these allowing more sophisticated description if compared

with nucleotide sequences (alphabet of 22 symbols rather than 4).
5http://algoval.essex.ac.uk:8080/data/sequence/chicken/.
6http://visionlab.uta.edu/shape data.htm.
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Figure 2. (Top) Three shapes and the corresponding sequences; (Bottom) Sequence alignment.

Note: In the alignment, a pipe connects two matched aminoacids, while a dot connects similar

residues that are not exact matches.

tains 446 binary images (silhouettes) of chicken pieces,

each belonging to one of five classes representing spe-

cific chicken parts.The second dataset contains 120 ve-

hicle shapes extracted from traffic videos using mo-

tion information – as described in [15] –, classified in

four classes.Leave One Out accuracy was computed for

the chicken dataset (as in many nearest neighbour ap-

proaches dealing with the chicken dataset), whereas in

the vehicle shape dataset the accuracy was determined

with 10-fold cross validation (as specified in [15]). The

classification, in both cases, has been carried out with

the nearest neighbour rule.

Two crucial parameters that should be defined when

aligning two sequences are the scoring matrix and the

gap opening/extending penalty. As explained in the

previous Sections, the former defines the price of ev-

ery substitution in the matrix, whereas the latter defines

the penalty in the similarity got while opening (or ex-

tending) a gap region. These two parameters typically

have a clear biological meaning, and can change drasti-

cally the final result. In this preliminary evaluation, we

performed two sets of experiments: in the former (top

part of Table 1) we tried to keep as easiest as possible

the scheme, leaving such parameters as set by default

in the Matlab implementation (Matlab bioinformatics

toolbox); in the latter (bottom part of Table 1) we re-

laxed one biological assumption which does not hold in

the 2D shape classification case – this being of course

only the first step through the tailoring of the sequence

alignment tools to our problem. In particular we ob-

serve that in biology the gap penalty is typically high:

it’s not really desirable to break a biological sequence.

In the shape case, nevertheless, such a strong constraint

does not hold: actually, gaps can really help in dealing

with occlusions and – mainly – scale changes. From

results in table 1 – where we reduced the gap opening

penalty (and the gap extending penalty) – it seems evi-

dent the beneficial effect of such operation, this encour-

aging us to go ahead along this direction.

In table 2 we provide recent results from the state of

the art on the same datasets. Many different approaches

have been tested on the Chicken dataset, using simple as

well complicated classifiers (see for example compar-

isons reported in [2, 5]): in Table 2(a) we reported only

those based on nearest neighbour rules – taken from [2].

Even if in some cases different experimental protocols
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Method Chichen Vehicle

SW 0.8229 0.8500

NW 0.8027 0.8500

SW (reduced gap penalty) 0.8341 0.8500

NW (reduced gap penalty) 0.8229 0.8583

Table 1. Accuracies for the proposed

methods: SW (Smith-Waterman) and NW

(NeedlemanWunsch)

have been employed, it seems evident that the proposed

approach represents a promising alternative to classic as

well as to advanced schemes. Moreover, as can be seen

from Table 2(b), our approach also comparably com-

pares with other techniques employing more sophisti-

cated classifiers (as SVM) – here the results, all taken

from [15], are fully comparable (the same validation

protocol was employed).

Methodology Accuracy

1-NN + Levenshtein edit distance ≈ 0.67

1-NN + approximated cyclic distance ≈ 0.78

K-NN + cyclic string edit distance 0.743

1-NN + mBm-based features 0.765

1-NN + HMM-based distance 0.738

1-NN + IT kernels on n-grams 0.814

Our best (SW – reduced gap penalty) 0.834

(a)

SVM + curvature 0.6250

SVM + Fourier Descriptors 0.8250

SVM + Zernike moments 0.7917

Ergodic HMM + Max Lik. 0.6250

Circular HMM + Max Lik. 0.7333

Left Right HMM + Max Lik. 0.7083

HMM + Weighted likelihood 0.8417

Our best (NW – reduced gap penalty) 0.8583

(b)

Table 2. Comparative results: (a) Chicken
dataset; (b) Vehicle dataset.

5. Conclusions

In this paper we preliminary investigated the idea of

exploiting bioinformatics tools to solve Pattern Recog-

nition problems. In particular we cast the 2D shape

analysis problem into the biological sequence aligment

problem, for which a huge amount of approaches have

been proposed in the bioinformatics community. Ob-

tained results encourage us to go ahead along this re-

search line.
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