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Abstract—In this paper, a novel approach for contour-
based 2D shape recognition is proposed, using a class of
information theoretic kernels recently introduced [1]. This
kind of kernels, based on a non-extensive generalization of
the classical Shannon information theory, are defined on
probability measures. In the proposed approach, chain code
representations are first extracted from the contours; then
n-gram statistics are computed and used as input to the
information theoretic kernels. We tested different versions
of such kernels, using support vector machine and nearest
neighbor classifiers. An experimental evaluation on the Chicken
pieces dataset shows that the proposed approach significantly
outperforms the current state-of-the-art methods.

Keywords-Shape Recognition; chain code; n-grams, IT ker-
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I. INTRODUCTION

Object recognition is undoubtely an important and still
open research area in computer vision and pattern recog-
nition. The classification of three-dimensional (3D) objects
has been addressed using different approaches [2], [3], many
of which are based on the analysis of two-dimensional (2D)
aspects of objects, namely, 2D shapes. Many recognition
tasks are addressed using only features of the boundary
or the 2D shape. In this context, many contour represen-
tations have been proposed, like Fourier descriptors and
chain code [3]. Actually, object contours have shown to
be very expressive in many contexts, and they have been
often exploited in several approaches proposed in the past,
exhibiting different characteristics: robustness to noise and
occlusions, invariance to translation, rotation, and scale,
computational requirements, and accuracy [3], [4].

In this paper, a novel method for contour-based 2D
shape recognition is proposed, using a class of information
theoretic kernels recently introduced [1]. This type of ker-
nels, based on a non-extensive generalization of the classi-
cal Shannon information theory, are defined on (possibly
unnormalized) probability measures. In [1], these kernels
were used in text categorization tasks, by being specifically
applied to different types of multinomial representations of
the texts: relative term frequencies (also known as bags
of words) and n-gram statistics (relative frequencies of
subsequences of n symbols).

In the approach herein presented, we begin by extracting
chain code representations of the contours, which yields
sequences of symbols. From these sequences, n-gram statis-
tics are then computed, which are used as input to the
information theoretic kernels.

The proposed approach has been tested on the Chicken
Pieces database [5], a challenging testbed composed by
silhouettes of different chicken parts (wings, backs, drum-
sticks, thighs, and breasts). We tested different information
theoretic kernels, ranging from the classic Jensen-Shannon
divergence kernel, to different versions of the recently intro-
duced Jensen-Tsallis kernels [1]. These kernels are used in
support vector machine and nearest neighbor classifiers. A
study of the performance of these classifiers, as a function
of the kernel parameters, has been carried out, as well as an
evaluation of fully automatic versions, where the parameters
are automatically computed from the training set. The results
presented in Sect. 3 show that the classifiers based on the
Jensen-Tsallis kernels significantly outperform the current
state-of-the-art methods. Before presenting such results, the
method characteristics are detailed in Sect. 2, and final
remarks are summarized in Sect. 4.

II. THE PROPOSED METHOD

In this section, the proposed methodology is presented.
In particular, after describing how to obtain the probability
measure from the contours, the information theoretic kernels
are described.

A. From contours to probability measures

To extract a probability measure from a contour, we have
different options, e.g., using hidden Markov models (HMM)
[6]. Here, we adopt a simpler technique, based on statistics
of n-grams extracted from chain code representations of the
contours. For a given n, the n-gram statistics correspond to
a multinomial distribution. This choice opens the door to
the use of information theoretic kernels, which are defined
on pairs of multinomial distributions. Although other, more
complex models, such as HMM, could be considered, the
corresponding kernels can not be computed in closed form.
Because the information theoretic kernels defined in [1] can
also be applied on unnormalized measures, they can be
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used either directly with the raw n-gram counts or with the
corresponding normalized versions (multinomials).

B. Information theoretic kernels
Kernels on probability measures have been shown very

effective in classification problems involving text, images,
and other types of data [7], [8], [9], [10]. Given two
probability measures p1 and p2, representing two objects,
the following information theoretic kernels can be defined
(for more details, see [1]):

• Jensen-Shannon kernel,

k JS(p1, p2) = 1− JS(p1, p2), (1)

with JS(p1, p2) being the Jensen-Shannon divergence

JS(p1, p2) = H

(
p1 + p2

2

)
− H(p1) +H(p2)

2
, (2)

where H(p) is the usual Shannon entropy.
• Jensen-Tsallis kernel,

k JT
q (p1, p2) = 1− Tq(p1, p2), (3)

where Tq(p1, p2) is the Jensen-Tsallis q-difference,
defined as:

Tq(p1, p2) = Sq

(
p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
, (4)

and Sq(r) is the Jensen-Tsallis entropy, defined, for
a multinomial r = (r1, r2, ..., rL), with ri ≥ 0 and∑
i ri = 1, as

Sq(r1, r2, ..., rL) =
1

q − 1

(
1−

L∑
i=1

rqi

)
.

q represents the free parameter of the kernel, which can be
chosen for example by cross validation.

In [1], versions of these kernels applicable to unnor-
malized measures were also defined. Let µ1 = ω1p1 and
µ2 = ω2p2 be two unnormalized measures, where p1 and p2

are the normalized counterparts (probability measures) and
ω1 and ω2 arbitrary positive real numbers (weights). The
weighted versions of the Jensen-Tsallis kernel are defined
as follows:

• Weighted Jensen-Tsallis kernel (version 1),

k(1)
q (µ1, µ2) = Sq(π)− Tπq (p1, p2), (5)

where π = (π1, π2) =
(

ω1
ω1+ω2

, ω2
ω1+ω2

)
and

Tπq (p1, p2) = Sq (π1p1 + π2p2)
− (πq1Sq(p1) + πq2Sq(p2)) .

• Weighted Jensen-Tsallis kernel (version 2),

k(2)
q (µ1, µ2) =

(
Sq(π)− Tπq (p1, p2)

)
(ω1 + ω2)q. (6)

It was shown in [1] that k(1)
q is a positive definite kernel

for q ∈ [0, 1], while k
(2)
q is a positive definite kernel for

q ∈ [0, 2].

Figure 1. Examples of Chicken data.

III. EXPERIMENTAL RESULTS

We test the proposed approach on the publicly available
Chicken Pieces dataset1 [5]. This dataset contains 446 binary
images (silhouettes) of chicken pieces, each belonging to
one of five classes representing specific chicken parts: wing
(117 samples), back (76), drumstick (96), thigh and back
(61), and breast (96) – some examples may be found in Fig.
1. This constitutes a challenging classification task, which
has been studied by several authors [5], [11], [12].

From binary silhouettes, contour descriptions are ex-
tracted: notice that these contour descriptions completely
specify the underlying shape. These contours are then en-
coded using the (8 directions) chain code, leading to a
sequence of symbols (on an alphabet of 8 symbols) for each
contour. From the sequence of symbols corresponding to
each shape contour, we compute statistics of n-grams (for
n = 2, n = 3, and n = 4), that is, we count how many
times each possible subsequence of length n exists in each
contour. This can be seen as a bag-of-words representations
of the sequences, where the dictionary contains all the
8n possible length-n sequences/“words”. In summary, each
shape is represented by a 8n-dimensional vector of non-
negative numbers (which may or may not be normalized to
unit sum) that will serve as arguments for the kernels defined
in the previous section subsequently used by a kernel-based
classifier.

We consider two types of classifiers: support vector ma-
chines (SVMs) and K-nearest neighbors (K-NN). Parameter
C of the SVM learning algorithm is optimized by 10-fold
cross validation (CV). For the K-NN classifiers, we consider
both the simplest version 1-NN as well as K chosen by
10-fold CV. Concerning parameter q of the Jensen-Tsallis
kernels, we report results both with the best performing
value and with the value selected by 10-fold CV. Finally,
we found that the best choices of n were n = 4, in the case
of the SVM, and n = 3 for the K-NN classifiers.

Table I reports the average accuracy results, obtained
using 10 repetitions of holdout CV. The superiority of the

1http://algoval.essex.ac.uk:8080/data/sequence/chicken/.
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information theoretic kernel over the linear kernel is evident,
in particular for the K-NN classifiers.

kernel SVM 1-NN K-NN
Linear 0.827(0.009) 0.305(0.014) 0.355(0.005)
k JS 0.886(0.005) 0.775(0.008) 0.757(0.005)
k JT

q (auto q) 0.882(0.009) 0.781(0.008) 0.783(0.008)
k JT

q (best q) 0.890(0.042) 0.791(0.037) 0.805(0.038)
k

(1)
q (auto q) 0.886(0.010) 0.636(0.006) 0.685(0.012)

k
(1)
q (best q) 0.891(0.042) 0.636(0.030) 0.682(0.032)

k
(2)
q (auto q) 0.884(0.006) 0.791(0.011) 0.787(0.008)

k
(2)
q (best q) 0.895(0.042) 0.801(0.038) 0.814(0.039)

Table I
CLASSIFICATION RESULTS: AVERAGE ACCURACY RATE, WITH

STANDARD DEVIATION OF THE MEAN IN PARENTHESIS.

Figure 2 plots the accuracies of the SVM on 4-grams,
for different kernels, as a function of parameter q. The plot
also shows the accuracy obtained with q chosen by cross-
validation. In line with the results from [1], the best results
are obtained with q < 1. Although we do not have, at this
moment, a formal justification for this fact, it may be due
to the following behavior of the Jensen-Tsallis kernels. For
q < 1, the maximizer of k JT

q (p, v) with respect to p is not
v, but another distribution closer to uniform. This is not the
case for the Jensen-Shannon kernel k JS, which coincides
with J JT

1 , for which the minimizer of k JS(p, v) with respect
to p is precisely v. This behavior of k JT

q plays the role of
a regularizer (favoring uniform distributions) on the n-gram
statistics.

Figure 2. Accuracies of different kernels, for different values of the
parameter q.

Table II compares our best results against other published
results on the same dataset [13], [14], [11], [15], [16], [12],
[17], [18]. Although the experimental procedure is not the

same in all those references, the results suggest that the
proposed method performs better than the others.

Methodology Accuracy Ref.
K-NN Classifiers
1-NN + Levenshtein edit distance ≈ 0.67 [16]
1-NN + approximated cyclic distance ≈ 0.78 [16]
K-NN + cyclic string edit distance 0.743 [12]
1-NN + mBm-based features 0.765 [11]
1-NN + HMM-based distance 0.738 [11]
Our best K-NN (k(2)

q , 3-gram) 0.814
SVM Classifiers
Edit distance-based kernel 0.811 [12]
HMM-based entropic features 0.812 [17]
HMM + Fisher Kernel 0.817 [18]
HMM + Top Kernel 0.808 [18]
HMM + FESS-embedding + RBF 0.830 [18]
HMM + Trans embedding + RBF 0.811 [14]
HMM + Marginalized kernel 0.775 [15]
HMM + Cluster-based Fisher kernel 0.858 [13]
HMM + Non linear Marginalized kernel 0.855 [15]
Our best SVM (k(2)

q , 4-gram) 0.895

Table II
COMPARATIVE RESULTS WITH OTHER METHODS.

IV. CONCLUSIONS

In this paper, a novel approach for contour-based 2D shape
recognition has been proposed. In the presented methodol-
ogy, chain code representations are extracted from the shape
contours, and n-gram statistics are then computed, represent-
ing the input of some information theoretic kernels recently
introduced [1], based on a non-extensive generalization of
the classical Shannon information theory. We tested different
versions of such kernels, using support vector machine
and nearest neighbor classifiers. An experimental evaluation
on the Chicken pieces dataset showed that the proposed
approach significantly outperforms the current state-of-the-
art methods.
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