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Abstract—Generative kernels have emerged in the last years
as an effective method for mixing discriminative and generative
approaches. In particular, in this paper, we focus on kernels
defined on generative models with latent variables (e.g. the
states in a Hidden Markov Model). The basic idea underlying
these kernels is to compare objects, via a inner product,
in a feature space where the dimensions are related to the
latent variables of the model. Here we propose to enhance
these kernels via a nonlinear normalization of the space,
namely a nonlinear mapping of space dimensions able to
exploit their discriminative characteristics. In this paper we
investigate three possible nonlinear mappings, for two HMM-
based generative kernels, testing them in different sequence
classification problems, with really promising results.
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I. INTRODUCTION

In recent years, generative kernels [1]–[4] have emerged
as an approach to mix generative methods (like Hidden
Markov Models or Bayesian Networks) and discriminative
techniques (like Support Vector Machines). Generally speak-
ing, there is a proved complementarity of discriminative
and generative estimations: asymptotically (in the number of
labelled training examples), classification error of discrim-
inative methods is lower than that of generative ones [5],
comparing logistic regression and naive Bayes classifiers.
On the other side, generative counterparts are effective with
less, possibly unlabelled, data.

In this paper, we focus on a particular class of genera-
tive kernels, namely kernels defined on generative models
with latent variables (for example the states in a Hidden
Markov Model – HMM): the most famous example is the
Marginalized Kernel [4]. Very recently, another kernel has
been proposed to be used with HMMs, called State-Space
Kernel [6]. The idea of this class of kernels is to map the
objects of the problem in a space where each dimension (or
a set of dimensions) describes the contribution of one of
the latent variables of the model. For example, in the State-
Space, each direction measures how often the system is in a
particular state given the model and the observation. The
inner product in such generative-derived spaces typically
represents the kernel.

The main idea of the approach described here derives from
the fact that the different directions of the generative space
(which are related to latent variables) could have different
characteristics in terms of discriminative and descriptive
power, and some space transformations might be useful. For
example, the well known Fisher Kernel has been improved
by a space normalization in [7]; moreover, the Marginalized
Kernel does not work without a re-scaling of the space1,
as shown in [4]. The common characteristic of all these
space transformations is the linearity of the scaling func-
tion. Nevertheless there are situations where the linearity
assumption is too restrictive, and a benefit may be obtained
from a nonlinear scaling via a nonlinear mapping.

In this paper, we investigate this last solution, modify-
ing kernels in order to include a nonlinear normalization,
namely, a nonlinear mapping of space dimensions able to
highlight or exploit their discriminative characteristics. The
specific form of such kernel depends on the choice of
the nonlinear mapping and on the latent variable model
it relies upon: here, we focus on HMM-based generative
embeddings.

In a preliminary work [8], we investigated a possible
choice of a nonlinear mapping, based on a powering op-
eration, obtaining promising results. Encouraged by these
performances, in this paper we pursue a further study,
comparing the powering operation with two other different
nonlinear mappings: the logarithm and the logistic function.
Even if all of these functions, in principle, are able to
equilibrate the contributions of each latent variable of the
model, they have different characteristics, which will be dis-
cussed and analyzed in the paper. A thorough experimental
evaluation has been used to validate our intuitions, using
the Marginalized and the State-Space kernels in a SVM-
based classification framework involving three tasks (two 2-
D shape recognition problems and one gesture classification
task). In the following, the basic theory and the nonlinear
transformations considered are described in Sections 2 and
3, respectively. In Section 4, the experimental trials on three

1It is straightforward to extract the generative embedding – namely the
space – from the kernel defined in [4] – see [8].
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data sets are reported, together with a discussion of the
results achieved, also sketching the future development of
the approach.

II. THE GENERAL IDEA

We consider a particular class of generative kernels which
lie on latent variables. An object x is mapped in a vec-
torial space through the model components, i.e. the latent
variables. The features of the resulting space H summarize
information about how latent variables describe or model the
observation x. We will call this information in the resulting
space as gh – the pedix h highlights the dependence
of such information from the latent variables h, where
h = {h1, . . . , hN} denotes the set of hidden variables of
the generative latent model.

The kernel, typically defined as the inner product in the
resulting Hilbert space, may then be decomposed into a sum
of inner products, each related to a specific latent variable:

K (x, x′) = ⟨gh (x) , gh (x′)⟩ =
N∑
i=1

⟨ghi
(x) , ghi

(x′) ⟩

(1)
where ghi

(x) denotes a vector of features related to a
particular hidden variable hi.

This formulation can in principle be applied to any
generative model with latent variables which are used to
form features. In the Marginalized Kernel case [4] ghi

is
a vector of length equal to the number of symbols in the
alphabet, while in the State-Space Kernel [6] ghi

is a scalar
value. The basic idea of the approach we propose here is
that the nonlinear mapping of the different directions of the
derived generative space may highlight their discriminative
characteristics [8]. This is accomplished by performing a
nonlinear mapping f of dimensions of the original Hilbert
space. The new kernel formulation is then defined as

NK (x, x′) =
N∑
i=1

⟨f
(
ghi

(x)
)
, f

(
ghi

(x′)
)
⟩ (2)

where NK represents an inner product in a new space whose
dimensions are obtained from dimensions of the original
latent variable space through the nonlinear mapping f .

III. THE NONLINEAR MAPPINGS

Here, we discuss different possible mappings. In par-
ticular, in this work we considered the power, the natural
logarithm and the logistic functions.

In the first case, the function f of the nonlinear mapping
is defined as2:

f
(
ghi

(x)
)
=

(
ghi

(x)
)ρ ∀i = 1, . . . , N (3)

where ρ > 0 is a parameter. We notice that for ρ = 1
the original kernel is re-obtained. In any case, we assume

2In all these functions, if ghi
is a vector, we consider the element-wise

application of the function.

Figure 1. Behaviors of the investigated nonlinear mappings.

ρ ≤ 1, since this solution has some appealing characteristics
as we will see in the following. The powering operation is
not new in the kernel scenario, even if our use is innovative.
The most famous example is the polynomial kernel where
the powering of the inner product is considered – while
here we propose the powering of each single component of
the vectors involved in the inner products. Further, another
example can be found in [2], where there is the definition
of the so-called Probability Product Kernel – which implies
the powering of probability products. Also in this case, there
is a remarkable difference, since the definition in [2] lies on
powering the components of an integral over the observation
space of two known probability distributions, whereas our
approach considers the integration (summation) in the latent
variable space, namely the integration is over the model
components.

In the second function (natural logarithm), f is defined
as:

f
(
ghi

(x)
)
= log

(
1 + ghi

(x)
)

(4)

This represents an interesting function, since it has no
parameters to be set. With respect to the power operation,
it has the peculiarity of not raising lower components, still
reducing large ones.

Finally, in the logistic functions case, the function f is
defined as:

f(ghi
(x)) = tanh

(ρ
2
ghi

(x)
)
=

1− e−ρghi
(x)

1 + e−ρghi
(x)

(5)

with 0 < ρ < 2.
Let us comment on the different behaviors of these func-

tions, which are shown in Fig. 1, together with the identity
map f(x) = x (corresponding to the original, unmodified
methods). In such figure, the power function (slashed graphs)
is represented for ρ = 0.2 and ρ = 0.5, the logistic function
(slash-dotted graphs) for ρ = 0.5 and ρ = 1, the logarithmic
function has no parameter (dotted graph).

A common feature of these transformations is that they
are concave, with vanishing derivatives at +∞. Actually, it
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seems that these two characteristics are crucial in the choice
of nonlinear mappings: in our experimental study we found
that convex functions do not produce any improvement of
the kernel (for example, we tried the powering operation
with ρ > 1).

Moreover, all the considered nonlinear mappings are
asymptotically nonexpansive: they reduce distances between
ghi

(x) and ghi
(y), provided that these quantities are large

enough. More specifically, the logarithm and the logistic
functions (for 0 < ρ < 2) are globally nonexpansive,
while the power (0 ≤ ρ < 1) is nonexpansive for
ghi

(x), ghi
(y) > 1, but, on the contrary, it expands distances

for ghi
(x), ghi

(y) < 1. Furthermore, the power transforma-
tion f(x) = xρ magnifies small values of x (for x < 1),
while shrinking large values of the variable. This effect
becomes stronger and stronger as ρ approaches 0.

Coming back to our kernel case, the effect of a powering
operation with ρ ≤ 1 is to raise the contribution of smaller
components of ghi

and to reduce the contribution of larger
components of ghi

, thus re-equilibrating the contributions
of each latent variable. This may be seen as a way of
augmenting the entropy of the contributions of latent vari-
ables. On the contrary, assuming ρ > 1 has the opposite
behavior, sparsifying the contributions of the latent variables.
The natural logarithm f(x) = log(1 + x) performs a more
energetic shrinking of large values of x, but it is essentially
the identity map for values of x near 0. Finally, the logistic
map f(x) = tanh(ρ2x) shrinks the range of x to the interval
0 ≤ x < 1: in some sense, it behaves in a way which is even
more radical than the logarithm. The parameter ρ controls
the initial slope of the curve (ρ = 2f ′(0)).

A final remark: clearly, the choice of the parameters in
the logistics and in the power functions is crucial. Differ-
ent values may lead to different behaviors of the kernel
functions. In this study we do not propose any method
for the choice of these values, considering them as free
parameters of the kernels. A further study on the effect of
these values is currently under investigation, but, from a
preliminary experimental evaluation, there is evidence of a
correlation between some invariants of the Gram matrix and
the accuracies, when varying the parameter ρ.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

The proposed methods have been evaluated in three se-
quence classification problems, using fully ergodic HMMs
as generative models, Marginalized Kernel [4] and State-
Space Kernel [6] as generative kernels, and the three non-
linear mappings described in the previous section. The exact
formulation of the quantity ghi

(x) for HMMs and these
kernels may be found in [8]3.

3In such paper, two possible applications of the nonlinear mapping idea
are proposed. In our experiments, we tested both versions reporting only
the best results among the two.

To test the proposed approach we performed three exper-
iments, in two application domains, comparing the original
version of the kernel to its enhanced counterpart obtained
by nonlinear mappings. The first application domain is 2-D
shape classification, where we chose to study the Chicken
Pieces Database, denoted also as Chicken data [9] (446
contours of chicken pieces – with five classes). We employed
two different sequence representations to model contours,
chain codes and curvature angles. In the first case, a standard
8-direction chain encoding procedure is applied to each
image. Then, discrete HMMs are used to model these classes
of symbol sequences. In the second case, we derive curvature
sequences as in [10], [11]. Classes of curvature sequences
are modeled by continuous Gaussian HMMs. More details
on how to employ HMM to recognize 2-D shapes may be
found in [10]. The original set is split into the training and
test sets, in the ratio of 50%− 50%. The classification runs
are averaged over 20 hold-out experiments.

The second application concerns a gesture classification
problem, where we used high-quality recordings of Aus-
tralian sign language signs (Auslan) [12]. The problem
we considered is composed by 10 signs (classes), with
27 samples per sign; each sample is a sequence of 22-D
observations, with an averaged length of 57 frames. Con-
tinuous Gaussian HMMs are employed in this case, directly
modeling the signals acquired from the sensors. In order
to get comparable results to [12], the performance of our
classification schemes is computed by using 20 repetitions
of a 5-fold cross-validation.

HMMs were trained using Baum-Welch procedure [13]:
in the continuous case the training was initialized with
a standard GMM clustering, whereas in the discrete case
20 random initializations were tried, picking the best in a
likelihood sense. A preliminary evaluation (not shown here
due to lack of space) revealed that the best number of states
of the HMM was 8 for the chain codes case, 5 for the
curvature case, and 3 for the gesture recognition problem.

The parameters, in the power and logistic cases, have been
varied in a logarithmic scale between 0 and 1. The best
results, for each nonlinear mapping, are shown in Table I, for
the three different experiments. From this table, it is evident
that the proposed nonlinear mappings have a beneficial
impact on the performances of both the State-Space Kernel
and the Marginalized Kernel for all data sets. Moreover, in
the Chicken case, the obtained results are really competitive
with the state of the art, considering the difficulty of the
data set (in [14] the authors reported a 83% of accuracy,
which is, to the best of our knowledge, the best result on
this dataset). Concerning the three mappings, it is evident
that the powering function is more beneficial than logistic
and logarithm: probably, its behavior for smaller components
(raising them) is beneficial and crucial.
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Table I
RESULTS. SSK IS THE STATE-SPACE KERNEL [6], AND MK IS THE

MARGINALIZED KERNEL [4]. NLM STANDS FOR NONLINEAR MAPPING
(BETWEEN BRACKETS THE APPLIED FUNCTION). THE STANDARD

ERRORS OF THE MEAN, FOR THE BEST PARAMETER CHOICES, ARE ALL
LOWER THAN 0.007.

Embedding Chicken Chicken Auslan
Chain Codes Curvature

Original SSK 0.751 0.736 0.798
NLM SSK (power) 0.813 0.807 0.904
NLM SSK (logar) 0.753 0.755 0.838
NLM SSK (logis) 0.770 0.780 0.826

Original MK 0.775 0.767 0.533
NLM MK (power) 0.855 0.780 0.932
NLM MK (logar) 0.829 0.776 0.901
NLM MK (logis) 0.817 0.776 0.856

V. CONCLUSIONS

In this paper we investigated the suitability of three
nonlinear mappings for preprocessing the space underlying
two HMM-based generative kernels. Obtained results on
three different experiments confirm the applicability of the
proposed approach.
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