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ABSTRACT In this work, we report a simple method to direct identify nanometer sized tex-
tures in composite materials by means of AFM spectroscopy, aiming at recognizing structured
region to be further investigated. It consists in acquiring a set of dynamic data organized in spec-
troscopy maps and subsequently extracting most valuable information by means of the principal
component analysis (PCA) method. This algorithm projects the information of D spectroscopy
curves, each containing P data, acquired at each point of an LxC grid into a subset of LxC maps
without any assumption on the sample structure, filtering out redundancies and noise. As a conse-
quence, a huge amount of 3D data is condensed into few 2D maps, easy to be examined. Results of
this algorithm allow to find and locate regions of interest within the map, allowing a further reduc-
tion of data series to be extensively analyzed or modeled. In this work, we explain the main
features of the method and show its application on a nanocomposite sample. Microsc. Res. Tech.
73:973–981, 2010. VVC 2010 Wiley-Liss, Inc.

INTRODUCTION

Local properties of materials with nanometer resolu-
tion can be probed by means of atomic force micro-
scope, performing force spectroscopy experiments: in
these experiments, tip-sample interaction forces are
measured acquiring quasi-static cantilever deflection
as a function of separation while the tip is brought into
contact with the sample and then far apart from it.
Force-distance (FD) curves contain valuable informa-
tion about nanoscale material properties such as
adhesion, elasticity and plasticity, as well as friction
(Cappella and Dietler, 1999).

Interaction depends both on sensor (cantilever and
tip) and on the specimen properties: calibration of the
first and a proper modeling of the interaction allow
reconstructing local feature of the sample. Resolution
of the order of contact area, usually 10 nm or better,
can be obtained.

The choice of the proper mathematical model
requires a priori knowledge of the interaction and is
affected by experimental uncertainties (e.g., tip curva-
ture radius): commonly used mathematical models, as
Hertz (Herz, 1882), JKR (Johnson et al., 1971) and
DMT (Derjaguinet al., 1975) models, take into account
rounded tips with well known curvature radius and
flat surface—hypothesis is not always verified—in
presence (JKR and DMT) or in absence (Hertz) of adhe-
sion. In many interesting case -such as biological sam-
ples and nanocomposites—a more refined model is
often needed, also including additional parameters
(such as roughness or specific binding): as conse-

quence, computational weight for modeling rapidly
increase; an accurate evaluation of each FD curve of a
3D spectroscopy map (2D arrays of FD curves) is, in
most cases, time consuming; therefore information in
them is often retrieved selecting few representative
curves and considering few features in them.

If the same operation is done while dithering the
cantilever close to its resonance frequency, tip-sample
interaction is probed in dynamic mode (dynamic force
spectroscopy): several parameters can be measured
as a function of distance (such as static deflection,
amplitude, phase, higher harmonics, frequency, etc.)
containing a larger amount of data: valuable informa-
tion about local interaction can be extracted or recon-
structed, revealing material properties such as short
and long ranges forces (Giessibl, 1997), friction
(Holscher et al.,1998), plasticity (Butt et al., 2005),
chemical composition (Magonov et al.,1997) and so on.
Dynamic parameters have been first inverted to recon-
struct tip-sample interaction forces in case FM-AFM
by Durig using Hamilton-Jacobi perturbation theory in
large amplitude oscillation—or short range forces—
case (Durig, 2000), and then generalized by Sader et al.
(2004, 2005) considering first resonance. Durig also
investigated dynamic behavior by considering ampli-

*Correspondence to: Dr. Bruno Torre, Istituto Italiano di Tecnologia (IIT)., Via
Morego, 30 16163 Genova, Italy. E-mail: bruno.torre@iit.it

Received 15 January 2010; accepted in revised form 18 January 2010

DOI 10.1002/jemt.20837

Published online 15March 2010 in Wiley Online Library (wileyonlinelibrary.com).

VVC 2010 WILEY-LISS, INC.

MICROSCOPY RESEARCH AND TECHNIQUE 73:973–981 (2010)



tude and phase on higher harmonics, using Chebyshev
polynomial expansion method (Durig, 1999).

In AM-AFM case Holscher (2006) developed an inte-
gral equation allowing the inversion of experimental
parameters in case short range (large amplitude) inter-
actions. More general case has been considered by Lee
and Jhe (2006) using modified Bessel functions and by
Hu and Raman (2008) using Chebyshev polynomial
expansion method. Sugawara proposed that phase-
Modulation method allows preventing tip phase jump
instabilities (Sugawara et al., 2007); this has been
experimentally verified by Holscher (2008) using non
commercial hardware setup.

Under particular oscillating regimes, also subhar-
monic and chaotic cantilever dynamics, fingerprint of
tip-sample interactions, have been found (Jamitzky
et al., 2006).

All these huge amount of information requires a
higher computational weight to reconstruct physically
valuable parameters from comparison with contact
models (Unertl, 1999); as a result a fast and easy anal-
ysis relying on these dynamic methods is still far to be
routinely implemented to spectroscopy maps or it is
limited to few information.

Recently, principal component analysis (PCA)
method has been successfully applied to compress com-
plex data series from band excitation (BE) technique
(Jesse et al., 2007; Jesse and Kalinin, 2009) to high-
light contrast on magnetic and piezoelectric structure,
for further modeling and analysis.

In this work, we focus on cantilever kinematics, as
an intermediate step to facilitate further analysis, in
order to classify dynamic spectroscopy maps on the ba-
sis of a reduced parameter set, using a widely applica-
ble statistical analysis. It consists in applying PCA
algorithm on a LxC (L lines by C columns) spectroscopy
map, where each voxel is a set of 2xD arrays of P points
(usually several hundred to some thousands) from in-
dependently sampling D parameters (e.g., amplitude
and phase on fundamental and higher harmonics,

deflection, frequency, damping etc.) while approaching
and retracting from the surface. At a first step, data is
analyzed separately on each channel, grouped in D
maps containing LxCxPx2; subsequently data from all
channels (with the exception of Z LVDT, see below) is
grouped together and analyzed: in this way data is
reduced to D11 maps with LxC dimensionality,
summing up independent information from each pa-
rameter and from all of them. This two-step process is
intended to find different features within the probed
region and to evaluate, at the same time, the response
on different dynamic parameters: results therefore pro-
vide a robust and quick screening method to locate
region of interest (ROI) on the sample, where further
investigations can be addressed, also providing indica-
tions on the type of analysis that can be used to high-
light features.

MATERIALS ANDMETHODS
Sample Preparation

Sample is prepared using a 1 mM solution of 99%wt
of poly(ethylmethacrylate-comethylacrylate) (PEMMA)
and 1%wt. of g–Fe2O3 nanoparticles of in chloroform as
described in Fragouli et al. (in preparation); a film
obtained drop casting the solution on a clean glass and
drying it in saturated chloroform environment over-
night without external magnetic film. Film is embed-
ded in EPONTM 812 resin and 200-nm thick slices are
cut using a Leica EM UC6 Ultramicrotome, with cut
direction normal to the polymer film, so that each slice
expose a sharp polymer-resin interface. Slices have
been then suspended in de-ionized water and deposited
on a microscope glass substrate. A sharp buried inter-
face between polymer and resin is accessible for AFM
measurements. TEM images on sample series prepared
from the same film (data not shown) reveal �100–200-
nm thick particle layer at the interface, corresponding
to a uniform coverage on the polymer film at top sur-
face.

AFM Measurements

Data is acquired by means of MFP-3D atomic force
microscope (Asylum Research, Santa Barbara CA)
using Olympus OMCL-AC240TS rectangular silicon
cantilevers (sensor parameters can be find in Table 1).
These sensors have a intermediate spring constant
between contact and noncontact cantilevers, can there-
fore be used for spectroscopy and imaging purpose both
in static and dynamic mode: many metal coated canti-

Fig. 1. Convergence of variance as a function of components num-
ber in PCA. Depending on the signal, number of component to reach
the threshold of 95 or 98% of variance can span from some units to
some or several tens. Most relevant part of the information is attrib-
uted to these components, while others are regarded as noise.

TABLE 1. Most relevant cantilever and tip parameters for the sensor
selected to collect data presented below

Parameter Nominal value Measured value

Shape Rectangular
Dimensions L 3W 3H (lm) 240 3 303 2.8
Spring constant (N/m) 2 2.1
Resonance frequency (kHz) 70 74.478
Q factor 195
Inverse amplitude optical

lever sensitivity (nm/V)
258

Tip height (lm) 14
Tip curvature radius <7

Values in column two are calculated from geometric nominal parameters, while
corresponding positions in column three are measured using thermal noise exci-
tation method.
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levers for special applications (e.g., magnetic or con-
ductive coverage on the tip) can be find in this stiffness
range, since for many application both contact and non
contact investigation can be useful. More, a first reso-
nance around 70 kHz allows investigations both at
higher cantilever resonances and harmonics within
the detection bandwidth of almost all commercial
microscope, useful to investigate mechanical proper-
ties.

Amplitude inverse optical lever sensitivity and other
cantilever parameters in column three have been cali-
brated performing deflection measurements by force
distance curve on a rigid glass substrate and thermal
noise calibration method.

All measurements have been performed dithering
the cantilever with a free oscillation amplitude of
260 nm at excitation frequency of 273 Hz with respect
to its resonance. Imaging have been performed in AM
mode using an amplitude setpoint of 72% of the free os-
cillation, corresponding to oscillation amplitude of
�185 nm and to a maximum withdrawing force of
almost 400 nN.

Spectroscopy series is a curve collection on a 64 3 64
grid on a 5 3 5 lm2 region of the slice, crossing the
interface between polymer and resin. Data from four
different channels is acquired during approach and
retract procedures, obtaining eight spectroscopy curves
in each point of the grid. In our case we have:

1. Amplitude: oscillation amplitude synchronous with
excitation, this is the channel used for the feedback
in AM-mode; it is used as trigger channel to define
the end point of each approach curve (and starting
point of retraction):

2. Amplitude2: it is the amplitude at a second fre-
quency on the deflection signal, monitored during
experiment. It can be tuned to monitor cantilever
behavior at frequencies different from fundamental
one. Interesting processes can be higher harmonics
of excitation signal, to monitor harmonic distortion
or higher cantilever resonant modes; since higher
harmonics depend on elastic properties of the sam-
ple (Durig, 2000), can be monitored to see changes
in material composition. In this work we measure
second harmonic distortion.

3. Phase: the phase lag of the cantilever oscillation
with respect to excitation signal. This parameter is
affected by dissipative tip-sample interactions
(Garcia and Perez, 2002);

4. Frequency: this channel tracks frequency shift due to
attractive and repulsive regime. Frequency shift
depend on the mean force derivative, averaged over
one oscillation period, therefore is sensitive changes
between attractive and repulsive regime: attractive
forces generate a frequency shift toward lower fre-
quencies, while repulsive ones have the opposite effect.

More channels can be added using external data
acquisition systems.

In addition, signal from positioning sensor (Z LVDT)
on the vertical axis is taken, providing an absolute
measurement of the Z position at each spectroscopy
point. As approach and retract cycle is performed at
constant speed, time dependence of this signal is a

triangular wave, whose cusp fall at the trigger point of
spectroscopy data. This is the only channel that is not
fed to PCA algorithm, but used independently to
extract additional topography information, filtered out
elsewhere.

Acquisition parameters used in this work are listed
in Table 2.

Using before mentioned settings, a 643 64 map takes
�2 h to be performed, with time series depth of more
than 2,000 data for each parameter. This time can be
remarkably lowered by reducing the number of point or
by small increase of the measurement speed: for instance
a 32 3 32 map with 2 lm/s takes less than 20 min, mak-
ing the time window suitable even for experiments on
living cells or on most unstable samples.

Data set for each map is often of the order of hun-
dreds of megabyte, and needs to be reduced to be ana-
lyzed. Following paragraph explains the mathematical
tool used to reduce information with limited data loss.

METHODOLOGY

The presented methodology is aimed at pursuing the
following objective: reduce the time series to a more
manageable low dimensionality vector, possibly inte-
grating the contribution of different channels.

In more details, the goal is to consider the whole set
of time series, with different channels, and to reduce
the dimensionality to a more manageable entity.

Before describing in detail the applied methodology,
let us briefly summarize the theory and the practical
aspects underlying the main technique, namely the
PCA (Jollife, 1986). The code employed in the analysis
has been written in MATLAB; in particular, the rou-
tine ‘‘pca’’ has been used, that comes from the
PRTOOLS toolbox (downloadable from http://www.
prtools.org/)

Principal Components Analysis

PCA aims at reducing the N-dimensional vector x
which contains the original data to a compressed vector
c which isM-dimensional, whereM < N.

This resembles the encoder/decoder problem,
depicted in the following diagram. A vector x is coded
into a vector c with a reduced dimension. Vector c is
then stored, transmitted or processed, which results in

vector �c0, which can be decoded back to a vector x
’0
. This

last vector is an approximation of the result which
would have been attained by storing, transmitting or
processing vector x.

TABLE 2. Acquisition parameters used during spectroscopy
experiment

Spectroscopy parameter Value

Approach Speed (lm/s) 1
Retract Speed (lm/s) 1
Dwell time 0
Sampling frequency (Hz) 2,147
Start distance, above surface (nm) 700

For each approach and retract cycle, time dependence of vertical position Z(t)
(monitored on first channel) is a triangular curve with symmetrical slopes.
Position of the cusp reveals height at the fixed trigger point, therefore contains
morphology information.
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The encoder in this diagram should perform a linear

operation, using a matrix Q
¼
:�c ¼ Q

¼
�x

The decoder is also a linear operation, which can be
written as a sum of the vector elements of c multiplied

by the columns of matrix Q
¼
: x
’ ¼ �cTQ

¼T ! x
’ ¼PM

i¼1 ci�qi

PCA finds a linear operation so that the difference
between x and x

’
is minimal, attaining a considerable

reduction of x when mapped into c, i.e., minimizing the
error between x and x

’
:

min E k�x� x
’ k2

h i
¼ min E

XN
i¼1

ðxi � ~xiÞ2
" #

¼ min E
XN
i¼1

 
xi �

XN
j¼1

cj�qj

 !
i

!2
24 35

The theory underlying PCA shows that the best data
to omit from data vector x with a given correlation ma-
trix R, is the data with the smallest variance. This is
the data determined by the smallest eigenvalues of the
matrix R.

Therefore, PCA starts by calculating the N 3 N cor-
relation matrix of the data, thus estimating the corre-
lation existent among the N features of the sample set.

A correlation matrix R
¼

of a random vector x is the
expectation of the outer product of the vector x with

itself: R
¼
¼ E½�xT�x�. In other words, R

¼
is the covariance

matrix of a pool of data samples whose features have
been normalized with respect to their variances. In

order to obtain a correlation matrix R
¼
, we construct

one by means of observations of different input vectors.
We examine for example K different images for con-

structing matrix R
¼
for a PCA of images. We note �xðkÞ as

being the k-th observed vector.
We use the following empirical approximation of

R
¼
: eRij ¼ 1

K

PK
k¼1 x

ðkÞ
i x

ðkÞ
j

The more observations are made, the better the

approximation �R
’
of R

¼
gets. Instead of matrix R

¼
we use

matrix �R
’
in the PCA calculations.

PCA in Four Steps

The PCA can then be applied to all the vectors of the
dataset: given a single vector x of dimension N and the

dataset correlation matrix R
¼
we can reduce its dimen-

sion to M (with M < N) in four steps:

1. Find the eigenvectors Q
¼

and eigenvalues ki of

correlation matrix R
¼
: R
¼
�qi ¼ ki�qi

2. Arrange the eigenvalues in decreasing order:
k1 > k2 > :: > kM > :: > kN

3. Pick up the eigenvectors which belong to the first M
largest eigenvalues.

4. The final reduced vector c is obtained by ci ¼ �xT�qi
for i5 1, .., M

In particular, the measure

vtot ¼
PM

1 kiPN
1 ki

represents the cumulative normalized variance, i.e.,
the total amount of variance captured by the first
ordered M eigenvectors.

At this point, it is important to note the underlying
assumptions considered by PCA:

1. The data is assumed as organized as a N-dimen-
sional Gaussian blob; this is also called the
‘‘Gaussian assumption.’’ The calculation of the
eigenvectors permits to rotate and scale opportunely
the data, in order to align the blob with respect to
its direction of maximal variance.

2. In the novel, rotated and scaled coordinate system,
each coordinate is assumed to be independent from
each other. This means that PCA uses the eigenvec-
tors of the correlation matrix and it only finds the
independent axes of the data under the Gaussian
assumption. For non-Gaussian or multi-modal
Gaussian data, PCA simply de-correlates the axes.

3. PCA simply performs a coordinate rotation that
aligns the transformed axes with the directions of
maximum variance. It is only when we believe that
the observed data has a high signal-to-noise ratio
that the principal components with larger variance
correspond to interesting dynamics and lower ones
correspond to noise.

DIMENSIONALITY REDUCTION

In this part, the different steps of the proposed meth-
odology are detailed. The idea is to preprocess the time
series in order to align them starting from the trigger
point at the end of approach (and beginning of retrac-
tion) of the tip on the surface. Stating from that point
vectors are truncated to a fixed length containing all
the valuable information in the interaction; this, on
one side, eliminates all data far from the surface,
where information is thought to be negligible, reducing
vector representation (time series may be of different
length due to surface roughness); on the other side,
this procedure filters out topography information from
all the channels by pairing all the curves by the same
trigger point: this is intended to split topography and
compositional information, to feed only the second one
to the algorithm. Once given the fixed length vectorial
representation, the PCA may be applied to eliminate
the redundancy and to reduce the dimensionality to a
more manageable entity. A further step, aimed at
aggregating different channels information, may be
inserted before the PCA computation.

Step 1: Preprocessing

In this step, the goal is to align the time series and to
reduce them to a fixed length representation. The most
reasonable way is to align them with respect to the con-
tact point (which is stored in our experiments), retain-
ing only a fixed amount of points before (approach
curve) and after (retract curve) that point. Clearly,
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points far away from the contact point are less impor-
tant, so that can be disregarded in the analysis. In all
our experiments, we considered 250 points before and
250 after the contact point.

Step 2: Integration of Different Channels

Given the flexibility of the PCA, which is requiring
in input only a generic vector of data, channel integra-
tion may be easily obtained by simply concatenating
the time series relative to each channel (after the
preprocessing). Actually PCA does not consider the
order of the elements, but just the single contributions:
in this way the convenient concatenation permit to
have a single compact representation containing all
the information obtainable from the different channels.

Step 3: Data Reduction

Given the input vectors, PCA is applied as described
in the previous section. Choosing the right number of
components to be retained (namely the dimension M of
the resulting vectors) may be somehow problematic, if
the resulting representation should be used to perform
a further analysis. A classical solution suggests retain-
ing a number of components sufficient to explain a
given amount of variance (like 95% or 98%).

In Figure 1 there is an example concerning the typi-
cal result of the application of this technique to AFM

data (see the experimental part for more details). In
particular, the plot shows the amount of variance
explained by the first component, the first two, the first
three and so on. It is easy to notice that most of the var-
iance of the data is contained in the first few compo-
nents: with only 8 dimensions, more that 90% of the
variance is explained, this confirming the well-known
compression capabilities of the PCA technique.

RESULTS

We focused our attention at the interface between
polymer and resin. In our setup, an upright camera
coupled with a 203 objective allows to easily locate fea-
tures on the sample.

The cross-cut slice exhibit regions where adhesion
with the glass substrate is good, the specimen looks
planar and multiple folding is not present; materials
interface can be easily found by looking at the different
color of the two parts. AFM measurements (Fig. 2a)
show two different morphologies: the first one (left part
of the image) exhibits round reflex features of size
ranging from few hundred nanometers to some micro-
meters, with and peak to valley height of 20–60 nm: in
this region RMS roughness is �20 nm. The right part
of the sample has a flat background with RMS rough-
ness of 5 nm and convex features of lateral dimension
about half a micrometer and height of the order of 50

Fig. 2. Interface between EPON resin (gray mark) and PEMMA
polymer (red mark). Image is acquired is amplitude modulation mode
(excitation frequency—5% of resonance frequency, setpoint 72% of
free oscillation amplitude). Panel (b) shows the 5 3 5 lm2 ROI
selected from bigger 15 3 15 lm2 image (a). Panels (c–f) show spec-

troscopy data taken in positions 1 and 2: channels acquired are Am-
plitude (c), Phase (d) frequency (e) and Amplitude 2 at (f2 5 2 3 fexc);
continuous and dotted lines are approach and retract curves, respec-
tively. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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nm. These two parts are recognized as resin and poly-
mer respectively: round features in the first part can
be therefore interpreted as gas bubbles produced dur-
ing solidification of the components. Between the two
parts a sharp interface with a size of roughly 100–200
nm can be identified.

On the basis of these considerations, we made our
investigations on an interface region of 5 3 5 lm2, as
indicated in Figure 2.

Region shown in Figure 2b has been selected as a
representative part of the interface for dynamic spec-
troscopy study, as all the structures previously
described are present. Figures 2c–2f show the interac-
tion part of spectroscopy data acquired in position 1
(black curves) and 2 (red curves) of Figure 2b. Ampli-
tude data is taken as a reference for all curves:
approach phase ends when it reduces to a fraction of
the free oscillation amplitude (flat part of the curve on
the right side): in this work we have selected 40%
(trigger point), giving us access to regimes usually diffi-
cult to be explored in imaging mode due to possible tip
damage; setpoint used for AM imaging is also shown
for comparison. The misalignment of the curves (DHt
in Fig. 2c) account for the topography of the sample at
the end of the curve: this information is subsequently
filtered out by pairing all the curves on the left end,
correspondingly to trigger point.

All curves have common features that can be high-
lighted from Figure 2:

1. Very far from the trigger point, the cantilever does
not sense any interaction, so all curves are flat, giv-
ing no valuable correlation between different curves
on each channel and among different channels:
eigenvalues of covariance matrix in this part are
negligible and do contribute to PCA analysis.

2. Approach and retract part of each spectroscopy data
series in general do not overlap completely in the
interaction region, but still look very similar. This
seems to indicate the effect of plastic behavior on
the sample, as expected. Data series at different
positions may have very different behavior as a con-
sequence of changes in interaction: some of the

channels as frequency and second harmonic seem
have particularly high sensitivity to the position of
the specimen (e.g., slope in frequency signal in pos 1
and 2): this is spatial information is expected to give
the most important contribution to PCA maps,
allowing to highlight features in first components of
resulting maps.

3. Curves at have response with peculiar tip separa-
tion dependence (i.e., average load during each oscil-
lation cycle) with consistent changes at different
position. For instance, second harmonic distortion
exhaust its main contribution 50 nm above the Am-
plitude trigger point in position 2, while same chan-
nel in position 1 still have high sensitivity. Opposite
behavior is found on frequency channel. More, am-
plitude channel on position 2 shows a flexure point
at the very beginning of interaction, above imaging
setpoint. This behavior is indication of cantilever
instability induced by interaction, taking place in
a completely different interaction regime, that, as
well as other features, contains information on the
interaction.

Extracting more information is expected to give use-
ful prediction on the load regime and on the techniques
to be used on different part of the sample.

PCA algorithm requires a variable number of compo-
nents, depending on the channel, for the convergence
above the threshold, here 98%. Figure 3 shows the
number of components for frequency and phase shifts
channels. Insets contain the number of components to
reach convergence. In case of frequency, two compo-
nents contain all the relevant information, while for
phase almost 100 are necessary, as expected from pre-
vious considerations on separate spectroscopy curves.

The first principal component on each spectroscopy
channel is shown in Figure 4: maps (a), (b), (c), and (d)
show results on amplitude, second harmonic, phase
and frequency, explaining 82%, 65%, 15%, 92% of var-
iance (information), respectively. Figure 4e is the first
component (92% of variance) of PCA on data from all
components. Direct comparison of the letter with

Fig. 3. Convergence of PCA as a function of number of components, in case of Phase (left) and
Frequency (right) signals.[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 4d indicate that the most important contribu-
tion comes from frequency channel, since differences
deriving from other contribution stays in the few per-
cent range (Fig. 4f).

All data in Figure 4 is acquired in the square 5-lm
region shown in Figure 2b: some of the features in the
image, such as the three bubbles on the resin side or
the tree convex features on the polymer side, can be
found in most of the maps, with the exclusion of phase
one where just some contrast on one of them (Arrow 1)
can be located. On some of the maps (frequency and
second harmonic channels) can also be clearly recog-
nized interface between the two materials (Arrow 2),
providing much lower contrast on Amplitude channel.
Surprisingly, a new feature, not visible in topography
data, appears in the left part of all the maps [Arrow 3,
see map (b)] whose substructure are differently high-
lighted from different channels: this suggest a complex
inner structure that can be evaluated by our method.
Three different regions can be recognized comparing
Figure 4b to the others: first, all the part in map 4b has
similar values (is red in the false color map), as an indi-
cation of similar harmonic distortion (on the second
component) in spectroscopy curves. Other behavior is
found on frequency channel, where top part (red) and
bottom part (blue) give opposite contribution to fre-
quency shift. Finally, a central thin feature can be
found: there a high contrast can be noticed on phase
and amplitude signals, while it is invisible on second
harmonic; here also very small contribution (yellow,
average value) even to the frequency signal is found.

Similar behavior is found on other structures, also visi-
ble in topography, as the one indicated by Arrow 4, and
magnified in Figure 5.

Figures 5a–5d are magnified details of Figures 4a–4d,
while Figures 5e–5h show correspondent spectroscopy
curves, acquired in the two positions pointed by arrows
in Figure 5a. All the channels have similar response
in both position at low interactions (between 120 and
150 nm): at higher interaction it is possible to se huge
change on frequency shift (opposite sign) and second
harmonic spectroscopy curve (h) have a second maxi-
mum (higher) in one of the two positions, giving indica-
tion on different compositional or structural properties.

DISCUSSION

In composite materials, structural and compositional
information determinate local properties, that can be
directly measured by mean of atomic force microscope.
Discontinuities at surface affect cantilever motion, gen-
erating correlated changes in its dynamic parameters:
this correlation contains relevant information on the
interaction potential detectable by means of force spec-
troscopy experiments. Dynamic force spectroscopy
experiment can provide an extensive data set, allowing
specimen testing under different frequency and load
condition at once. It is therefore a powerful method to
test material properties. More, structural changes
do not necessary bind to topography features, hence
the examination of surface morphology do not directly
provide compositional information and can be incom-
plete or misleading in analyzing multiphase or

Fig. 4. First component of PCA analysis on dynamic spectroscopy map: Amplitude (a), Second Har-
monic (b), Phase (c), frequency (d), and all (e) channels are shown. Map (f) is the difference between (d)
and (e): color bar scale is part per thousand.
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textured specimen. From here the necessity of a
method addressing both issues separately.

In this article, we have shown a different strategy to
address the problem of compositional recognition,
introducing an intermediate step to localize features,
simply taking into consideration cantilever kinematics:
as this quick screening does not require detailed model-
ing of the contact potential, can therefore be used

routinely to identify part of the sample where a more
detailed investigation can be addressed.

This analysis addresses three main goals:

1. Hidden features can be highlighted and recognized.
This method does not take into account topography
information that is filtered out from the data: maps
and images are regarded as independent. As result

Fig. 5. Magnification one of the features highlighted in previous
figure (Arrow 4). Red and black curves in subpanel (e–h) are ampli-
tude, phase, second harmonic amplitude, and frequency channels of
spectroscopy curves acquired in two point indicted by red and black
markers (respectively) on maps (a–c), showing in details first compo-

nent of PCA analysis on those channels. Gray arrow shows the imag-
ing setpoint used for topography. As before continuous lines indicates
approach curves, while dotted lines are for retract curves. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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it allowed recognition of some hidden structures
(possibly below the surface), invisible in topography
image (Fig. 4).

2. Different channels are analyzed to give complete in-
formation. The effect of physical interaction on sev-
eral oscillation parameters is analyzed in parallel,
giving a global picture on different response on the
sample. This allows easily locating different ROIs
before a detailed and time consuming spectroscopy
analysis. More, this method can be followed by seg-
mentation step to classify and reduce the number of
curves to be analyzed within similar or uniform
region of the sample. Noise and redundancies are fil-
tered out by the algorithm itself.

3. Relative weight of different channels is highlighted.
This gives indication on the channels and measure-
ments regime (e.g., average load) that can be used to
enhance compositional or structural sensitivity were
more information can be collected, within each part
of the sample. Then a reduced number of optimized
experiments can be performed on a reduced number
of experimental points for model comparison.

Finally, it should be reminded that PCA algorithm
just looks at mathematical correlations in parallel data
vectors and project information into the high correla-
tion directions of covariance matrix. In this way, inter-
pretation of time series in terms of physical parameters
is lost, to give a compact and easily valuable picture. In
any case, this method can provide non destructive
additional information on sample properties and homo-
geneity, can therefore be regarded as a quick and easy
preliminary step to enhance and relieve detailed analy-
sis and modeling.
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