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Abstract—We propose to approach the detection of patients
affected by schizophrenia by means of dissimilarity-based
classification techniques applied to brain magnetic resonance
images. Instead of working with features directly, pairwise
distances between expert delineated regions of interest (ROIs)
are considered as representations based on which learning
and classification can be performed. Experiments were carried
out on a set of 64 patients and 60 controls and several
pairwise dissimilarity measurements have been analyzed. We
demonstrate that good results are possible and especially
significant improvements can be obtained when combining over
different ROIs and different distance measures. The lowest
error rate obtained is 0.210.

I. INTRODUCTION

This work exploits advanced pattern recognition tech-
niques in order to discriminate between subjects affected by
schizophrenia and healthy controls on the basis of magnetic
resonance brain imaging. We adopt a dissimilarity approach
that exploits a particular selection of ROIs in the brain. The
choice of ROIs is based on earlier investigations into their
abnormal activity in case of schizophrenia [1], [2].

Several works have been proposed for human brain clas-
sification in the context of schizophrenia research [3], [4],
[5]. Besides standard volumetric methods [6], [7], the most
promising approaches focus on: (i) shape characterization
[4], (ii) surface computation [5], and (iii) high dimension
pattern classification [3]. In [4] a ROI-based morphometric
analysis is introduced by defining spherical harmonics and a
3D skeleton as shape descriptors. In [5] a support vector ma-
chine (SVM) has been proposed to classify cortical thickness
using the Euclidean distance between linked vertices on the
inner and outer cortical surfaces. In [3] a new morphological
signature has been defined by combining deformation-based
morphometry with SVM.

The dissimilarity-based paradigm pursued in this work
differs from typical pattern recognition approaches where
objects to be classified are represented by feature vectors.
In the dissimilarity approach, objects are described using
pairwise (dis)similarities to a representation set of objects
[8]. This offers the analyst a different way to express appli-
cation background knowledge as compared to features. In a
second step the dissimilarity representation is transformed

into a vector space in which traditional statistical classifiers
can be employed. Unlike the related kernel approach, whose
application is often restrained by technicalities like fulfilling
Mercer’s condition, basically any dissimilarity measure can
be used.

Encouraged by our previous studies [9], [10], this work
extends our earlier work and goes beyond volumetric mea-
surements by classifying intensity histograms of the given
ROIs. Our main contribution is the application of the
dissimilarity-based classification approach to the detection
of schizophrenia in MR images and the demonstration of its
accuracy.

II. DATA AND FEATURE EXTRACTION

The dataset used in this work is composed of MRI
brain scans of 64 patients affected by schizophrenia and 60
healthy control subjects. Table I shows relevant demographic
and clinical characteristics of both groups. The ROIs in
this study were obtained by manually drawing contours
enclosing the intended region. This was carried out by a
trained expert following a specific protocol for each ROI
[1] without knowledge of the class labels. There are methods
which automatically segment the ROIs, but their accuracy is
lower than the manual methods so manual segmentation was
preferred. The ROIs traced are 7 pairs (for the left and the
right hemisphere respectively) of disconnected image areas:

• Amygdala (l amyg and r amyg in short);
• Dorso-lateral PreFrontal Cortex (l dlpfc and r dlpfc);
• Entorhinal Cortex (l ec and r ec);
• Heschl’s Gyrus (l hg and r hg);
• Hippocampus (l hippo and r hippo);
• Superior Temporal Gyrus (l stg and r stg);
• Thalamus (l thal and r thal).
From the various ROIs, gray value histograms are deter-

mined and in order to reduce the effect of inter-subjects
intensity variations, the extracted histograms are properly
normalized in a semi-automatic way1. Subsequently, several
dissimilarity measures are defined between pairs of his-
tograms all of which are described in the next section. In the
spirit of dissimilarity based classification, there are various

1See [9] for more details on the histogram normalization procedure.
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Table I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE STUDY
GROUPS. STUDENT’S t-TEST OF THE AGE MEANS REJECTS (AT A

TWO-TAILED SIGNIFICANCE LEVEL OF p < 0.05) THE HYPOTHESIS THAT
THE GROUPS ARE SIGNIFICANTLY DIFFERENT IN AGE, AND PEARSON’S

χ2 CONFIRMS THE SAME FOR THE GENDER DIFFERENCES.

Group mean (and SD)* Statistics

Characteristic
Control
(n = 60)

Schizophrenia
(n = 64) Test df p

Age, yr 39.95 (11.25)
[range 23-60]

38.84 (11.96)
[range 18-62]

t =0.53 122 0.60

Male/female 32/28 43/21 χ2 =2.49 1 0.11
Age at
onset, yr 26.28 (9.17)
Duration of
illness, yr 13.37 (10.30)
BPRS 44.05 (17.08)
SD = standard deviation; df = degrees of freedom; p = significance value.
BPRS = Brief Psichiatric Rating Scale
* Unless otherwise indicated.

other ways to calculate dissimilarities between brain images
based on registration of brains [11]. In this study we opted
not to choose this direction because of the computational
complexity and time required to pairwise register brain
images.

III. DISSIMILARITY MEASURES

The computed histograms (and their pdfs) of intensities
have been used to calculate dissimilarities between subjects
using dissimilarity measures for histograms and pdfs. There
are various dissimilarity measures that can be applied to
measure the dissimilarities between histograms [12], [13].
Moreover, histograms can be converted to pdfs and dissim-
ilarity measures between two discrete distributions can be
used as well. All in all, we decided to study measures below.

Given two histograms S and M with n bins, we define the
number of elements in S and M as |S| and |M| respectively.

Histogram intersection: It measures the number of
intersecting values in each bin [14]:

Sim(S,M) = ∑n
i=1 min(Si,Mi)
min(|S|, |M|)

.

Since this is a similarity measure, we convert it to a
dissimilarity using D = min(|M|, |S|)× (1−Sim(S,M)).

Diffusion distance: The distance between two his-
tograms is defined as a temperature field. It is derived as
the sum of dissimilarities over scales, see [15]2.

χ2χ2χ2 distance: This metric is based on the χ2 test for
testing the similarity between histograms. It is defined as

D =
n

∑
i=1

(Si −Mi)2

Si +Mi
.

It is a standard measure for histograms.

2The code has been taken from the author’s home page:
http://www.ist.temple.edu/∼hbling/code data.htm

Earth mover’s distance: This distance was originally
proposed by Rubner et. al [16]. It’s basically defined as
the cost to transform one distribution into another. It is
calculated using linear optimization by defining the problem
as a transportation problem. For 1D histograms, it reduces
to a simple calculation [12] which was implemented in this
study.

Ci =

∣∣∣∣∣ i

∑
j=1

(S j −M j)

∣∣∣∣∣ , D =
n

∑
i=1

Ci .

Similarly, we have considered the following dissimilarities
between pdfs:

Bhattacharyya: It is used to measure the similarity of
discrete probability distributions p and q. It is defined as:

D(p,q) = − logBC(p,q) ,

where

BC(p,q) = ∑
x∈X

√
p(x)q(x) .

KullbackLeibler (KL) divergence: KullbackLeibler
divergence is defined as

D(p,q) =
n

∑
i=1

qi log
qi

pi
.

This measure is not a distance metric but a relative entropy
since D(p,q) 6= D(q, p), i.e., the dissimilarity matrix is not
symmetric. There are various ways to symmetrize this dis-
similarity. We simply used D = D(p,q)+D(q, p) and the so-
called Jensen-Shannon divergence: D = 1

2 D(p,r)+ 1
2 D(q,r),

where r is the average of p and q.
In summary, we used the following 13 measures:

• his-euclid: Euclidean distance between histograms.
• his-l1: L1 distance between histograms.
• his-intersect: Intersection between histograms.
• his-diffusion: Diffusion distance between histograms.
• his-chi: χ2 distance between histograms.
• his-emd: Earth mover’s distance between histograms.
• pdf-euclid: Euclidean distance between pdfs.
• pdf-l1: L1 distance between pdfs.
• pdf-emd: Earth mover’s distance between pdfs.
• pdf-bs: Bhattacharyya distance between pdfs.
• pdf-kl: Symmetrized KL divergence between pdfs.
• pdf-kl orig: Original, asymmetric KL divergence.
• pdf-js: Jensen-Shannon divergence between pdfs.

All in all there are 14 ROIs and 13 different histogram
dissimilarity measures, which yields a total of 182 dis-
similarity matrices. In addition to these, we propose to
merge the different dissimilarity matrices into one overall
dissimilarity matrix potentially exploiting complementary
information useful to improve the classification accuracy.
Further details of this combining are provided below.
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IV. DISSIMILARITY SPACE

There are several ways to transform an n×n dissimilarity
matrix D with elements D(o, ô) (the dissimilarity between
objects o and ô) into a vector space with objects repre-
sented by vectors X = {x′1, . . . ,x

′
o, . . . ,x

′
ô, . . . ,x

′
n} [8]. Classi-

cal scaling (for proper Euclidean dissimilarities) and pseudo-
Euclidean embedding (for arbitrary symmetric dissimilari-
ties) yield vector spaces in which vector distances can be
defined that produce the given dissimilarities D. As almost
all dissimilarity measures studied here are non-Euclidean,
classification procedures for these pseudo-Euclidean space
are ill-defined, as for instance the corresponding kernels are
indefinite).

A more general solution is to work directly in the dissim-
ilarity space. It postulates an Euclidean vector space using
the given dissimilarities to a representation set as features.
As opposed to the previously mentioned techniques, it is
not true anymore that distances in this space are identical
to the given dissimilarities, but this is an advantage in case
it is doubtful whether they really represent dissimilarities
between the physical objects. As this holds in our case we
constructed such a dissimilarity space using all available
objects by taking X equal to D. In the dissimilarity space
basically any traditional classifier can be used. The number
of dimensions, however, equals the number of objects, which
is 124 in our case. So many classifiers will need dimension
reduction techniques or regularization to work properly in
this space. Here, we used the linear support vector machine
to avoid this.

Combined dissimilarity spaces can be constructed by
combining dissimilarity representation. A simple and often
effective way is using an (weighted) average of the given
dissimilarity measures:

Dcombined = ∑αiDi . (1)

It is related to the sum-rule in the area of combining
classifiers. The weights can be optimized for some overall
performance criterion, or determined from the properties
of the dissimilarity matrix Di itself, e.g. its maximum or
average dissimilarity.

V. EXPERIMENTS

We considered all 182 dissimilarity matrices. For each
test we evaluated the leave-one-out error3. The dissimilarity
spaces have been built in a transductive way by using all
available subjects for representation (of course labels are
ignored in this phase). Two classifiers are considered, the 1-
Nearest Neighbour (NN) rule on the original dissimilarities
(called the Standard Classifier) and the linear SVM in
dissimilarity space, called the Dissimilarity based classifier
which avoids complications that could arise from the mea-
sures being non-Euclidean. The experiments are carried out

3For sensitivity analysis and other details please refer to [17].

Table II
ROI-BASED CLASSIFICATION

ROI
Standard Classifier Dissimilarity-based

l amyg 0.355 (his-l1) 0.315 (hist-euclid)
r amyg 0.379 (pdf-euclid) 0.323 (pdf-euclid)
l dlpfc 0.355 (pdf-kl) 0.234 (pdf-kl)
r dlpfc 0.331 (his-intersect) 0.315 (pdf-js)
l ec 0.403 (pdf-emd) 0.331 (pdf-js)
r ec 0.355 (his-chi) 0.339 (his-intersec)
l hg 0.403 (his-chi) 0.309 (pdf-kl-orig)
r hg 0.387 (his-chi) 0.339 (pdf-kl)
l hippo 0.444 (his-diffusion) 0.282 (pdf-js)
r hippo 0.363 (his-euclid) 0.395 (his-intersec)
l stg 0.427 (his-intersect) 0.355 (pdf-js)
r stg 0.411 (his-chi) 0.355 (pdf-l1)
l thal 0.355 (pdf-l1) 0.363 (his-diffusion)
r thal 0.403 (pdf-euclid) 0.323 (his-emd)

using the Matlab package PRTools4, including LIBSVM for
the SVM classifier.

We designed two experiments: i) ROI-based classification,
and ii) Multi-ROI classification.

ROI-based classification: We evaluate the classifica-
tion errors for each of the original dissimilarity matrices.
Table II summarizes the results. For each ROI the best
performance is reported with respect to various dissimilar-
ity measures. First column reports the error estimates for
NN using the original dissimilarities (standard approach).
Second column reports the leave-one-out error estimates of
the linear SVM in dissimilarity space. It shows clearly the
improvements of our dissimilarity-based approach. For ROIs
like l dlpfc and l hippo the error is less than 0.3, while in
the standard approach results are less stable and the error is
always higher than 0.331.

Multi-ROI classification: In this experiment a Multi-
ROI approach is adopted in order to use all ROIs at the
same time. All the dissimilarity matrices for each ROI are
combined using for αi in (1) the reciprocal of the average
dissimilarity value in Di (cf. [18]). Table III reports the re-
sults. Also in this case the classification on the dissimilarity
space clearly outperforms the standard approach. Moreover,
the Multi-ROI approach brings a drastic improvement by
confirming the complementary information enclosed onto
the different brain subparts. In most of the cases, the results
from the averaged similarity matrices are better than the
respective best single-ROI results. The last row reports the
error estimates computed on the overall dissimilarity matrix
(for all the measures and ROIs) for both standard approach
and dissimilarity-based approach respectively. This yields
the best results so far (i.e., 0.210).

VI. CONCLUSION

In this paper a dissimilarity-based approach is proposed
for the detection of schizophrenic brains. Several dissimilar-
ity measures are proposed to deal with histograms of MRI

4Available at http://www.prtools.org/
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Table III
MULTI-ROI CLASSIFICATION.

Measure
Standard Classifier Dissimilarity-based

his-euclid 0.379 0.258
his-l1 0.379 0.226
his-intersect 0.290 0.363
his-diffusion 0.379 0.226
his-chi 0.395 0.226
his-emd 0.532 0.411
pdf-euclid 0.411 0.298
pdf-l1 0.411 0.274
pdf-emd 0.395 0.290
pdf-bc 0.363 0.347
pdf-kl 0.355 0.339
pdf-kl-orig 0.363 0.315
pdf-js 0.363 0.323
average 0.387 0.210

intensity for different ROIs. ROI-based classification onto
the dissimilarity space shows improvements of the standard
NN rule. Moreover, a Multi-ROI classification strategy is
obtained by simply averaging the similarity matrices ob-
served in each ROI. Such approach drastically improves
the single-ROI one, by highlighting the complementary
information enclosed in the several ROIs. This confirms the
benefit of combining dissimilarity representations and fusing
information from various regions in the brain.

We like to emphasize that in building the (combined) rep-
resentations no parameters are optimized w.r.t. performance.
The proposed approach generally opens new perspectives
in neuroanatomy classification by allowing the possibility
to exploit dissimilarity measures which have some medical
meaning or are expert-designed without having to worry
about metric requirements or other mere technical compli-
cations.
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